|
[1] Boos, D.D. (2003). Introduce to the bootstrap world. Statistical Science, 18 : 168- 174. [2] Davison, A. C., Hinkley, D.V. (1997). Bootstrap Methods and Their Application. Cambridge University Press. [3] Edmondson, E.W., Hyner, G.C., Lyle, R.M., Melby, C.L., Miller, J.Z., Weinberger, M.H.(1987). Blood Pressure and Metabolic E ects of Calcium Supplementation in Normotensive White and Black Men. Journal of the American Medical Association, 257 : 1772-1776. [4] Efron, B. (1979). Bootstrap Methods : Another Look at the Jackknife. Annals of Statistics, 7 : 1-26. [5] Efron, B. (1987). Better Bootstrap Con dence Intervals. J. Amer. Statist. Assoc, 82 : 171-185. [6] Efron, B., Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman & Hall, New York. [7] Hewett, J.E., Lababidi, Z. (1982). comparison of three regression lines over a nite interval. Biometrics, 38 : 837-841. [8] Hill, N.J., Padmanabhan, A.R. (1984). Robust comparison of two regression lines and biomedical application. Biometrics, 40 : 985-994. [9] Hinkley, D.V. (1969 ). On the ratio of two correlated normal random variable. Biometrika, 56 : 635-639. [10] Huitema, B. E. (1980). The analysis of covariance and alternatives. John wiley & Sons, New York. [11] Larholt, K. M., Sampson, A. R. (1995). E ects of heteroscedasticity upon certain analyses when regression lines are not parallel. Biometrics, 51 : 731-737. [12] Pottho , R. F. (1964). On the Johnson-Neyman technique and some extensions thereof. Psychometrika, 29 : 241-256. [13] Rogosa, D. (1980). Comparing nonparallel regression lines. Psychological Bulletin, 88 : 307-321. [14] Schwenke, J.R. (1990). On the equivalence of the Johnson-Neyman technique and Fieller''s theorem. Biometrical Journal, 32 : 441-447. [15] Shao, J. and Tu, D. (1995). The Jackknife and Bootstrap. Springer-Verlag, New York. [16] Spurrier, J.D., Hewett, J.E., Lababidi, Z. (1982). Comparison of two regression lines over a nite interval. Biometrics, 38 : 827-836. [17] Tsutakawa, R.K., Hewett, J.E. (1978). Comparison of two regression lines over a nite interval. Biometrics, 34 : 391-398.
|