(34.237.52.11) 您好!臺灣時間:2021/05/18 14:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳永欽
研究生(外文):Yung-chin Chen
論文名稱:覆晶於玻璃基板及軟性基板於玻璃基板之熱機械行為分析與最佳化設計
論文名稱(外文):Thermal-Mechanical Analysis and Optimum Design of Chip-on-Glass and Flex-on-Glass Packaging
指導教授:鄭仙志
指導教授(外文):Hsien-Chie Cheng
學位類別:碩士
校院名稱:逢甲大學
系所名稱:航太與系統工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:239
中文關鍵詞:田口方法覆晶軟性基板接合技術回應曲面法覆晶玻璃基板接合技術有限元素法非導電性膠外引腳接合
外文關鍵詞:Finite Element MethodResponse SurfaceOuter Lead BondingNon-conductive Film/AdhesiveTaguchi MethodChip-on-GlassChip-on-Flex
相關次數:
  • 被引用被引用:1
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著電腦與通訊等產品的多元化、可攜性與輕巧化的需求,加上近年來家用液晶顯示器高畫質時代來臨,使得晶片構裝製程朝向高功率、高密度、與微小化等精密製程發展。而覆晶構裝技術(Flip Chip Technology)具有接腳間距小(Fine-Pitch)與生產量高等優點,因而被廣泛應用於電子產品上,如液晶顯示器的面板等,而在現今主要之覆晶構裝技術則為覆晶軟板構裝(Flip Chip on Flex, COF)接合技術以及覆晶玻璃基板(Flip Chip on Glass, COG)接合技術。

本論文即針對覆晶軟板構裝探討其於外引腳接合製程下(Outer Lead Bonding, OLB)之製程熱機械行為。一般而言,外引腳接合構裝於加工製程時所引發的熱應力/應變,將直接影響到此構裝甚至整體LCD驅動IC構裝之可靠度。本研究擬針對一內含細間距(Fine-pitch)外引腳之軟板等等。軟板(Flex)以NCF技術構裝於LCD玻璃基板(面板)上之製程熱機械行為進行探討。更藉由參數化有限元素分析方法探討影響此構裝體之熱機械行為的因子,設計變數包含元件材料性質、幾何尺寸以及製程參數等等,以找出對整體構裝模組之製程軟板殘餘翹曲量、凸塊/電極接觸應力及NCF膠材剝離及拉伸應力影響較大的因子。更重要的是藉由參數化分析進行單一顆引腳結構設計,以作為日後設計改善準則。最後則針對NCF型態COG構裝體進行分析與設計,利用設計實驗方法,來探討組合影響因子對其熱機械行為的影響,並找出改善製程熱機械行為的最佳因子組合。最後探討膠材固化程度及老化對構裝體之影響。
The adhesive-based FC technology are now widely used for drive IC packaging in LCD panel, including the anisotropic conductive film/adhesive(ACF/A) or the non-conductive film/adhesive(NCF/A) types of the chip-on-glass (COG) and chip-on-flex (COF) technologies. As compared to the ACF/A, the NCF/A technologies seem more appropriate and practical for use in I/O pitch below 40μm because of the absence of tiny electrically-conductive particles. In spite of the appealing advantage, the lack of these compliant particles would also unfortunately lessen the structural compliance of the I/O interconnects, thus being incapable of maintaining electrical continuity at elevated temperature. As a result, the associated yield and reliability issues of the NCF/A technology remain a great concern.

The main objective of this project aims at exploring the process-induced thermal-mechanical behaviors of the NCF typed outer-lead-bonding(OLB)/COF technology during the NCF bonding process and thermal testing, where a circuited PI film with fine-pitched copper electrodes is thermally, mechanically and electrically connected to a circuited glass LCD panel through NCF technology. The process-induced thermal-mechanical behaviors under investigation include the contact stress at the bump/electrode interface, the peeling stress on the NCF adhesive and the warpage of the substrate. The alternative goal of the study is to investigate the thermal performance of an NCF typed COF module under natural convection.
For effectively simulating the bonding process, a process-dependent finite element (FE) simulation methodology is performed. The validity of the proposed methodology is verified through failure analysis using SEM and available field failure data. Experimental validation through a micro-thermocouple technique for temperature measurement is also carried out to verify the effectiveness of the proposed thermal modeling. Furthermore, factors that most influence on the thermal-mechanical behaviors of the NCF typed OLB/COF technology and thermal performance of the NCF typed COF technology are explored through parametric FE analysis. The considered design variables include geometry parameters, material constants and process factors.In the meantime, a Taguchi method is applied to acquire the most important combination of these factors. Subsequently, a response surface methodology (RSM) combined with the Face Composite Design (FCCD) experimental design plan is performed to derive an approximate mathematical model of objective function in terms of the most essential combination of design variables. Finally, applying this mathematical model as the objective function together with some specified geometry constrains, the COG packaging technology with an improved, process-induced, thermal-mechanical behaviors is sought through optimization using Nonlinear Programming.

