跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 08:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:杜偉豪
研究生(外文):Wei-hao Tu
論文名稱:新型塔式散熱器的最佳化設計分析
論文名稱(外文):The Optimum Design and Analysis of the New Cooler of Tower Type
指導教授:劉明山劉明山引用關係
指導教授(外文):Min-shan Liu
學位類別:碩士
校院名稱:逢甲大學
系所名稱:機械工程學所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:82
中文關鍵詞:田口實驗計劃法鰭片散熱器中央處理器
外文關鍵詞:Taguchi methodfincoolerCPU
相關次數:
  • 被引用被引用:0
  • 點閱點閱:535
  • 評分評分:
  • 下載下載:114
  • 收藏至我的研究室書目清單書目收藏:0
中央處理器(Central Processing Unit,簡稱CPU)是電腦的核心組件同時也是電腦零組件中發熱量最高的;為避免過多的熱量累積使溫度過高導致CPU損壞,通常會在CPU上加裝散熱器與風扇,利用風扇強制空氣對流增加散熱器的熱傳導。
傳統式的散熱器使用的材質皆為鋁,主要組件為基座與薄板垂直式鰭片,其薄板垂直式鰭片配置方式為垂直置於基座上。本研究所探討的散熱器為新式塔型散熱器,主要組件為銅製的基座、圓柱狀鰭片、薄板水平式鰭片與熱管。
本研究利用Fluent分析軟體配合田口實驗計劃法探討散熱器的薄板鰭片厚度、數量、開孔與圓柱狀鰭片對於整體散熱器散熱效果的影響。結果顯示圓柱狀鰭片與薄板鰭片數量為最具影響力的參數。在改變單一參數方面對散熱器散熱效果影響的研究顯示,14×14的圓柱狀鰭片、30片薄板鰭片、薄板鰭片厚度為0.8㎜和鰭片上無開孔的參數設計可以得到最佳的散熱效果。
CPU (Central Processing Units) is the core component of the computer and the temperature on it is the highest of all components. In order to avoid the damage of CPU in high temperature, usually install a cooler on it. And use a fan to force convection the heat to increase the heat conduction on it.
The traditional cooler is made by aluminum and the main components are base and vertical plate-fins which are located on the base. A new tower type cooler made by cooper was investigated on this study. The main components of it are base, pin-fins, horizontal plate-fins and heat pipe.
The study used Fluent analysis software with Taguchi experimental method to investigate the effect of the CPU cooling performance by changing the thickness of plate-fins, amount of plate-fins, amount of holes on plate-fins and amount of pin-fins.
The results show that the most effective parameters are the amount of pin-fins and plate-fins. The cooling performance in changing single parameter shows that the optimum design of cooling performance are 14×14 pin-fins, 30 plate-fins without holes on it and the thickness of plate-fins is 0.8 mm.
摘要..............................................I
Abstract.........................................II
誌謝............................................III
目錄.............................................IV
表目錄..........................................VII
圖目錄.........................................VIII
符號說明........................................XII
第一章 序論.......................................1
1-1 前言......................................1
1-2 文獻回顧..................................3
1-3 研究動機與目的............................4
第二章 Fluent分析軟體之理論與方法.................6
2-1 物理模型及基本假設........................6
2-2 統御方程式................................7
2-3 邊界條件..................................9
2-4 Fluent使用之數值方法.....................10
2-5 求解流程.................................11
2-6 鬆弛因子.................................12
2-7 收斂條件.................................13
2-8 數值模擬流程.............................13
2-9 網格設置.................................14
第三章 田口實驗計劃法............................16
3-1 簡介.....................................16
3-2 田口實驗計劃法步驟.......................18
3-3 變異數分析...............................22
3-4 本文田口方法架構.........................24
3-4-1 選定品質特性.....................24
3-4-2 判定品質特性之理想機能...........24
3-4-3 決定控制因子與挑選適當直交表.....25
3-4-4 干擾策略.........................25
第四章 結果與討論................................27
4-1 電腦模擬分析結果.........................27
4-2 流場觀測.................................28
4-3 溫度場觀測...............................29
4-4 個別參數對散熱器散熱效果之影響...........30
4-4-1 圓柱狀鰭片之影響.................30
4-4-2 薄板鰭片數量之影響...............32
4-4-3 薄板鰭片厚度之影響...............33
第五章 結論與建議................................35
參考文獻.........................................37
【1】Ko-Ta Chiang, Fu-Ping Chang, “Application of response surface
methodology in the parametric optimization of a pin-fin type heat sink,” International Communications in Heat and Mass Transfer 33, pp836-845, 2006.

