(3.239.56.184) 您好!臺灣時間:2021/05/13 10:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳智維
研究生(外文):Jyh-wei Chen
論文名稱:以室溫離子液體萃取水溶液中過渡重金屬之綠色技術
論文名稱(外文):A Novel Green Technique for Removal of Transition Metals from Aqueous Solution by Room Temperature Ionic Liquid
指導教授:喻家駿
指導教授(外文):Jya-Jyun Yu
學位類別:碩士
校院名稱:逢甲大學
系所名稱:環境工程與科學所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:81
中文關鍵詞:過渡金屬室溫離子液體綠色技術螯合劑萃取
外文關鍵詞:ExtractionGreen solventIonic liquidChelating agentTransition metal
相關次數:
  • 被引用被引用:3
  • 點閱點閱:201
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在傳統液相-液相萃取系統中,所使用之萃取溶劑為有機(氯)烴類與芳香烴類溶劑,如二氯甲烷、三氯甲烷、三氯乙烯、四氯乙烯、正己烷、苯及甲苯等,所使用的溶劑本身具有揮發性,稱為揮發性有機溶劑(VOCs)。逸散到大氣會對環境造成污染,且對人體產生毒害,而現今發展出一種新型的綠色溶劑稱為室溫離子液體(Room Temperature Ionic Liquids, ILs),其特點為:熔點低、不具揮發性、熱穩定性高、不可燃性、低毒性且對環境友善等,本文將以離子液體作為”綠色萃取溶劑”,在室溫萃取水相中之3d過渡金屬離子,探討取代傳統有機溶劑之可行性。
本研究配製含10 mg/L之鐵(Fe3+)、鈷(Co2+)、鎳(Ni2+)及銅(Cu2+)之水溶液,以二甲基二硫代氨基甲酸鈉(Diethyl Dithiocarbamate Sodium, NaDDC)為螯合劑,添加適當之劑量,在充分螯合後,以離子液體(1-丁基-1-甲基吡咯啶雙(三氟甲基磺醯基)醯亞胺) [Bmpy][Tf2N]萃取並離心分離水相及離子液體。以鐵金屬而言,在pH=3~4條件,添加適量比之DDC螯合劑並以0.5 mL離子液體萃取,萃取率皆可高達99.9%以上。以鈷金屬而言,在pH=3~10條件,添加適量比之DDC螯合劑以0.5 mL離子液體萃取,萃取率達99.9%以上。以鎳金屬而言,在pH=8最佳條件,添加適量比之DDC螯合劑以0.5 mL離子液體萃取,萃取率達99.9%以上。以銅金屬而言,在pH=4~10最佳條件,添加適量比之DDC螯合劑以0.5 mL離子液體萃取,萃取率達99.9%以上。在水溶液含鎳、銅金屬各10 mg/L之混合金屬水溶液,添加適量比之DDC螯合劑以0.5 mL離子液體萃取,而在最適之萃取條件pH= 3~8,萃取率皆可達99.9%以上。
目錄
中文摘要……………………………………………………………….Ⅰ
英文摘要………………………………………………………………. Ⅱ
目錄……………………………………………………………………Ⅲ
表目錄…………………………………………………………………Ⅶ
圖目錄……………………………………………………………………Ⅹ


第一章 緒論……………………………………………………………1
1.1 研究緣起…………………………………………………………..1
1.2 綠色處理技術……………………………………………………..2
1.3 研究內容…………………………………………………………..2


第二章 文獻回顧………………………………………………………..4
2.1 離子液體…………………………………………………………..4
2.1.1 離子液體簡介…………………………………………………..4
2.1.2 離子液體之種類………………………………………………..5
2.1.3 離子液體之合成…………………………………………….…..6
2.1.3.1 直接合成法…………………………………………...……….7
2.1.3.2 兩步驟合成法…………………………………………………7
2.1.4 離子液體之化學及物理性質………………………………….8
2.1.4.1 熔點………………………………………………………….8
2.1.4.2 離子液體在水溶液之溶解性………………………………10