Results from the analysis, parametric design and optimum design can provide a design guideline for a better structural design in improving the reliability of the NCF typed COG and OLB/COF packaging technologies.
致謝 I
摘要 III
圖目錄 XV
表目錄 XIX
第一章 導論 1
第二章 問題描述 13
2.1 NCF型態COG構裝結構與製程 14
2.2 NCF型態COF/OLB構裝結構與製程 15
第三章 基礎理論 19
3.1 接觸理論【22】 19
3.2 有限體積加權平均法 20
3.3 三維有限元素法【24】 20
3.3.1 推導三維剛性矩陣 20
3.4 構裝熱傳分析 25
3.5 網格生死模擬技術【19】【22】 25
3.6 材料非線性 26
3.7 破壞準則 26
3.8 硬化法則【25】 27
3.9 田口方法【26】 27
3.9.1 品質工程的基本原理 30
3.9.1-1 一階品質損失函數(First Order Quality Loss Function) 30
3.9.1-2 二階品質損失函數(Quadratic Loss Function) 31
3.9.2 S/N比 33
3.9.3 因子反應表及因子反應圖 34
3.9.4 直交表 34
3.9.5 變異數分析 35
3.10 回應曲面法【31】【32】 38
3.10.1 設計空間佈點方式 39
3.10.2 迴歸模式之建構 41
3.10.3 回應曲面模式適切性統計檢驗 42
3.11 最佳化設計 43
3.12 潛變(Creep) 43
第四章 NCF型態COG構裝/COF型式OLB構裝之熱應力與熱態分析 45
4.1 NCF型態COG構裝之熱機械力學分析模型 45
4.2 COF型式OLB構裝之熱應力與熱態分析 47
4.2.1 NCF型態OLB構裝之暫態熱傳分析模型 47
4.2.2 NCF型態OLB構裝之熱機械力學分析模型 49
第五章 結果與討論 51
5.1 NCF型態COG構裝單顆電極之熱機械行為分析與設計 51
5.1.1 各式參數對構裝製程熱機械行為影響 51
5.1.1-1 金材厚度改變對製程熱機械行為的影響 52
5.1.1-2 不同幾何條件下對製程熱機械行為的影響 53
5.1.1-3 凸塊覆金(TiW與Ti)材料改變對製程熱機械行為的影響 54
5.2 NCF型態COG構裝單顆電極之鈦鎢與金材厚度的最佳組合 55
5.2.1 定義實驗目標 55
5.2.2 建立影響因子之回應表面曲線 55
5.2.3 鈦鎢與金材厚度的最佳組合設計 56
5.3 NCF型態COG構裝單顆電極之最佳化設計 59
5.3.1 NCF型態COG構裝單顆電極之田口設計 59
5.3.1-1 選定品質特性 59
5.3.1-2 列出影響品質特性之因子 59
5.3.1-3 定義控制因子、變動水準與直交表 60
5.3.1-4 執行實驗與資料分析 61
5.3.1-5、變異數分析 62
5.3.1-6 確認實驗 63
5.3.2 建立影響因子之回應表面曲線 65
5.3.2-1 建立構裝體接觸應力之回應表面曲線 66
5.3.3 最佳化設計 67
5.4 NCF型態COG構裝之熱機械行為分析 70
5.4.1 膠材老化對COG構裝之熱機械行為分析 70
5.5 NCF型態OLB製程熱機械行為分析與設計 72
5.5.1 NCF型態OLB構裝縱向電極之製程熱機械行為分析 72
5.5.2 各式參數對OLB構裝縱向電極製程熱機械行為的影響 74
5.5.2-1 位移載重壓合大小對製程熱機械行為的影響 75
5.5.2-2 壓合溫度對製程熱機械行為的影響 75
5.5.2-3 凸點楊氏係數改變對製程熱機械行為的影響 76
5.5.2-4 軟板楊氏係數改變對製程熱機械行為的影響 76
5.5.2-5 膠材楊氏係數改變對製程熱機械行為的影響 77
5.5.2-6 膠材熱膨脹係數改變對製程熱機械行為的影響 77
5.5.2-7 凸點數量改變對製程熱機械行為的影響 78
5.5.2-8 鎳厚度改變對製程熱機械行為的影響 78
5.5.2-9 軟板厚度改變對製程熱機械行為的影響 79
5.5.2-10 凸點高度改變對製程熱機械行為的影響 79
5.5.3 NCF型態OLB構裝橫向電極之製程熱機械行為分析 79
第六章、結論與展望 83
致謝 87
參考文獻 89
1.Peng, C.T., Liu; C.M.; Lin, J.C.; Cheng, H.C.; Chiang, K.N. “Reliability Analysis and Design for the Fine-pitch Flip Chip BGA Packaging,” IEEE Transactions on Components and Packaging Technologies, Vol. 27, No. 4,pp. 684-693, 2004.