【2】Kwang-Soo Kim, Myong-Hee Won, Jong-Wool Kim, Byung-Joon Back, “Heat pipe cooling technology for desktop PC CPU,” Applied Thermal Engineering 23, pp1137-1144, 2003.

【3】Ko-Ta Chiang, “Optimization of the design parameters of Parallel-Plain Fin heat sink module cooling phenomenon based on the Taguchi method,” International Communications in Heat and Mass Transfer 32, pp1193-1201, 2005.

【4】Mousa M. Mohamed, “Air cooling characteristics of a uniform square modules array for electronic device heat sink,” Applied Thermal Engineering 26, pp486-493, 2006.

【5】Morrison, A.T., “Optimization of Heat Sink Fin Geometries for Heat Sinks in Natural Convection,” Inter Society Conference on Thermal Phenomena, 1992.

【6】Azar, K., and Mandrone, C.D., “Effect of Pin Fin Density of the Thermal Performance of Unshrouded Pin Fin Heat Sinks,” Ninth Annual IEEE, 1995.

【7】Chapman, C.L., Lee, S., and Schmidt, B.L., “Thermal performance of an elliptical pin fin heat sink,” Tenth IEEE SEMI-THERMTM, 1994.

【8】Shaukatullah, H., Storr, W.R., Hansen, B.J., and Gaynes, M.A., “Design and Optimization of pin Fin Heat Sinks for Low Velocity Applications,” IEEE Transactions on components, Volume: 19 Issue: 4, Dec. 1996.

【9】Heng-Chieh Chien, Ming-His Tseng, Chih-Yao Wang, and Chu Chun-Hsun, “The study of Micro-Fin Heat Sinks for Electronic Cooling Applications,” Seventeenth IEEE SEMI-THERM Symposium, 2001.

【10】Jonsson, H., and Palm, B., “Thermal and Hydraulic Behavior of Plate Fin and Strip Fin Heat Sinks Under Varying Bypass Conditions,” The Sixth Intersociety Conference on, 1998.

【11】Iyengar, M., and Bar-Cohen, A., “Least-Material Optimization of Vertical Pin-Fin, Plate-Fin, and Triangular-Fin Heat Sinks in Natural Convective Heat Transfer,” The Sixth Intersociety Conference on, 1998.

【12】Behnia, M., Copeland, D., and Soodphakdee, D., “A Comparison of Heat Sink Geometries for Laminar Forced Convection Numerical Simulation of Periodically Developed Flow,” The Sixth Intersociety Conference on, 1998.

【13】Wirtz, R.A., and Zheng, N., “Methodology for Predicting Pin-Fin Fan-Sink Performance,” The Sixth Intersociety Conference on, 1998.

【14】Wirtz, R.A., Weiming, C., and Ronghua, Z., “Effect of Flow Bypass on the Performance of Longitudinal Fin Heat Sinks,” Transactions of the ASME, 1994.

【15】柳貴琦,“高效率氣冷式CPU散熱器之熱傳分析與設計”,2001。
【16】蔡超元,“個人電腦CPU上散熱器之熱傳分析”,2004。

【17】王文耕,“電腦CPU散熱片造型對其熱傳效果之影響”,2003。

【18】蘇朝敦,“產品穩健設計—田口品質工程方法的介紹與應用”,中華民國品質學會,1997。

【19】B. E. Lauder and D. B. Spalding, “The numerical computation of turbulent flow,” Computer Methods in Applied Mechanics and Engineering, 3:269-289, 1974.

【20】S. V. Patankar and D. B. Spalding, “A calculation procedure for heat, mass and momentum transfer in three-dimension parabolic flows,” J. Heat Mass Transfer, Vol.15, pp1781-1806, 1972.

【21】S. V. Patankar, “Numerical heat transfer and fluid flow,” Hemisphere Publishing CO., Washington, 1980.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top