(18.204.227.34) 您好!臺灣時間:2021/05/14 08:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:王姿月
研究生(外文):Zi-Yue Wang
論文名稱:油脂藻Botryococcusbraunii與Chlorellavulgaris生長特性之探討
論文名稱(外文):Investigation of the growth characteristic of the oil-producing algae Botryococcus braunii and Chlorella vulgaris
指導教授:胡苔莉胡苔莉引用關係
指導教授(外文):Tai-Lee Hu
學位類別:碩士
校院名稱:逢甲大學
系所名稱:環境工程與科學所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:74
中文關鍵詞:Chlorella vulgarisBotryococcus braunii油脂藻
外文關鍵詞:Chlorella vulgarisBotryococcus brauniioleaginous microalgae
相關次數:
  • 被引用被引用:8
  • 點閱點閱:961
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:179
  • 收藏至我的研究室書目清單書目收藏:1
藻類具有很高之營養與經濟價值。台灣不論在海水或淡水水域中皆有豐富之藻類資源,目前主要應用於餌料、食品與化妝品之開發。油脂含量高之藻種稱為油脂藻,其油脂結構與柴油成份(C 13-18)相近,近年來有以油脂藻作為生質柴油料源之研究。本研究主要探討淡水油脂藻Botryococcus braunii與Chlorella vulgaris之生長特性,期望能大量培養作為生質柴油之料源。
B. braunii與C. vulgaris以光照循環(light:dark, h) 16:8及12:12,光照強度54-81 μmol/m2s和122-150 μmol/m2s之條件下進行靜置培養。結果顯示B. braunii以光循環16:8,照度54-81 μmol/m2s 下生長最佳,世代時間為5.3天。C. vulgaris則較適合生長於照度122-150 μmol/m2s,光循環為16:8之環境,其世代時間為1.2天。
C. vulgaris分別以Watanabe、BG11與BBM培養基培養,於BG11培養基中之生質量最高,乾重為0.3 g/l,藻細胞之比油脂量以Watanabe培養基為最高690±120 μg/mg。C. vulgaris於上述培養基中之世代時間差異不大為1.1-1.3天。B. braunii則是以3N-BBM+V 與mChu 13,以及利用田口方法尋找最適培養基進行藻細胞之培養,結果顯示以mChu 13培養基培養,B. braunii可獲得最高之葉綠素含量(424±121 μg/l),和較短世代時間(約6天),其油脂濃度為802±52 μg/ml。以比油脂量(單位葉綠素所含之油脂濃度)而言,B. braunii於上述三種培養基培養後之比油脂量皆相同。同時從田口方法中得知,氮源(NaNO3)對B. braunii生長影響最大,其次依序為鎂離子(MgSO4)、碳源(CH3COONa),最低為磷源(K2HPO4)。
此外,本研究也分離出與B. braunii共同存在之細菌,初步得知為寡養性格氏陰性桿菌,屬於Acidovorax sp. 、Nevskia sp. 、α-Proteobacteria及β-Proteobacteria之兼性細菌。
中文摘要 i
英文摘要 iii
目錄 v
圖目錄 ix
表目錄 x
第一章 前言 1
第二章 文獻回顧 3
2-1油脂藻類之介紹 3
2-2 B. braunii與C. vulgaris的介紹 4
2-3影響油脂藻之生長因素 7
2-3-1光源、溫度 7
2-3-2碳源 8
2-3-3氮源 8
2-3-4磷源 9
2-3-5鹽分 9
2-4藻類與細菌之關係 10
2-5藻類油脂分析方法 11
2-6藻類生長量測方式 14
2-6-1顯微計數法(microscopic counting) 14
2-6-2濁度法(optical density) 14
2-6-3乾重(dry weight) 15
2-6-4葉綠素萃取法(chlorophyll a) 15
2-7田口方法 16
2-7-1田口直交表之介紹 16
2-7-2信號雜音比(S/N比) 17
第三章 材料與方法 20
3-1藻種來源與保存 20
3-2培養基 20
3-3實驗方法 26
3-3-1藻類培養條件之建立 26
3-3-1-1藻株之預培養 26
3-3-1-2光照強度與循環 26
3-3-2藻類生長量測 27
3-3-2-1顯微計數法 27
3-3-2-2冷凍乾燥 27
3-3-2-3濁度法 27
3-3-2-4葉綠素萃取法 28
3-3-3 生長曲線 28
3-3-4 田口方法之設計 28
3-3-5藻類油脂分析 29
3-3-5-1螢光顯微鏡之定性觀測 29
3-3-5-2螢光分光光度計定量 30
3-3-6細菌之分離與鑑定 30
3-3-6-1細菌分離 30
3-3-6-2純菌DNA之萃取與鑑定 31
3-3-7細菌於藻株培養期間之量測 31
3-3-8電子顯微鏡觀察 31
3-4通氣培養設備 32