2.1.4.3 密度…………………………………………………………13
2.1.4.4 黏度…………………………………………………………13
2.1.4.5 導電度與電化學位窗……………………………………….14
2.1.4.6 表面張力…………………………………………………….15
2.1.4.7 毒性………………………………………………………….15
2.1.5 離子液體之發展與應用……………………………………..16
2.1.5.1 在化學反應中的應用………………………………………..16
2.1.5.2 在電化學中的應用. ……………………………………...…17
2.1.5.3 在分離過程的應用………………………………………….18
2.1.5.4 離子液體於萃取金屬離子之應用………………………….19
2.1.6 離子液體與傳統萃取劑之比較……………………………..22
2.2 本研究所使用之離子液體[BMPy][Tf2N] ………………………24
2.2.1 [BMPy][Tf2N]之合成……………………………..................25
2.2.2 [BMPy][Tf2N]之選用及優勢………………………………...25
2.3 金屬元素之簡介…………………………………………………26
2.3.1 鐵、鈷、鎳及銅元素之基本特質………………………….……26
2.3.2 重金屬廢水之傳統去除方法………………………………….28
2.4 金屬元素之螯合劑………………………………………………29


第三章 實驗方法………………………………………………………30
3.1 實驗之設備………………………………………………………30
3.2 實驗藥品及材料…………………………………………………31
3.3 金屬元素萃取步驟………………………………………………32
3.4 石墨式原子吸收光譜儀檢測分析元素之條件…………………34


第四章 結果與討論……………………………………………………38
4.1 空白試驗………………………………………………………...38
4.2 單一金屬離子萃取…………………...…………………………39
4.2.1 螯合劑劑量對於萃取金屬元素之影響………………………39
4.2.2 離子液體添加量對於萃取金屬元素之影響…………………40
4.2.3 金屬元素之UV-Vis圖譜……………………………..………46
4.2.4 金屬水溶液pH值對萃取金屬元素之影響…………………..49
4.2.5 氯仿與離子液體萃取金屬元素之比較………………………55
4.3 混合金屬離子萃取……………………………………………….60
4.3.1 螯合劑及離子液體添加量對混合金屬萃取之影響…………63
4.3.2 氯仿與離子液體萃取混合金屬元素之比較…………………64


第五章 結論……………………………………………………………66


第六章 參考文獻………………………………………………………69

附錄(一) 離子液體常見之陽離子與陰離子結構式及縮寫………….76
附錄(二) 常見離子液體之熔點…………………………………….…80











表目錄
表2-1 合成離子液體之文獻列表……………………………………8
表2-2 一般鹵化物之熔點……………………………………………9
表2-3 常用溶劑與離子液體之液態溫度範圍………………………9
表2-4 陰離子對離子液體熔點之影響……………………………...10
表2-5 常用離子液體與溶劑之相溶性………………………………11
表2-6 常見溶劑之介電常數………………………………………...12
表2-7 常見陰離子的水溶性………………………………………...12
表2-8 常見離子液體之密度…………………………………………13
表2-9 常見離子液體之黏度………………………………………...14
表2-10 離子液體與一般溶劑之表面張力………………………….15
表2-11 常見溶劑及離子液體之毒性整理………………………….16
表2-12 離子液體萃取金屬離子之代表性文獻…………………….21
表2-13 離子液體與傳統有機溶劑之比較………………………….23
表2-14 鐵、鈷、鎳及銅元素特性列表……………………………….27
表2-15 常見傳統之廢水處理技術………………………………….28
表2-16 二乙基二硫代氨基甲酸鈉之特性列表…………………….29
表3-1 石墨式原子吸收光譜儀測定鐵之操作參數與升溫條件…...34表3-2 石墨式原子吸收光譜儀測定鈷之操作參數與升溫條件...…35
