(3.236.118.225) 您好!臺灣時間:2021/05/17 08:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王毓鑛
研究生(外文):Yu-Kuang Wang
論文名稱:黴菌逸散特性之研究
論文名稱(外文):Study on Characteristics of Fungal Release
指導教授:李書安李書安引用關係
指導教授(外文):Shu-An Lee
學位類別:碩士
校院名稱:逢甲大學
系所名稱:環境工程與科學所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:104
中文關鍵詞:(1→3)-β-D-glucan活性碎片孢子培養性黴菌
外文關鍵詞:fungiculturabilityviabilitysproesfragments(1→3)-β-D-glucan
相關次數:
  • 被引用被引用:2
  • 點閱點閱:257
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
黴菌在環境中無所不在,只要有充足水分,黴菌能在任何地方上生長。已有許多研究證據指出暴露在有黴菌的室內環境中會造成居住者有呼吸道疾病和症狀(例如:過敏性鼻炎、氣喘病及過敏性肺炎)。然而空中黴菌孢子濃度和呼吸疾病之間的關係在過去有些研究中發現並無顯著的關聯性。近來研究表示暴露於次微米(submicrometer)的黴菌碎片下也可能會對健康產生不利的影響。這可能是由於它們本身所含的成份(黴菌抗原、黴菌毒素(mycotoxins)以及(1→3)-β-D-glucan)和擁有較小粒徑(即:黴菌碎片)的緣故。這顯示黴菌的碎片對健康可能會有潛在的危害,需要進一步去加以研究探討其特性。有鑑於此,本研究針對空氣中黴菌孢子與碎片的特性進行研究與探討。
影響環境中黴菌逸散的因子很多,本研究特別針對目前實驗室黴菌逸散的方式(柯利森霧化器(Collison nebulizer)與黴菌孢子來源產生器(fungal spore source strength tester, FSSST))、黴菌的種類(Aspergillus versicolor與Penicillium melinii)、培養時間、UV光照時間長短,以及濕度來探討這些因子對黴菌逸散特性的影響(包括黴菌孢子濃度與粒徑分佈、 (1→3)-β-D-glucan濃度與粒徑分佈、黴菌的培養性與活性)以及這些特性彼此間的關係。空氣中的黴菌孢子以及其碎片是透過 NIOSH 生物氣膠旋風採樣器(NIOSH bioaerosol cyclone sampler)來採集,採集後的樣品經後續萃取與分析後,將所得的結果以sigmaplot以及SPSS軟體經繪圖與統計檢定整理,比較環境因子與空氣中黴菌逸散之關係。
結果顯示成熟黴菌孢子在孢子粒徑(>1.8 μm)中(1→3)-β-D-glucan的含量比孢子碎片粒徑(<1 μm)高。以Collison nebulizer氣膠化的孢子,其黴菌孢子濃度與活性較以FSSST(Fungal Spore Source Strength Tester)氣膠化的孢子高。UV光會減少黴菌之孢子濃度、(1→3)-β-D-glucan含量、活性與培養性。溼度較高時會增加黴菌孢子的生長,因此黴菌孢子濃度與(1→3)-β-D-glucan含量皆會上升。培養時間愈久,黴菌孢子濃度、(1→3)-β-D-glucan含量、活性與培養性都會增加。不同的生長基質會影響黴菌生長情況,而建築材料可提供黴菌額外營養來源特別是木頭材質。在黴菌樣品的保存上,冷藏保存方式比冷凍保存方式較適合,但保存天數不宜超過7天。夏天室內所採到的黴菌孢子濃度比室外來得低;較高樓層的黴菌孢子濃度比低樓層來的高。另外,實際田野採樣的孢子大多為成熟的黴菌孢子。最後,綜合以上的結果我們發現活性會影響空氣中黴菌孢子與黴菌碎片釋放的比例。當環境影響因子是會影響到黴菌活性的時候,活性增加時(如:增加培養時間、使用木頭培養基、減少UV照射以及增加濕度),則會降低(1→3)-β-D glucan在孢子碎片粒徑範圍的含量,這是因為黴菌孢子生長較為成熟而受損的程度低,細胞壁的生物量增加,也因此較不易裂成小的碎片。反之,活性降低時(如:減少培養時間、使用MEA培養基、增加UV照射以及降低濕度),黴菌受傷的程度高不易成熟形成完整孢子,黴菌逸散至空氣中的小碎片濃度則會增加,造成(1→3)-β-D glucan在孢子碎片粒徑範圍的含量增加。這結果顯示當環境因子對黴菌的生存產生影響時,則會釋放出較小的微粒進入人類深層的呼吸系統內,這些具有活性的細小微粒對人類健康的影響需要更進一步的研究探討。
Fungi are ubiquitous in the enviroment. Fungi can grow everywhere where they have sufficient humidity. Many studies have shown that exposure to fungi in the indoor environment can cause residents to have respiratory diseases and symptoms (ex: allergic rhinitis, asthma, and hypersensitive pneumonitis). However, the association between airbrone fungal spore concentration and respiratory disease was not found in some previous studies. Recent studies have shown exposure to fungal fragments in submicrometer size may have an adverse effect on human health. This may be attributed to their compositions (fungal antigens, fungal toxins (mycotoxins), and (1→3)-β-D-glucan) and smaller particle size. It shows that fungal fragments may have a potential, adverse effect on human health. Further studies are needed to explore their characteristics. In consideration of this, in this study, the characteristics of fungal spores and fragments in the air were investigated.