3-5實驗流程 32
第四章 結果與討論 33
4-1藻類培養條件的建立 33
4-4-1 藻類生長曲線 33
4-1-2光照循環與光強度 36
4-2藻類油脂之量測 40
4-3 培養基對藻類生長及油脂含量之影響 43
4-3-1培養基對C. vulgaris生長之影響 43
4-3-2培養基對B. braunii生長及油脂含量之影響 46
4-4 B. braunii與細菌之關係 52
4-4-1細菌於B. braunii培養期間之生長情形 52
4-4-2 細菌之鑑定 58
第五章 結論與建議 60
5-1 結論 61
5-2 建議 62
第六章 參考文獻 62

中文摘要 i
英文摘要 iii
目錄 v
圖目錄 ix
表目錄 x
第一章 前言 1
第二章 文獻回顧 3
2-1油脂藻類之介紹 3
2-2 B. braunii與C. vulgaris的介紹 4
2-3影響油脂藻之生長因素 7
2-3-1光源、溫度 7
2-3-2碳源 8
2-3-3氮源 8
2-3-4磷源 9
2-3-5鹽分 9
2-4藻類與細菌之關係 10
2-5藻類油脂分析方法 11
2-6藻類生長量測方式 14
2-6-1顯微計數法(microscopic counting) 14
2-6-2濁度法(optical density) 14
2-6-3乾重(dry weight) 15
2-6-4葉綠素萃取法(chlorophyll a) 15
2-7田口方法 16
2-7-1田口直交表之介紹 16
2-7-2信號雜音比(S/N比) 17
第三章 材料與方法 20
3-1藻種來源與保存 20
3-2培養基 20
3-3實驗方法 26
3-3-1藻類培養條件之建立 26
3-3-1-1藻株之預培養 26
3-3-1-2光照強度與循環 26
3-3-2藻類生長量測 27
3-3-2-1顯微計數法 27
3-3-2-2冷凍乾燥 27
3-3-2-3濁度法 27
3-3-2-4葉綠素萃取法 28
3-3-3 生長曲線 28
3-3-4 田口方法之設計 28
3-3-5藻類油脂分析 29
3-3-5-1螢光顯微鏡之定性觀測 29
3-3-5-2螢光分光光度計定量 30
3-3-6細菌之分離與鑑定 30
3-3-6-1細菌分離 30
3-3-6-2純菌DNA之萃取與鑑定 31
3-3-7細菌於藻株培養期間之量測 31
3-3-8電子顯微鏡觀察 31
3-4通氣培養設備 32
3-5實驗流程 32
第四章 結果與討論 33
4-1藻類培養條件的建立 33
4-4-1 藻類生長曲線 33
4-1-2光照循環與光強度 36
4-2藻類油脂之量測 40
4-3 培養基對藻類生長及油脂含量之影響 43
4-3-1培養基對C. vulgaris生長之影響 43
4-3-2培養基對B. braunii生長及油脂含量之影響 46
4-4 B. braunii與細菌之關係 52
4-4-1細菌於B. braunii培養期間之生長情形 52
4-4-2 細菌之鑑定 58
第五章 結論與建議 60
5-1 結論 61
5-2 建議 62
第六章 參考文獻 62
附錄一 藻類通氣培養裝置 72
附錄二C. vulgaris藻細胞數與濁度值之相關性 73
附錄二B. braunii濁度與葉綠素之相關性 74
圖目錄
圖2-1 Botryococcus braunii 6
圖2-2 Chlorella vulgaris 6
圖2-3 田口方法流程圖 19
圖3-1 實驗流程圖 32
圖4-1 B. braunii團聚之現象 34
圖4-2 油脂藻之生長曲線(a) B. braunii (b) C. vulgaris 35
圖4-3 光照度對C. vulgaris生長之影響 39
圖4-4 油脂藻細胞油脂之分佈(a) B. braunii (b) C. vulgaris 41
圖4-5 標準油品與相對螢光值之檢量線 42
圖4-6 培養基對C. vulgaris生長之影響 43
圖4-7 培養基對B. braunii 生長之影響 47
圖4-8 B. braunii以3N及mChu 13通氣培養下與其共存之細菌 53
圖4-9 與B. braunii共存之細菌 58


表目錄
表2-1 Botryococcus之特性 5
表2-2 藻類油脂萃取方法 13
表2-3 直交表L4 (23) 17
表3-1 3N-BBM+V培養基成分 21
表3-2 mChu 13培養基成分 22
表3-3 Watanabe培養基成分 23
表3-4 BG11培養基成分 24
表3-5 BBM培養基成分 25
表3-6 各因子代表之濃度 29
表3-7 直交表L9 (34) 29
表4-1 光照與光循環對油脂藻生長之影響 37
表4-2 C. vulgaris生長與油脂含量 44
表4-3 培養基成分對B. braunii生長之影響 49
表4-4 培養基對B. braunii生長之影響 50
表4-5a 與B. braunii共存細菌之分佈(mChu 13培養基) 55
表4-5b 與B. braunii共存細菌之分佈(3N-BBM+V培養基) 55
表4-6 細菌分離株DNA比對結果 60
中央氣象局,2008,http://www.cwb.gov.tw/V6/index.htm
行政院環境保護署,2008a,毒性化學物質災害防救查詢系統,http://toxiceric.epa.gov.tw/Chm_/Chm_index.aspx?vp=MSDS