表3-3 石墨式原子吸收光譜儀測定鎳之操作參數與升溫條件…...35
表3-4 石墨式原子吸收光譜儀測定銅之操作參數與升溫條件…...36
表4-1 各金屬元素直接用離子液體萃取未添加螯合劑之萃取率...39
表4-2 鐵、鈷、鎳、銅金屬元素與螯合劑當量比之萃取率…………40表4-3 不同水相/離子液體添加比對於萃取鐵元素之萃取效率..…42
表4-4 不同水相/離子液體添加比對於萃取鈷元素之萃取效率..…43
表4-5 不同水相/離子液體添加比對於萃取鎳元素之萃取效率..…44
表4-6 不同水相/離子液體添加比對於萃取銅元素之萃取效率..…45
表4-7 在不同pH條件下離子液體[bmpy][Tf2N]萃取Fe3+之萃取率
…………………………………………………………………51
表4-8 在不同pH條件下離子液體[bmpy][Tf2N]萃取Co2+之萃取率
…………………………………………………………………52
表4-9 在不同pH條件下離子液體[bmpy][Tf2N]萃取Ni2+之萃取率
…………………………………………………………………53
表4-10 在不同pH條件下離子液體[bmpy][Tf2N]萃取Cu2+之萃取率
…………………………………………………………………54
表4-11 離子液體與氯仿對萃取鐵元素之萃取率比較………………56
表4-12 離子液體與氯仿對萃取鈷元素之萃取率比較…………….57
表4-13 離子液體與氯仿對萃取鎳元素之萃取率比較…………….58
表4-14 離子液體與氯仿對萃取銅元素之萃取率比較…………….59
表4-15 離子液體萃取混合金屬中銅元素之萃取率及殘留濃度….61
表4-16 離子液體萃取混合金屬中鎳元素之萃取率及殘留濃度….62
表4-17 螯合劑及離子液體添加對混合金屬之萃取率…………….63





















圖目錄

圖2-1 離子液體常見之陽離子及陰離子……………………………6
圖2-2 離子液體之主要應用領域…………………………………...20
圖3-1 離子液體萃取重金屬之實驗流程圖………………………...37
圖4-1 離子液體添加量對於萃取鐵元素之影響…………………...42
圖4-2 離子液體添加量對於萃取鈷元素之影響…………………...43
圖4-3 離子液體添加量對於萃取鎳元素之影響…………………...44
圖4-4 離子液體添加量對於萃取銅元素之影響…………………...45
圖4-5 萃取10 mg/L Fe(DDC)3之UV-Vis圖譜(a)萃取前(b)萃取
後……….. ……………….. ……………….. ……………....47
圖4-6 萃取10 mg/L Co(DDC)2之UV-Vis圖譜(a)萃取前 (b)萃取
後……….. ……………….. ……………….. ……………....47
圖4-7 萃取10 mg/L Ni(DDC)2之UV-Vis圖譜(a)萃取前 (b)萃取
後……….. ……………….. ……………….. ……………....48
圖4-8 萃取10 mg/L Cu(DDC)2之UV-Vis圖譜(a)萃取前 (b)萃取
後……….. ……………….. ……………….. ……………....48
圖4-9 離子液體萃取鐵(Fe3+)在不同pH之萃取率圖……...……...51
圖4-10 離子液體萃取鈷(Co2+)在不同pH之的萃取率圖...….…...52
圖4-11 離子液體萃取鎳(Ni2+)在不同pH之的萃取率圖...…….....53
圖4-12 離子液體萃取銅(Cu2+)在不同pH之的萃取率圖...……....54
圖4-13 離子液體與氯仿分別萃取鐵元素之萃取率...……………..56
圖4-14 離子液體與氯仿分別萃取鈷元素之萃取率...……………..57
圖4-15 離子液體與氯仿分別萃取鎳元素之萃取率...……………..58
圖4-16 離子液體與氯仿分別萃取銅元素之萃取率...……………..59
圖4-17 離子液體萃取多重金屬中銅元素之萃取率及殘留濃度.....61
圖4-18 離子液體萃取多重金屬中鎳元素之萃取率及殘留濃度.....62
圖4-19 離子液體萃取多重金屬中銅元素之萃取率及殘留濃度.....65
圖4-20 離子液體萃取多重金屬中鎳元素之萃取率及殘留濃度.....65
1. Chuah, T.G., Jumasiah, A., Azni, I., et al., Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: An overview. Desalination,. 175: 305-316(2005).
