(3.236.214.19) 您好!臺灣時間:2021/05/07 12:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇昭穎
研究生(外文):Chao-Ying Su
論文名稱:使用階層式適應性共振理論類神經網路於字型辨識
論文名稱(外文):Hierarchical ART Neural Networks for Character Recognition
指導教授:蕭肇殷
指導教授(外文):Chao Yin Hsiao
學位類別:碩士
校院名稱:逢甲大學
系所名稱:機械工程學所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:72
中文關鍵詞:字元辨識ART類神經網路二值化型樣參數特徵參數
外文關鍵詞:ART neural networksidentificationBinary patternfeature parameters
相關次數:
  • 被引用被引用:0
  • 點閱點閱:121
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究設計並探討一種階層式的ART類神經網路於設計它的演算法則並用於文字上的辨認。文字圖形採用二值化的型樣參數並將它擷取低維度的特徵參數。決策樹的最底層的節點為簡化的ART1類神經網路,主要是針對二值化型樣參數的存取與演算,非最底層的節點主要是針對低維度的特徵參數與向量量化法做分類與演算。本研究在最底層簡化的ART1類神經網路節點設計一種方法來處理塑性跟穩定性的平衡問題,可以將干擾少得乾淨型樣做有效的儲存,干擾多的型樣可以分別儲存,同時規劃一種辨識與存取策略。非最底層的節點採用低維度的特徵參數可以大幅減少判斷與訓練的時間。向量量化法做分類。使用二十六個字母與十個阿拉伯數字,針對不同字體與不同程度的干擾分別作案例來觀察與驗證。
In this article, we design simplified ART neural networks based on the concept of In-star and Out-star loop in store and retrieve patterns, and include the simplified ART neural networks in the form of decision tree to make a hierarchical classifier. We investigate the characteristics of the classifier, and design the algorithms for storing and testing patterns. To each pattern of word characters, the binary parameters are adopted, and then the related feature parameters are taken.
The bottom nodes of the decision tree are implemented with the simplified ART neural networks, those are designed to work on the binary pattern vectors; On the other hand, the non-bottom nodes of the decision tree are classifiers of vector quantization work on the feature parameters for clusters classification. By doing this we can highly reduce the computation requirement for training and decision making. For the simplified ART neural networks of the bottom nodes of the decision tree, an algorithm of pattern recognition, pattern storage and retrieve is designed, also an adjusting method is included to handle the problem of stability-plasticity dilemma, in the way that the clean and confirmed patterns can be stored efficiently, while the patterns with different degrees of distortion or noise corrupted can be store separately.
About the experiments, 26 alphanumeric characters and 10 Arabic numerals in the phone of time new Roman are adopted. The experiments are divided into three stages, the first stage transfer and save each of the 36 characters into binary pattern. The second stage we transfer and save each of the binary patterns of the 36 characters into 7 feature parameters. Finally, in the last stage, we adopt the hierarchical ART neural networks, train the networks and use it to recognize the tested character patterns those may or may not included in the 36 trained patterns.
誌謝 i
中文摘要 ii
Abstract iii
目錄 v
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機與目的 3
1.4 章節概要 4
第二章 理論基礎 5
2.1 二值化 5
2.2 特徵參數擷取 6
2.2.1 直方圖 6
2.2.2 六個參數所代表的涵意 7
2.3 決策樹 8
2.4 資料分群 9
2.5 主要分量分析 10
2.6 ART 12
2.6.1 自適應共振理論І-運算法則 13
2.6.2 自適應共振理論І-結構 15
2.6.3 簡化的ART1類神經網路 17
第三章 研究方法 18
3.1 實驗流程 18
3.2 實驗方法 18
第四章 電腦模擬 22
4.1 案例模擬 22
4.2 電腦規格使用說明 22
4.3 案例模擬結果 24
4.4 案例模擬之結果 51
4.5 本文模擬結果 52
4.4.1 第一層分類結果 53
4.4.2 第二層分類辨識結果 54
第五章 討論與結論 55
5.1 討論 55
5.2 結論 56
參考文獻 57
[1] Y. P. Huang, S. Y. Lai and W. P. Chuang, “A template-based modelfor license plate recognition,” in Proc. IEEE International Conference on Networking, Sensing and Control,vol.2, pp.737-742, March 2004
[2] M. A. Ko and Y. M. Kim, “License plate surveillance system usingweighted template matching,” in Proc. The 32nd Applied Imagery Pattern Recognition Workshop, pp. 269-274, Oct. 2003
[3] H. A. Hegt, R. J. de la Haye and N. A. Khan, “A high performance license plate recognition system,” in Proc. IEEE International Conference on Systems,Man, and Cybernetics,vol. 5, pp.4357-4362, Oct. 1998
[4] G..A.Carpenter and S. Grossberg, “A massively parallel architecture for a self-organizing neural pattern recognition machine,” Computer Vision Graphics Image Process, vol. 37,pp. 54-115, 1987
[5] C. Coetzee, C. Botha and D. Weber, “PC based number plate recognition system,” in Proc. IEEE Symposium on Industrial Electronics, vol. 2, pp. 605-610, July 1998
[6] P. Comelli, P. Ferragina, M. N. Granieri and F. Stabile, “Optical recognition of motor vehicle license plates,” IEEE Transactions on Vehicular Technology, vol. 44, pp. 790-799, Nov. 1995
[7] Y. P. Huang, S. Y. Lai and W. P. Chuang, “A template-based model for license plate recognition,” in Proc. IEEE International Conference on Networking, Sensing and Control,vol.2, pp.737-742, March 2004
[8] G Carpenter and S. Grossberg, “A massively parallel architecture for self-organizing neural pattern recognition machine,” Computer Vision Graphics Image Process, vol. 37,pp. 54-115, 1987
[9] V.oval, V. Turchenko, V. Kochan, A. Sachenko and G. Markowsky, “Smart license plate recognition system based on image processing using neural network,” in Proc. The Second IEEE International Workshop on Intelligent Data Acquisition And Advanced Computing Systems: Technology and Applications, pp.123-127, Sep. 2003
[10] L. W. Jin and J. Z. Qin, “Car plate number characters recognition using Gabor orientation features and neural networks,” in Proc. The 2003 International Conference on Neural Networks and Signal Processing, vol. 2, pp. 1628-1631, Dec. 2003
[11] X. W. Wang, X. Q. Ding and C. S. Liu, “Optimized Gabor filter based feature extraction for character recognition,” in Proc. 16th International Conference on Pattern Recognition, vol. 4, pp.223-226, Aug. 2002
[12] K. Chao and M. D. Srinath, “Invariant character recognition With Zernike and orthogonal Fourier–Mellin moments,” Pattern Recognition, vol. 35, no. 1, pp. 143-154, January 2002
[13] Y. C. Chim, A. A. Kassim and Y. Ibrahim, “Character recognition using statistical moments,” Image and Vision Computing, vol. 17,no. 3, pp. 299-307, March 1999
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