行政院環境保護署,2008b,環境檢驗所網站,http://www.niea.gov.tw/
吳佩芬,2006,利用本土淡水藻類產製生質柴油之可行性評估,逢甲大學環境工程與科學學系碩士論文。
林良平,1991,小球藻之混營生長及微藻在生態生產上所扮演的角色,中華生質能源學會會誌,10: 89-98。
林欣穎,2009,Botryococcus braunii共生細菌之分離與鑑定,逢甲大學環境工程與科學學系學士論文。
林泰宏、李雨薇、黃資螢與呂誌翼,2004,綠藻FJ03培養基營養組成之研究,輔仁學誌,38: 197-207。
林榮芳與黃檀溪,2002,比較耐熱性小球藻異營生長之特性,師大學報,47(1): 31-40。
陳嘉全、李家維與楊瑞森,1991,生物電子顯微鏡學,行政院國科會精密儀器發展中心,新竹市。
劉清標,2000,海洋微藻 Isochrysis sp. CCMP 1324 超微細結構與不飽和脂肪酸之生成,國立臺灣大學農業化學研究所博士論文。
蘇朝墩,1997,產品穩健設計-田口品質工程方法的介紹和應用,中華民國品質學會,台北市。
Alonzo F. and Mayzaud P., 1999, Spectrofluorometric quantification of neutral and polar lipids in zooplankton using Nile red, Mar. Chem., 67: 289-301.
An J. Y., Sim S. J., Lee J. S. and Kim B. W., 2003, Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii, J. Appl. Phycol., 15: 185-191.
Banerjee A., Sharma R., Chisti Y. and Banerjee U., 2002, Botryococcus braunii: A renewable source of hydrocarbons and other chemicals, Crit. Rev. Biotechnol., 22: 245-279.
Behrens P. W., 2005, Photobioreactors and fermentors: the light and dark side of growing algae. in R. A. Andensen (ed.) ”Algae Culturing Techniques”, Academic Press, N.Y., 83-100.
Borowitzka M. A., 1988, Algal growth media and sources of algalcultures in Microalgal biotechnology, Edited by Borowitzka M. A. and Borowitzka L. J., Cambridge University Press, New York.
Casadevall E., Dif D., Largeau C., Gudin C., Chaumont D. and Desanti O., 1985, Studies on batch and continuous cultures of Botryococcus braunii: Hydrocarbon production in relation to physiological state, cell ultrastructure and phosphate nutrition, Biotechnol. Bioeng., 27: 286-295.
CCAP, 2007, Culture Collection of Algae and Protozoa, UK, http://www.ccap.ac.uk.
Cepak V. and Lukavsky J., 1994, The effect of high irradiances on growth, biosynthetic activities and the ultrastructure of the green alga Botryococcus braunii strain Droop 1950/807-1, Arch. Hydrobiol. Suppl., 102: 115-115.
Chen W., Zhang C., Song L., Sommerfeld M. and Hu Q., 2009, A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae, J. Microbiol. Methods, 77: 41-47.
Chirac C., Casadevall E., Largeau C. and Metzger P., 1985, Bacterial influence upon growth and hydrocarbon production of the green alga Botryococcus braunii 1, J. Phycol., 21: 380-387.
Chisti Y., 2007, Biodiesel from microalgae, Biotechnol. Adv., 25(3): 294-306.
