(3.80.6.131) 您好!臺灣時間:2021/05/15 00:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林世川
研究生(外文):Shih-Chuan Lin
論文名稱:超結構型光纖光柵感測器之研究
論文名稱(外文):Fiber Sensors Based On Superstructure Fiber Gratings
指導教授:田春林劉文豐劉文豐引用關係
指導教授(外文):Chuen-Lin TienWen-Fung Liu
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:91
中文關鍵詞:長週期光子晶體光纖光柵聚苯胺蝕刻式超結構光纖光柵同時量測兩物理參數
外文關鍵詞:poly-anilinephotonic crystal fiberslong-period gratingsfiber sensorssuperstructure fiber gratings
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要是在探討蝕刻式超結構光纖光柵感測器,可同時量測兩物理量的光學特性,超結構光纖光柵同時結合了布拉格光纖光柵與長週期光纖光柵之特性,在不同的製作條件下又可區分為鋸齒型超結構光纖光柵、空氣間隙型超結構光纖光柵。另外亦針對兩種蝕刻式超結構光纖光柵之特性做探討,由於結構上的不同,所感測的用途亦不相同,鋸齒型超結構光纖光柵的結構適合同時感測應變與溫度;而空氣間隙型超結構光纖光柵則適合做有關折射率與溫度的感測。
另外探討了以長週期光子晶體光纖光柵為骨幹之氨氣感測器,以單面拋光技術、跟聚苯胺會與氨氣反應的特性,對不同濃度的氨氣進行感測研究。利用三種不同型態的光纖光柵進行感測研究,期許未來可以開發出更靈敏、精準的光纖光柵感測器,為光纖光柵感測器的發展有所貢獻。
The content of this thesis is to investigate the fiber sensor based on the superstructure fiber gratings (SFGs) with two different fiber-etching processes. The SFG can be used to simultaneously measure two different physical parameters for simplifying the design of a sensor system. This is due to an SFG including the optical characteristics both of an FBG and an LPG. By means of different fabricating processes, we can make the corrugate-type and air-gap of superstructure fiber gratings. The corrugate-type has high sensitivity for measuring the applied strain. The air-gap type has better performance for sensing the surrounding index variation. Both of them can simultaneously measure two-parameters for enhancing the sensing accuracy.
In this thesis, we also study about the side-polished long-period grating coating with a poly-aniline thin film in photonic crystal fibers for measuring different concentrations of ammonia gas. The sensing mechanism is based on the index change of the poly-aniline thin-film as it is interacted with the ammonia gas. It is new sensing design with high sensitivity and accuracy for developing a wide range of sensing applications.
摘 要 i
Abstract ii
致 謝 iii
目 錄 iv
圖目錄 vii
表目錄 ix
第一章 緒 論 1
1.1 研究動機 1
1.2 研究目的 2
1.3研究方法及本文架構 3
第二章 光纖光柵的光學特性與理論分析 4
2.1 引言 4
2.2 簡介光纖光柵 4
2.3 光纖光柵之感光性 6
2.4 光纖光柵之物理特性與理論分析 8
2.4.1 布拉格光纖光柵 8
2.4.2 布拉格光纖光柵理論分析 9
2.4.3 長週期式光纖光柵 13
2.4.4 長週期式光纖光柵理論分析 16
2.4.5 超結構式光纖光柵 18
2.4.6 超結構式光纖光柵理論分析 20
