(3.238.130.97) 您好!臺灣時間:2021/05/15 13:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蔡長杰
研究生(外文):Chang-Jie Cai
論文名稱:重質非水相液體入滲土壤地下水分佈之研究
論文名稱(外文):Study on distribution of dense nonaqueous phase liquid(DNAPL) infiltration into soils
指導教授:馮秋霞
指導教授(外文):Chiu-Shia Fen
學位類別:碩士
校院名稱:逢甲大學
系所名稱:環境工程與科學所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:77
中文關鍵詞:UTCHEM三維異質特性分佈場
外文關鍵詞:UTCHEMthree-dimensionalheterogeneity field
相關次數:
  • 被引用被引用:2
  • 點閱點閱:316
  • 評分評分:
  • 下載下載:64
  • 收藏至我的研究室書目清單書目收藏:0
數值模式經常被廣泛應用於污染場址之污染源分佈的模擬,例如重質非水相液體(Dense Nonaqueous Phase Liquid, DNAPL)入滲含水層分佈情形的模擬,然而一般為了方便模擬,大多假定含水層特性為均質,但其模擬結果往往無法正確的描述實際污染源分佈情況,實際污染場址地質的異質特性對於入滲至土壤地下水污染的分佈必定有相當影響。
  本研究使用三維多相流、多成分組成傳輸模式UTCHEM ( University of Texas Chemical Compositional Simulator ) 模擬DNAPL入滲進入異質特性土壤的含水層與未飽和層之污染區域分佈,不同三維異質特性分佈場以FIELDGEN模組產生輸入UTCHEM作為土壤異質滲透性分佈場,研究總共模擬300天,前100天為入滲階段,後200天為再分佈階段(redistribution)。
  本研究結果顯示選擇不同的土壤異質滲透性場對於UTCHEM模擬DNAPL分佈之結果有相當程度影響,DNAPL平均飽和度差異較小,而最大飽和度則有較大差異。DNAPL污染源區域的質心位置在X方向與Y方向上差異較小,而在Z方向上則有較大差異。未飽和含水層的質心分佈亦有此一趨勢存在。
Numerical model has often been widely used in contaminated sites of the simulated distribution of pollution sources, such as the Dense Nonaqueous Phase Liquid (DNAPL) infiltration distribution aquifer simulation. However, in general for the convenience of simulation, assume that aquifer properties is homogeneous, but the simulation results is often impossible to correct the description of the actual distribution of the pollution sources, actual contaminated sites for the geological heterogeneity features of infiltration to groundwater pollution of the soil must have a substantial effect on distribution. The actual contaminated sites for the geological heterogeneity features must have a substantial effect on infiltration to groundwater pollution in the soil.
In this study, the use of three-dimensional multiphase flow and multi-components transfer mode, University of Texas Chemical Compositional Simulator, UTCHEM, simulation DNAPL infiltration into the heterogeneous saturated and unsaturated aquifer pollution regional distribution. FIELDGEN generates the different three-dimensional heterogeneity field to input UTCHEM module as the heterogeneous soil permeability, A total of 300 days simulation study, the first 100 days for the infiltration stage and the last 200 days for the redistribution phase (redistribution). The results of this study show that the different heterogeneity soil permeability field to the simulation of DNAPL distribution in UTCHEM have influence considerably. DNAPL saturation difference in the average smaller, and the largest saturation are quite different. The difference of mass centroid locations in DNAPL source area is small in X direction and Y direction, and in the Z direction are quite different. Unsaturated aquifer is following this trend.