Chisti Y., 2008, Biodiesel from microalgae beats bioethanol, Trends Biotechnol., 26(3):126-131.
Converti A., Casazza A. A., Ortiz E.Y., Perego P. and Del Borghi M., 2009, Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production, Chem. Eng. Process, 48: 1146-1151.
Croft M.T., Lawrence A.D., Raux-Deery E., Warren M. J. and Smith A. G., 2005, Algae acquire vitamin B12 through a symbiotic relationship with bacteria, Nature, 438(7064): 90-93.
Dayananda C., Sarada R., Bhattacharya S. and Ravishankar G., 2005, Effect of media and culture conditions on growth and hydrocarbon production by Botryococcus braunii. Process Biochem., 40: 3125-3131.
Dayananda C., Sarada R., Usha Rani M., Shamala T. and Ravishankar G., 2007, Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media, Biomass Bioenergy, 31: 87-93.
Elsey D., Jameson D., Raleigh B. and Cooney M. J., 2007, Fluorescent measurement of microalgal neutral lipids, J. Microbiol. Methods, 68: 639-642.
Greenspan P., 1985, Nile red: a selective fluorescent stain for intracellular lipid droplets, J. Cell Biol., 100: 965-973.
Guschina I. and Harwood J., 2006, Lipids and lipid metabolism in eukaryotic algae, Prog. Lipid Res., 45: 160-186.
Harwood J. L. and Guschina I.A., 2009, The versatility of algae and their lipid metabolism, Biochimie, 91: 679-684.
Illman A. M., Scragg A. H. and Shales S. W., 2000, Increase in Chlorella strains calorific values when grown in low nitrogen medium, Enzym. Microb. Technol., 27: 631-635.
Jacob-Lopes E., Scoparo C. H. G., Lacerda L. M. C. F. and Franco T. T., 2009, Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors, Chem. Eng. Process, 48: 306-310.
Kalacheva G., Zhila N. and Volova T., 2002a, Lipid and hydrocarbon compositions of a collection strain and a wild sample of the green microalga Botryococcus, Aquat. Ecol., 36: 317-331.
Kalacheva G., Zhila N., Volova T. and Gladyshev M., 2002b, The effect of temperature on the lipid composition of the green alga Botryococcus, Microbiol., 71: 286-293.
Kimura K., Yamaoka M. and Kamisaka Y. 2004, Rapid estimation of lipids in oleaginous fungi and yeasts using Nile red fluorescence, J. Microbiol. Methods, 56: 331-338.
Komarek J. and Marvan P., 1992, Morphological differences in natural populations of the genus Botryococcus (Chlorophyceae), Arch. Protistenkd., 141: 65-100.
Largeau C., Casadevall E., Berkaloff C. and Dhamelincourt P., 1980, Sites of accumulation and composition of hydrocarbons in Botryococcus braunii, Phytochemistry, 19: 1043-1051.
Lee S., Yoon B. and Oh H., 1998, Rapid method for the determination of lipid from the green alga Botryococcus braunii, Biotechnol. Tech., 12: 553-556.
Li Y. and Qin J G., 2005, Comparison of growth and lipid content in three Botryococcus braunii strains, J. Appl. Phycol., 17:551-556.
Liu Z. Y., Wang G. C. and Zhou B. C., 2008, Effect of iron on growth and lipid accumulation in Chlorella vulgaris, Bioresource Technol., 99: 4717-4722.
Maggio R. M., Kaufman T. S., Carlo M. D., Cerretani L., Bendini A., Cichelli A. and Compagnone D., 2009, Monitoring of fatty acid composition in virgin olive oil by Fourier transformed infrared spectroscopy coupled with partial least squares, Food Chem., 114: 1549-1554.
Mendes R., Fernandes H., Coelho J., Cabral J., Palavra A. and Novais J., 1994, Supercritical carbon dioxide extraction of hydrocarbons from the microalga Botryococcus braunii, J. Appl. Phycol., 6: 289-293.
Mendes R., Nobre B., Cardoso M., Pereira A. and Palavra A., 2003, Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae, Inorg. Chim. Acta, 356: 328-334.
Meng X., Yang J., Xu X., Zhang L., Nie Q. and Xian M., 2009, Biodiesel production from oleaginous microorganisms, Renew. Energy, 34: 1-5.
Metzger P. and Largeau C., 2005, Botryococcus braunii: a rich source for hydrocarbons and related ether lipids, Appl. Microbiol. Biotechnol., 66: 486-496.
