|
[1] Leveque, R. J.,Finite Volume Methods for Hyperbolic Problems, Cambridge Uni-versity Press, 2002.
[2] Leveque, R. J.,Numerical Methods for Conservation Laws, Birkhäuser Verlag, 1992.
[3] Abgrall R., How to Prent Pressure Ocillations in Multicomponent Flow Calcula-tions:A Qusi Conservative Approach, Journal of comp. phy., 125, 150-160, 1996.
[4] Deiterding R., Simulation of a shock tube experiment with non-equilibrium che-mistry, Technical Report of Technical University, NMWR-00-3, 2000.
[5] Harten A., High resolution schemes for hyperbolic conservation laws, J. Comput. Phys. 49: 357–393, 1983.
[6] Jenny P., MüLLER B., and Thomann H., Correction of Conservative Euler Solvers for Gas Mixtures, Journal of comp. phy., 132,91-107, 1997.
[7] Li M. R., private communication.
[8] Prabhu R. K., An Approximate Riemann Solver for Thermal and Chemical None-quilibrium Flows,NASA Contractor Report, 195003, 1994
[9] Shieh T. H., Technical report, Section of Aerothermodynamics of Institute for Fluid mechanics of German Aerospace Center(OLR), 1999.
[10] Shieh T. H., private communication.
[11] Shyue K.M., An Efficient Shock-Capturing Algorithm for Compressible Multi-component Problems, Journal of Comp. Phy., 142, 208-242, 1998.
[12] Toro E.F., Aweighted average flux method for hyperbolic conservation laws, Proc. R. Soc. Lond. A, 423, 401-418, 1989
[13] Ton V. T.,Improved Shock-Capturing Methods for Multicomponent and Reacting Flows, Journal of comp. phy., 128, 237-253, 1996.
[14] Van Leer B., Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov''s Method, J. Com. Phys.., 32, 101–136, 1979.
[15] Wada Y., Liou M. S., NASA Technical Memorandum 106452, 1994.
[16] Xu K., BGK-Based Scheme for Multicomponent Floe Calculations, Journal of comp. phy., 134, 122-133, 1997.
[17] 趙興艷, 蘇莫明, 苗永森, 通量限制器對算法性能的影響, Chinese of Me-chanics, Vol. 21, 2000.
[18] University of Washington, (4.3 ver.) http://www.amath.washington.edu/~claw/
|