2. Welton, T., Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical reviews, 99: 2071-2084(1999).
3. Sugden, S., and Wilkins, H., The parachor and chemical constitution. Part XII. Fused metals and salts. Journal of the Chemical Society, 1929: 1291-1298(1929).
4. Chum, H., Koch, V., Miller, L., et al., Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. Journal of the American Chemical Society, 97: 3264-3265(1975).
5. Wikes, J., Dialkylimidazolium Chloroaluminate Spectroscopy and Synthesis. Inorganic Chemistry, 21: 1263-1264(1982).
6. Wilkes, J., and Zaworotko, M., Air and water stable 1 - ethyl – 3-methylimidazolium based ionic liquidsJ. Journal of the Chemical Society, Chemical Communications, 965-967(1992).
7. Fadeev, A., and Meagher, M., Opportunities for ionic liquids in recovery of biofuels. Chemical Communications, 2001: 295-296(2001).
8. March, J., Advanced organic chemistry: reactions, mechanisms, and structure. Wiley-Interscience, New York. 75(1992).
9. Hirao, M., Sugimoto, H., and Ohno, H., Preparation of novel room-temperature molten salts by neutralization of amines. Journal of the Electrochemical Society, 147: 4168-4172(2000).
10. Bonhote, P., Dias, A.P., Papageorgiou, N., et al., Hydrophobic, highly conductive ambient-temperature molten salts. Inorganic Chemistry, 35: 1168-1178(1996).
11. Holbrey, J.D., and Seddon, K.R., The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. Journal of the Chemical Society-Dalton Transactions, 2133-2139(1999).
12. McEwen, A., Ngo, H., LeCompte, K., et al., Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications. Journal of the Electrochemical Society, 146: 1687-1695(1999).
13. Wasserscheid, P., Ionic liquids in synthesis. Wiley-VCH,(2002).
14. Wasserscheid, P., and Keim, W., Ionic Liquids-New" Solutions"
for Transition Metal Catalysis. Angewandte Chemie International Editionin English, 39: 3772-3789(2000).
15.趙東濱、寇元,室溫離子液體:合成,性質及應用,大學化學,17: 42-46(2002).
16. Jain, N., Kumar, A., Chauhan, S., et al., Chemical and biochemical transformations in ionic liquids. Tetrahedron, 61: 1015-1060(2005).
17. Poole, C., Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ionic liquids. Journal of Chromatography A, 1037: 49-82(2004).
18. Quarmby, I., Mantz, R., Goldenberg, L., et al., Stoichiometry of latent acidity in buffered chloroaluminate ionic liquids. Analytical Chemistry, 66: 3558-3561(1994).
19. Quarmby, I., and Osteryoung, R., Latent acidity in buffered chloroaluminate ionic liquids. Journal of the American Chemical Society, 116: 2649-2650(1994).
20. Tait, S., and Osteryoung, R. Infrared study of ambient-temperature chloroaluminates as a function of melt acidity. Inorganic Chemistry, 23: 4352-4360(1984).
21. Jaeger, D., and Tucker, C., Diels-Alder reactions in ethylammonium nitrate, a low-melting fused salt. Tetrahedron Lett, 30: 1785-1788(1989).
22. Adams, C., Earle, M., and Seddon, K. Stereoselective
hydrogenation reactions in chloroaluminate (III) ionic liquids: a
new method for the reduction of aromatic compounds. Chemical
Communications, 19: 1043-1044(1999).
23.陳慧、戴立益、單永奎,氯鋁酸離子液体催化苯與1-己烯的烷基
化反應,化工世界, 44: 171-173(2003).
24. Welton, T., Room-temperature ionic liquids. Solvents for
synthesis and catalysis. Chemical reviews, 99:
2071-2084(1999).