第三章 光纖光柵感測器原理分析 24
3.1 引言 24
3.2 光纖光柵感測器 24
3.3 光纖光柵的感測特性 25
3.3.1 布拉格光纖光柵的感測特性 25
3.3.2 長週期式光纖光柵的感測特性 29
3.3.3 超結構式光纖光柵的感測特性 30
第四章 蝕刻式超結構光纖光柵感測器 32
4.1引言 32
4.2蝕刻式超結構光纖光柵之感測器構造 32
4.2.1 鋸齒型超結構光纖光柵 32
4.2.2 空氣間隙型超結構光纖光柵 33
4.3蝕刻式超結構光纖光柵製作 35
4.3.1 引言 35
4.3.2.光纖微影製程 35
4.3.3光纖蝕刻製程 37
4.3.4單面拋光技術 38
4.4 蝕刻式超結構光纖光柵寫製(一)-鋸齒型 40
4.4.1 引言 40
4.4.2 鋸齒型結構光纖光柵之製作方式 40
4.4.3 鋸齒型超結構光纖光柵之製作結果與討論 42
4.5 蝕刻式超結構光纖光柵寫製(二)-空氣間隙型 43
4.5.1 引言 43
4.5.2 空氣間隙型製作方式 44
4.5.3 空氣間隙型超結構光纖光柵之製作結果與討論 47
4.6 鋸齒型超結構光纖光柵對應變與溫度特性研究 48
4.6.1引言 48
4.6.2鋸齒型超結構光纖光柵對應變之實驗 48
4.6.3鋸齒型超結構光纖光柵對溫度之實驗 52
4.6.4 實驗結果與討論 56
4.7空氣間隙型超結構光纖光柵對折射率與溫度特性研究 59
4.7.1引言 59
4.7.2空氣間隙型超結構光纖光柵對折射率的實驗 59
4.7.3空氣間隙型超結構光纖光柵對溫度之實驗 67
4.7.4 實驗結果與討論 70
第五章 以長週期光子晶體光纖為骨幹之氨氣感測研究 72
5.1引言 72
5.2光子晶體光纖與長週期光子晶體光纖光柵介紹 72
5.2.1光子晶體光纖簡介 72
5.2.2 長週期光子晶體光纖光柵 73
5.3電弧法製作長週期光子晶體光纖光柵簡介 76
5.3.1引言 76
5.3.2寫製流程與方法 76
5.4長週期光子晶體光纖之氨氣感測頭與感測原理 78
5.4.1引言 78
5.4.2長週期光子晶體光纖光柵之氨氣感測頭製作 78
5.4.3長週期光子晶體光纖之氨氣感測原理 80
5.4.4實驗結果與討論 81
第六章 結論與展望 85
參考文獻 87
作者簡介 91
[1] B. Lee, “Review of the Present Status of Optical Fiber Sensors,” Optical Fiber Technology, Vol. 9, pp. 57-79, 2003.
[2] H.J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, “Hybrid Fiber Bragg Grating/Long Period Fiber Grating Sensor for Strain/Temperature Discrimination,” IEEE Photonics Technology Letters, Vol. 8, No. 9, pp. 1223-1225, 1996.
[3] W. C. Du, “Fiber Bragg Grating Cavity Sensor for Simultaneous Measurement of Strain and Temperature,” IEEE Photonics Technology Letters, Vol. 11, No. 1, pp. 105-107, 1999.
[4] A. P. Zhang, B. O. Guan, X. M. Tao, H. Y. Tam, “Mode Couplings in Superstructure Fiber Bragg Gratings,” IEEE Photonics Technology Letters, Vol. 14, No. 4, pp. 489-491, 2002.
[5] T. Redogan, “Fiber Grating Spectra,” Journal of Lightwave Technology, Vol. 15, No. 8, pp. 1277-1294, 1997.
[6] K. O. Hill, Y. Fujii, D. D. Johnson, B. S. Kawasaki, “Photosensitivity in Optical Fiber Waveguides:Application to Reflection Filter fabrication,” Applied Physical Letters, Vol. 32, pp. 647-649, 1978.
[7] K. O. Hill, G. Meltz, “Fiber Bragg Grating Technology Fundamentals and Overview,” Journal of Lightwave Technology, Vol. 15, No. 8, pp. 1263-1276, 1997.
[8] A. Othonos, K. Kall, “Fiber Bragg Gratings Fundamental and Applications in Telecommunications and Sensing,” Artech House inc., 1999.