目錄
摘要 i
Abstract ii
目錄 iv
圖目錄 v
表目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 研究背景 3
1.3 研究目的 4
第二章 理論背景 6
2.1重質非水相液體(DNAPL) 6
2.2重質非水相液體在土壤環境的分佈形式 7
2.3多相流相關研究 11
第三章 研究方法 13
3.1三維多相流與汙染傳輸模式-UTCHEM 13
3.1.1 質量傳輸方程式 14
3.1.2 流動方程式 16
3.1.3 毛細壓力 17
3.1.4 相對滲透係數 22
3.2 地質統計模式 24
3.2.1 FIELDGEN的定義檔 24
3.2.2 FIELDGEN的提示輸入 29
3.3 研究案例 31
3.3.1 UTCHEM的設定 32
3.3.2 地質特性分佈 35
第四章 結果與討論 39
4.1 飽和含水層的入滲 39
4.2 未飽和含水層的入滲 57
第五章 結論與建議 73
5.1 結論 73
5.2 建議 74
第六章 參考文獻 75
蕭宏杰,2006. 場址受DNAPL污染之評估方法, 經濟部環保技術e報, 41.
Brooks, R.H., Corey A.T., 1964. Hydraulic properties of porous media, Hydrology Papers.
Brooks, R.H., Corey, A.T., 1966. Corey, Properties of porous media affecting fluid flow, J. Irrig. Drain. Div, 6, 61.
Christ, J.A., Lemke, L.D., Abriola, L.M., 2005. Comparison of two-dimensional and three-dimensional simulations of dense nonaqueous phase liquids (DNAPLs): Migration and entrapment in a nonuniform permeability field, Water Resources Research, 41, W01007.
Dekker, T.J., Abriola, L.M., 2000a. The influence of field scale heterogeneity on the infiltration and entrapment of dense nonaqueous phase liquids in saturated formations, Journal of Contaminant Hydrology, 42, 187–218.
Dekker, T.J., Abriola, L.M., 2000b. The influence of field scale heterogeneity on the surfactant-enhanced remediation of entrapped nonaqueous phase liquids, Journal of Contaminant Hydrology, 42, 219– 251.
Delshad, M., Pope, G.A., 1989. Comparison of the three-phase oil relative permeability models, J. Transport in Porous Media, 4, 59-83.
Essaid, H.I., Hess, K.M., 1993. Monte Carlo simulations of multiphase flow incorporating spatial variability of hydraulic properties, Ground Water, 31, 123– 134.
Fayers, F.J., Matthews, J.P., 1982. Evaluation of normalized Stone''s methods for estimating three-phase relative permeabilities, Soc. Pet. Eng. J., 24, 224-232.
Kueper, B.H., Frind, E.O., 1991a. Two-phase flow in heterogeneous porous media: 1. Model development, Water Resources Research, 27, 1049–1057.
Kueper, B.H., Frind, E.O., 1991b. Two-phase flow in heterogeneous porous media: 2. Model application, Water Resources Research, 27, 1059–1070.
Kueper, B.H., Gerhard, J.I., 1995. Variability of point source infiltrationrates for two-phase flow in heterogeneous porous media, Water Resources Research, 31, 2971–2980.
Leverett, M.C., 1941. Capillary behavior in porous solids, Trans. AIME, 142, 152.
Lemke, L.D., Abriola, L.M., Goovaerts P., 2004. Dense nonaqueous phase liquid(DNAPL) source zone characterization: Influence of hydraulic property correlation on predictions of DNAPL infiltration and entrapment, Water Resource Research, 40, W01511.
Parker, J.C., Lenhard, R.J., 1987. A model for hysteretic constitutive relations governing multiphase flow: 1. Saturation-pressure relations, Water Resources Research, 23, 2187– 2196.
Sale, T.C., McWhorter, D.B., 2001, Steady state mass transfer from single-component dense nonaqueous phase liquids in uniform flow fields, Water Resources Research, 37, 393– 404.
Strategic Environmental Research and Development Program and Environmental Security Technology Certification Program., 2002, SERDP/ESTCP expert panel workshop on research and development needs for cleanup of chlorinated solvent sites, final report, Strategic Environ. Res. and Dev. Program, Arlington, Va.
Wilson, J.L., Conrad, S.H., Mason, W.R., Peplinski, W., Hagan E.,1990. Laboratory investigations of residual liquid organics from spills, leaks and disposal of hazardous wastes in groundwater, RepEPA/600/6-90/004, U.S. Environ. Prot. Agency, Ada, Okla.
van Genuchten M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Science Society of America Journal, 44, 892-989.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top