25. Gordon, C., Holbrey, J., Kennedy, A., et al., Ionic liquid crystals: hexafluorophosphate salts. Journal of Materials Chemistry, 8: 2627-2636(1998).
26. Bohm, V., and Herrmann, W., Coordination chemistry and mechanisms of metal-catalyzed cc coupling reactions; part 12 nonaqueous ionic liquids: Superior reaction media for the catalytic Heck-Vinylation of chloroarenes. Chemistry - A European Journal, 6: 1017-1025(2000).
27. Katayama, Y., Dan, S., Miura, T., et al.,Electrochemical behavior of silver in 1-ethyl-3-methylimidazolium tetrafluoroborate molten salt. Journal of the Electrochemical Society, 148: C102-C105(2001).
28. He, P., Liu, H., Li, Z., et al., Electrochemical deposition of silver in room-temperature ionic liquids and its surface-enhanced Raman scattering effect. Langmuir, 20: 10260-10267.(2004)
29. Mukhopadhyay, I., Aravinda, C., Borissov, D., et al., Electrodeposition of Ti from TiCl4 in the ionic liquid l-methyl-3-butyl-imidazolium bis (trifluoro methyl sulfone) imide at room temperature: study on phase formation by in situ electrochemical scanning tunneling microscopy. Electrochimica Acta, 50: 1275-1281(2005).
30.Kanakubo, M., Umecky T., Aizawa T., et al., Development of high-pressure eletric conductivity cell and its application: Pressure effect of dioxide on electric conductivity of ionic liquid. Electro-chemistry, 72: 703-705(2004).
31. Larsen, A., Holbrey, J., Tham, F., et al., Designing ionic liquids: Imidazolium melts with inert carborane anions. Journal of the American Chemical Society, 122: 7264-7272(2000).
32.Dai, S., Ju, Y.H., and Barnes, C.E. Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids. Journal of the Chemical Society-Dalton Transactions. 8: 1201-1202(1999).
33. Visser, A., Swatloski, R., Griffin, S., et al., Liquid/liquid extraction of metal ions in room temperature ionic liquids. Separation Science and Technology, 36: 785-804(2001).
34. Chun, S., Dzyuba, S., and Bartsch, R. Influence of structural variation in room-temperature ionic liquids on the selectivity and efficiency of competitive alkali metal salt extraction by a crown ether. Analytical Chemistry, 73: 3737-3741(2001).
35. Bartsch, R., Chun, S., and Dzyuba, S. Ionic liquids as novel diluents for solvent extraction of metal salts by crown ethers, in ionic liquids: Industrial Applications for Green Chemistry. American Chemical Society, Washington, 58-68(2002).
36. Dai, S., Ju, Y.H., and Barnes, C.E., Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids. Journal of the Chemical Society-Dalton Transactions, 8: 1201-1202(1999).
37. Heitzman, H., Young, B., Rausch, D., et al., Fluorous ionic liquids as solvents for the liquid–liquid extraction of metal ions by macrocyclic polyethers. Talanta, 69: 527-531(2006).
38. Luo, H., Dai, S., Bonnesen, P., et al., A Striking Effect of Ionic-Liquid Anions in the Extraction of Sr2+ and Cs+ by Dicyclohexano-18-Crown-6. Solvent Extraction and Ion Exchange, 24: 19-31(2006).
39. Visser, A., Swatloski, R., Reichert, W., et al., Traditional Extractants in Nontraditional Solvents: Groups 1 and 2 Extraction by Crown Ethers in Room-Temperature Ionic Liquids? Industrial & Engineering Chemistry Research, 39: 3596-3604(2000)
40. Luo, H., Dai, S., Bonnesen, P., et al., Extraction of cesium ions from aqueous solutions using calix [4] arene-bis (tert-octylbenzo-crown-6) in ionic liquids. Analytical Chemistry, 76: 3078-3083(2004).