[9] F. Bilodeau, B. Malo, J. Albert, D. C. Johnson, K. O. Hill, Y. Hibino, M. Abe, M. Kawachi, “Photosensitization of Optical Fiber and Silica-on-Sicicon/ Silica Waveguides,” Optics Letters, Vol. 18, pp. 953-955, 1993.
[10] P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed , “High-Pressure H2 Loading as a Technique for Achieving Ultrahigh UV Photosensitivity in GeO2 Doped Optical Fibers,” Electronics Letters , Vol. 29, pp. 1191-1193, 1993.
[11] J. N. Jang, , S. Y., Kim, S. W. Kim, M. Kim et al, “Novel Temperature Insensitive Long-Period Grating by Using the Refractive Index of the Outer Cladding,” OFC 2000, Baltimore, Maryland, USA, Vol. 1, pp. 29-31, 2000.
[12] A. M. Vengsarlar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-Period Fiber Gratings as Band-Rejection Filters,” Journal of Lightwave Technology, Vol. 14, No. 1, pp.58-65, 1996.
[13] T. J. Eom, Y. J. Kim, Y. Chung, W. T. Han, U. C. Peak, B. H. Lee, “Asymmetric Transmission Spectrum of a Long-Period Fiber Grating and Its Removal Using a Beam Scanning Method,” IEICE Transactions on Communications, Vol. E84-B, No. 5, pp. 1241-1246, 2001.
[14] B. J. Eggleton, C. M. D. Sterke, “Nonlinear Propagation in Superstructure Bragg Gratings,” Optics Letters, Vol. 21, No.16, pp. 1223-1225, 1996.
[15] N. G. R. Broberick, C. M. D. Sterke, “Theory of Grating Superstructure,” Physical Review E. Vol. 55, No. 3, pp. 3634-3646, 1997.
[16] A. P. Zhang, B. O. Guan, X. M. Tao, H. Y. Tam, “Mode Couplings in Superstructure Fiber Bragg Gratings,” IEEE Photonics Technology Letters, Vol. 14, No. 4, pp. 489-491, 2002.
[17] C. M. D Sterke, N. G. R. Broderick, “Couple-Mode Equations for Superstructure Bragg Gratings,” Optics Letters, Vol. 20, No.20, pp. 2039-2041, 1995.
[18] M. Yamada, K. Sakuda, “Analysis of Almost Periodic Distributed Feedback Slab Waveguide Via a Fundamental Matrix Approach,” Applied Optics, Vol. 26, No. 16, pp. 3474-3478, 1987.
[19] 張國鎮, 林詠彬, “光纖感測監測之應用與發展研討會論文集,” 國家地震研究中心, pp.1-10, 2003.
[20] A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele , “Fiber Grating Sensors,” Journal of Lightwave Technology, Vol. 15, No. 8, pp. 1442-1463, 1997.
[21] X. Shu, Z. Liu, I. Bennion, “Sensitivity Characteristics of Long-Period Fiber Gratings,” Journal of Lightwave Technology, pp.1-12, 2002.
[22] V. Bhatia, A. M. Vengsarkar, “Optical Fiber Long-Period Grating Sensors,” Optics Letters, Vol. 21, pp. 692-694, 1996.
[23] V. Bhatia and A. M. Vengsarkar, “Optical Fiber Long-Period Grating Sensors”, Optics Letters, Vol. 21, No. 9, 1996.
[24] B. J. Eggleton, P. A. Krug, L. Poladian, F. Ouellette, “Long Periodic Superstructure Bragg Grating in Optical Fibers,” Electronics Letters, Vol. 30, pp. 1620-1622, 1994.
[25] B.O. Guan, H. Y Tam, X. Tao, X. Dong, “Simultaneous Strain and Temperature Measurement Using a Superstructure Fiber Bragg Gratings,” IEEE Photonics Technology Letters, Vol. 12, No.6, pp. 675-677, 2000.
[26] B. A. L. Gwandu, X. W. Shu, Y. Liu, W. Zhang, L. Zhang, I. Bennion, “Simultaneous Measurement of Strain, Temperature and Curvature Using a Sampled Fiber Bragg Gratings” IEEE Photonics Technology Letters, pp. 79-82, 2002.