2.王木俊,劉傳璽, “薄膜電晶體液晶顯示器原理與實務”新文京開發出版股份有限公司,民97。

3.Yim, M. J.; Paik, K. W. ”Design and Understanding of Anisotropic Conductive Films (ACF’S) for LCD Packaging,” IEEE Transactions on Components Packaging and Manufacturing Technology-Part A, Vol.21, No. 2, JUNE, 226-234, 1998.

4.Yim, M. J.; Pail, K. W. “The Contact Resistance and Reliability of Anisotropic Conductive Film,” IEEE Transaction on advanced packaging Vol. 22, No. 2, May, 166-173, 1999.

5.Sarkar, G.; Mridha, S.; Chong, T. T.; Tuck, W. Y.; Kwan, S. C. “Flip chip interconnect using Anisotropic Conductive Adhesive,” Journal of Materials Processing Technology, PP. 484-490, 1999.

6.Wu C. M. L.; Yeung N. H.; Chau M. L.; Lai J.K.L. "Residual Strength of OLB in a TAB Assembly with ACF after Thermal and Mechanical Loading," IEEE, p.295-298, 1998

7.Hwang, S.Y.; Yoon, J.Y.; Oh, W.S.; Joo, W.G. “Study on the Causes of Open Failure in Fine Pitch COG Interconnection,” Polytronic 2003, October 21-23, Montreux–Switzerland, 2003

8.Mercado, L. L.; White, J., Sarihna, V.; Lee, T. Y. “Failure Mechanism Study of Anisotropic Conductive Film (ACF) Packages,” IEEE Transactions on Components and Packaging Technologies, Vol. 26, No. 3, September, 509-516, 2003

9.Watanabe I., Fujinawa T., Arifuku M., Fujii M., Gotoh Y."Recent Advances of Interconnection Technologies using Anisotropic Conductive Film in Panel Display Applications,"IEEE 9th Int’ I Symposium on Advance Packaging Materials, p.11-16, 2004

10.Y. C. Chan, D. Y. Luk “Effects of bonding parameters on the reliability performance of anisotropic conductive adhesive interconnects for flip-chip-on-flex packages assembly I. Different bonding temperature,” Microelectronics Reliability 42 (2002) 1185-1194, 2002.

11.Chiang, K. N., Chang, C. W., and Lin, J. D. “Analysis of ACA/ACF Package Using Equivalent Spring Method,” 2000 Electronics Packaging Technology Conference, pp.110-116, Hsinchu, Taiwan, 2000.

12.Chiang, K. N., Chang, C. W. and Lin, J. D. “Process Modeling and Thermal/Mechanical Behavior of ACA/ACF type Flip-Chip Packages”, ASME Transaction, Journal of Electronic Packaging, Vol. 123, pp. 991-337, 2001.

13.Yim M. J., Hwang J. S., Kim J. G., Ahn J. Y., Kim H. J., Kwon W., Paik K. W. “Highly Reliable Flip-Chip-on-Flex Package Using Multilayered Anisotropic Conductive Film,” Electronic Materials, vol. 33, No. 1, Journal, p.76-82, 2004.