41. Luo, H., Dai, S., and Bonnesen, P., Solvent extraction of Sr2+ and Cs+ based on room-temperature ionic liquids containing monoaza-substituted crown ethers. Analytical Chemistry, 76: 2773-2779(2004).
42. Guor-Tzo, W., Zusing, Y., and Chao-Jung, C., Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions. Analytica Chimica Acta, 48: 183-192(2003).
43. Baston, G., Bradley, A., Gorman, T., et al., Ionic Liquids for the Nuclear Industry: A Radiochemical, Structural and Electrochemical Investigation, Ionic Liquids Industrial Applications for Green Chemistry. American Chemical Society, Washington, 162-177(2002).
44. Visser, A., and Rogers, R., Room-temperature ionic liquids: new solvents for f-element separations and associated solution chemistry. Journal of Solid State Chemistry, 171: 109-113(2003).
45. Visser, A., Swatloski, R., Griffin, S., et al., Liquid/liquid extraction of metal ions in room temperature ionic liquids. Separation Science and Technology, 36: 785-804(2001).
46. Li, Z., Wei, Q., Yuan, R., et al., A new room temperature ionic liquid 1-butyl-3-trimethylsilylimidazolium hexafluorophosphate as a solvent for extraction and preconcentration of mercury with determination by cold vapor atomic absorption spectrometry. Talanta, 71: 68-72(2007).
47. Nakashima, K., Kubota, F., Maruyama, T., et al., Ionic liquids as a novel solvent for lanthanide extraction. Analytical Sciences, 19: 1097-1098(2003).
48. v. Prondzinski, N., Babai, A., Mudring, A., et al., [(bmpyr) 2 {Zn (OC6H3 (NO2) 2) 4}]: Influence of an Ionic Liquid on Liquid/Liquid Extraction of Metal Ions in a Biphasic System. Zeitschrift fur anorganische und allgemeine Chemie, 633: 1490-1492(2007).
49. Shimojo, K., and Goto, M. Solvent extraction and stripping of silver ions in room-temperature ionic liquids containing calixarenes. Analytical Chemistry, 76: 5039-5044(2004).
50. Hirayama, N., Deguchi, M., Kawasumi, H., et al., Use of 1-alkyl-3-methylimidazolium hexafluorophosphate room temperature ionic liquids as chelate extraction solvent with 4, 4, 4-trifluoro-1-(2-thienyl)-1, 3-butanedione. Talanta, 65: 255(2005).
51. SUN, X., WU, D., CHEN, J., et al., Separation of scandium (III) from lanthanides (III) with room temperature ionic liquid based extraction containing Cyanex 925. Journal of chemical technology and biotechnology, 82: 267-272(2007).
52. Wang, L., Hung, Y., and Shammas, N., Advanced physicochemical treatment processes. Humana Press, (2006).
53. Shammas, N., Coagulation and flocculation, Springer, (2005).
54. Lazaridis, N., Matis, K., and Webb, M. Flotation of metal-loaded clay anion exchangers. Part I: the case of chromates. Chemosphere, 42: 373-378(2001).
55. Vigneswaran, S., Ngo, H., Chaudhary, D., et al.,Physicochemical Treatment Processes for Water Reuse. 3: 635-676(2005).
56. Aliane, A., Bounatiro, N., Cherif, A., et al., Removal of chromium from aqueous solution by complexation–ultrafiltration using a water-soluble macroligand. Water Research, 35: 2320-2326(2001).
57. Ahn, K., Song, K., Cha, H., et al., Removal of ions in nickel electroplating rinse water using low-pressure nanofiltration. Desalination, 122: 77-84(1999).
58. Bohdziewicz, J., Bodzek, M., and Wa ? sik, E. The application of reverse osmosis and nanofiltration to the removal of nitrates from groundwater. Desalination, 121: 139-147(1999).
59.張鎮南、曾四恭、鄭辛雄、趙家珍、謝永旭,「高級廢水處裡技術」,滄海書局印行,民國85年5月。
60.喻家駿、吳博智,離子液體萃取水溶液中有機染料及金屬離子之綠色處理技術,逢甲大學環境工程與科學所,2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