[27] C. Fernandez-Valdivielso, I. R. Matías and F. J. Arregui, “Simultaneous Measurement of Strain and Temperature using a Fiber Bragg Grating and a Thermochromic Material,” Elsevier Science, A 101, pp.107-116, 2002.
[28] B.O. Guan, H. Y Tam, X. Tao, X. Dong, “Simultaneous Strain and Temperature Measurement Using a single Fiber Bragg Gratings,” Electronics Letters, Vol. 36, No.12, pp. 1018-1019, 2000.
[29] S. E. Kanellopoulos, V. A. Handerek, A. J. Rogers, “Simultaneous Strain and Temperature Sensing with Photo-Generated In-Fiber Grating,” Optics Letters, Vol.20, No.3 pp.333- 335, 1995.
[30] H. Chi, X. M. Tao, D. X. Yang, K. S. Chen, “Simultaneous Measurement of Axial Strain, Temperature, and Transverse Load By a Superstructure Fiber Grating,” Optics Letters, Vol. 26, pp. 1949-1951, 2001.
[31] S. M. Melle, K. Liu, R. M. Measures, “A Passive Wavelength Demodulation System for Guided-wave Bragg Grating Sensors,” IEEE Photonics Technology Letters, Vol. 4, No. 5, pp. 516-518, 1992.
[32] Y. Zhang, D. Feng, Z. Liu, Z. Guo, X. Dong, K. S. Chiang, B. C. B. Chu, “High-Sensitivity Pressure Sensor Using a Shielded Polymer-Soated Fiber Bragg Grating,” IEEE Photonics Technology Letters, Vol. 13, No. 6, pp. 618-619, 2001.
[33] 許兼貴, “深紫外線抗反射技術及次100奈米世代電子束直寫阻劑特性研究,” 國立清華大學原子科學系碩士論文, 2001.
[34] C. Y. Lin, L. A. Wang, “ Corrugated Long-Period Fiber Gratings as Strain, Torsion, and Bending Sensors,” Journal of Lightwave Technology, Vol. 19, No. 8, 2001.
[35] X. Shu, Y. Lin, “Sampled Fiber Bragg Grating for Simultaneous Refractive-Index and Temperature Measurement,” Optics Letters, Vol.26, No 11,2001.
[36] P. St. J. Russell, “Photonic-Crystal Fibers,” Journal of Lightwave Technology, vol. 24, No. 12, 2006.
[37] G. Kakarantzas, T. A. Birks, P. St. J. Russell, “ Structural Long-Period Gratings in Photonic Crystal Fibers,” Optics Letters, Vol. 27, No. 12, 2002.
[38] J. H. Lim, K. S. Lee, J. C. Kim, B.H. Lee, “ Tunable Fiber Gratings Fabricated in Photonic Crystal Fiber By Use of Mechanical Pressure,” Optics Letters, Vol.29, pp.331-333, 2004.
[39] G. Himber, A. Malki, S. Fevrier, P. Roy, D. Pagnoux, “ Electric Arc-Induced Long-Period Gratings in Ge-free Air-Silica Microstructure Fibres,” Electronics Letters, Vol. 39, pp. 349-350, 2003.
[40] G. Humbert, A. Malki, “ Electric-Arc-Induced Gratings Innon-Hydrogenated Fibres: Fabric –Cation and High-Temperature Characterizations,” Journal of Optics A : Pure and Applied Potics. 4, pp. 194-198, 2002.
[41] J. B. Jensen, J. Riishede, J. Broeng, J. Laegsgaard, T. Tanggaard Larsen, T. Sorensen, K. Hougaard, E. Knudsen, S. B. Libori, A. Bjarklev, “ Photonic Crystal Fibers; Fundamental Properties and Applications within Sensors,” Sensor, 2003.proceedings of IEEE, Vol. 1,pp. 269-278, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top