14.Wu Y. P., Alam M. O., Chan Y. C., Wu B. Y. “Dynamic strength of anisotropic conductive joints in flip chip on glass and flip chip on flex packages,” Microelectronics Reliability 44, p.295-302, 2004.

15.Gladkov A., and Bar-Cohen A. “Parametric Dependence of Fatigue of Electronic Adhesives,” IEEE Transactions on Components and Packaging Technology. Vol. 22, No. 2, JUNE, p.200-208, 1999.
16.Rizvi M. J., Bailey C., Chan Y. C., Lu H. “ Effects of Thermal Cycling Profiles on The Performance of Chip-on-Flex Assembly Using Anisotropic Conductive Films,” IEEE, p.855-860, 2006.

17.Getkin K., Cetina B. “ Finding the Smart Solution,” American School Board Journal, Vol. 194 Issue 11, p52-53, 2007.

18.Hatada K. and Fujimoto H., Kawakita T. and Ochi T. “ A New LSI Bonding Technology “ Micro Bump Bonding Assembly Technology,” IEEE-CHMT Proceeding, p. 45-49, 1988.

19.Cheng H. C.,Ho C. L.,Chen W. C. and Yang S. S. “Warpage Analysis of Anisotropic Conductive Film(ACF)Assembly:Numerical Modeling and Experimental Validation,”AASRC/CCAS Joint Conference, December, Taichung, 2004.

20.林佳德, “LCD面板驅動IC構裝應力分析與設計,” 逢甲大學航太與系統工程研究所碩士論文,民97。

21.黃宛玉, “LCD面板驅動IC構裝技術力學分析與設計,” 逢甲大學航太與系統工程研究所碩士論文,民96。

22.Hertz H., “Uberdie Beruhrung Fester Elastischer Korper (On the contact of elastic solids),” J.reine and angewandte Mathematik, 92, p.159-171

23.Chen W. H., Cheng H. C. and Shen H. A. “An effective Methodology for Thermal Characterization of Electronic Packaging,” IEEE Transactions on Components and Packaging Technologies, Vol. 26, No. 1, March, p.222-232, 2003.

24.Ansys user’s manual Inc. Ansys is a registered trademark of Ansys Inc
25.林正基, “微電子元件裝可靠度暨散熱特性之設計分析”清華大學博士論文,民91。

26.Chen T. Y. and Lin C. Y. “Determination of Optimum Design Spaces for Topology Optimization,”Finite Elements in Analysis and Design. Vol. 36, p.1-16, 2000.

27.李育嘉 ”對堆疊式晶片構裝疲勞壽命之最佳化探討,” 成功大學工程科學系碩士論文, 民94。

28.陳信華, ”利用田口氏動態訊雜比進行表面聲波氣體感測器之穩健設計,” 屏東科技大學機械工程系碩士論文, 民94。

29.李輝煌, "田口方法-品質設計的原理與實務," 高立圖書有限公司,民89。

30.彭治棠, “電子構裝及微機電系統之多層板結構理論分析與實驗驗證,”清華大學動力機械工程研究所碩士論文,民90。

31.李弦政, “回應表面法在最佳化設計之應用,” 中興大學機械工程硏究所碩士論文, 民88。

32.葉添昇, “回應曲面法探討溶膠 : 凝膠程序配合光譜分析凝膠動力反應,” 中原大學化學工程硏究所, 民87。
33.Mulgaonker S., Chamvers B., Mahalingam M., Ganesan G., Hause V. and Berg H. ”Thermal Performance Limits of the QFP Family,” IEEE Transactions on Components Packaging and Manufacture Technologies, Part A, Vol. 17, No. 4, p.573-581, 1994.

34.J. H. Zang et al, “Contact resistance and adhesionperformance of ACF interconnections to aluminummetallization,” Microelectronic Reliability, vol. 43, pp.1303-1310, 2003.

35.Y. W. Huang et al, ”Evaluating Fine-Pitch Chip-on-Flex with Non-Conductive Film by Using Multi-Point Compliant Bump Structure ,“ Electronics Packaging Technology Conference, pp.324-329, 2006.

36.Qian et al, “Visco-Elastic-Plastic Properties and Constitutive Modeling of Underfills.” Electronic Components and Technology Conference, pp.969-974, 1998.

37.范嘉偉,”無鉛/錫鉛銲點之金屬間化合物成長機制及潛變特性,” 碩士國立清華大學,動力機械工程學系,民93。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