Mouget J., Dakhama A., Lavoie M. and Noue J., 1995, Algal growth enhancement by bacteria: Is consumption of photosynthetic oxygen involved?, FEMS Microbiol. Ecol., 18: 3-5.
Naito K., Matsui M. and Imai I., 2005, Ability of marine eukaryotic red tide microalgae to utilize insoluble iron, Harmful Algae, 4: 1021-1032.
Park Y., Je K., Lee K., Jung S. and Choi T., 2008, Growth promotion of Chlorella ellipsoidea by co-inoculation with Brevundimonas sp. isolated from the microalga, Hydrobiologia, 598: 219-228.
Rai L. and Gaur J., 2001, Algal adaptation to environmental stresses: physiological, biochemical and molecular mechanisms, Springer, New York, 46-64.
Ranga R. A., Sarada R. and Ravishankar G. A., 2007, Influence of CO2 on growth and hydrocarbon production in Botryococcus braunii, J. Microbiol. Biotechnol., 17: 414-419.
Rao A., Dayananda C., Sarada R., Shamala T. and Ravishankar G., 2007, Effect of salinity on growth of green alga Botryococcus braunii and its constituents, Bioresource Technol., 98: 560-564.
Ratledge C. and Cohen Z., 2008, Microbial and algal oils: Do they have a future for biodiesel or as commodity oils?, Lipid Technol., 20: 155.
Regan J. M., Harrington G. W. and Noguera D. R., 2002, Ammonia- and nitrite-oxidizing bacterial communities in a pilot-scale chloraminated drinking water distribution system, Appl. Environ. Microbiol., 68: 73-81.
Scragg A., Illman A., Carden A. and Shales S., 2002, Growth of microalgae with increased calorific values in a tubular bioreactor, Biomass and Bioenergy, 23: 67-73.
Senousy H., Beakes G. and Hack E., 2004, Phylogenetic placement of Botryococcus braunii (trebouxiophyceae) and Botryococcus sudeticus isolate UTEX2629 (chlorophyceae) 1, J. Phycol., 40: 412-423.
Shi X. M., Zhang X. W. and Chen F., 2000, Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources, Enzyme Microb. Technol., 27: 312-318.
Singh Y. and Kumar H., 1992, Lipid and hydrocarbon production by Botryococcus spp. under nitrogen limitation and anaerobiosis, World J. Microbiol. Biotechnol., 8: 121-124.
Sorokin C., 1973, Dry weight, packed cell volume and optical density, in: Stein J. R. (ed.) “Handbook of Phycological Methods: Culture Methods and Growth Measurement”, Cambridge University Press, Cambridge, 321-343.
Spolaore P., Joannis-Cassan C., Duran E. and Isambert A., 2006, Commercial applications of microalgae, J. Biosci. Bioeng., 101: 87-96.
Thompson G., 1996, Lipids and membrane function in green algae, Biochim. Biophys. Acta Lipids Lipid Metabol., 1302: 17-45.
Tortora G. J., Funke B. R. and Case C. L., 2005, Microbiology: An Introduction, Pearson Benjamin Cummings, California, 349.
Watanabe A., 1960, List of algal strains in collection at the institute of applied microbiology, J. Gen. Appl. Microbiol., 6: 283-292.
Watanabe K., Takihana N., Aoyagi H., Hanada S., Watanabe Y., Ohmura N., Saiki H. and Tanaka H. 2005, Symbiotic association in Chlorella culture, FEMS Microbiol. Ecol., 51: 187-196.
Weetall H., 1985. Studies on the nutritional requirements of the oil-producing alga Botryococcus braunii, Appl. Biochem. Biotechnol., 11: 377-391.
Wiltshire K., Boersma M., Moller A. and Buhtz H., 2000, Extraction of pigments and fatty acids from the green alga Scenedesmus obliquus (Chlorophyceae), Aquat. Ecol., 34: 119-126.
Wood M. A., Everroad R. C. and Wingard L. M., 2005, Measuring growth rates in microalgal cultures, in Andensen R.A. (ed.) ”Algae Culturing Techniques”, Academic Press, N.Y., 269-285.
Yang S., Wang J., Cong W., Cai Z. and Ouyang F., 2004, Effects of bisulfite and sulfite on the microalga Botryococcus braunii, Enzyme Microb. Technol., 35: 46-50.
Zhila N., Kalacheva G. and Volova T., 2005, Effect of nitrogen limitation on the growth and lipid composition of the green alga Botryococcus braunii kutz IPPAS H-252, Russ. J. Plant Physiol., 52: 311-319.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