There are many factors affecting fungal release in the environment. The study mainly investigated the effect of laboratory aerosol generation methods (Collison nebulizer and fungal spore source strength tester (FSSST)),,fungal types (Aspergillus versicolor and Penicillium melinii), culture time, duration of UV light exposure, and moisture on characteristics of fungal release, including size-selectively fungal spore concentration, size-selectively (1→3)-β-D-glucan concentration, fungal culturability and viability as well as their associations. Airborne fungal spores and fragments were collected using a NIOSH bioaerosol cyclone sampler. The collected samplers were followed by subsequent extraction and analysis. The obtained data were plotted and statistically tested using sigmaplot and SPSS software for investigation of the association between environmental factors and airborne fungal release.
The results show that the concentrations of (1→3)-β-D-glucan for nature fungi were found greater in the spore size range(>1.8 μm) those in the fragment size range(<1 μm). The concentrations and viability of fungal spores were found greater when using a Collison nebulizer for aerosolization of fungal spores than when using a FSSST. UV light can reduce spore concentrations, (1→3)-β-D-glucan, viability and culturability of fungi. Higher moisture can assist growth of fungal spores, therefore increasing sconcentration of fungal spores and (1→3)-β-D-glucan. The longer the culture time, the greater the fungal spore concentration, (1→3)-β-D-glucan, viability and culturability. Different growth matrix can affect fungal growth. Building materials, especially wood materials, can provide an additional source of nutrition. For preservation of samplers for fungal analyses, cold storage is more suitable than freezing, but no longer than 7 days. Indoor fungal spore concentrations were found lower than outdoor ones.Concentrations of fungal spores were found greater on the high floor than on the low floor in summer. Additionally, most fungal spores were foud mature in the field samples. In conclusion, df found fungal viability can affect proportion of airborne release of fungal spores and fragments. When environmental factors can increase fungal viability (ex: increasing incubation time, using wood materials as a nutrient source, reducing UV exposure time and increasing relative humidity), the percentage of (1→3)-β-D-glucan in the fragment size range can be reduced. This is because fungal spores become mature and less damage is caused, increasing biomass of fungal cell wall as well as less formation of fungal fragments. Oppositely, When fungal viability is reduced (ex: decreasing incubation time, using MEA as a nutrient source, increasing UV exposure time and decreasing relative humidity), the percentage of (1→3)-β-D-glucan in the fragment size range can be increased. This is because fungal spores become immature to form intact spores and more damage is caused. These results indicate when the environmental factors have an impact on fungal growth, more release of small particles can be found to enter human deep respiratory system. Further studies are needed to investigate the effect of these fine particles of biological activity on human health.
中文摘要 Ⅰ
Abstract Ⅲ
目錄 Ⅵ
圖目錄 Ⅷ
表目錄 Ⅹ
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 4
2.1 黴菌的型態 4
2.2 黴菌的危害 6
2.3 黴菌氣膠化裝置的探討 8
2.4 影響黴菌逸散因子的探討 11
2.5 黴菌採樣方法 14
2.6 黴菌分析方法 17
第三章 研究方法 19
3.1 實驗儀器與材料 19
3.1.1 實驗菌種 19
3.1.2 實驗儀器 20
3.1.3 實驗材料 25
3.2 實驗方法與步驟 28
3.2.1 生物氣膠配製 28
3.2.2 氣膠化裝置 30
3.2.3 生物氣膠採樣裝置 33
3.2.4 生物氣膠定量分析 33
3.2.5 UV對黴菌逸散之實驗步驟 36
3.2.6 溼度對黴菌逸散之實驗步驟 36
3.2.7 培養時間對黴菌逸散之實驗步驟 36
3.2.8 樣品保存方式的實驗步驟 36
3.2.9 建築材料的實驗步驟 37
3.2.10 田野試驗步驟 37
3.2.11 數據分析 38
3.2.12 實驗流程 39
第四章 結果與討論 40
4.1 Aspergillus versicolor與Penicillium melinii在原液中生物特性之比較 40
4.2 Collison nebulizer與Fungal spore source strength tester(FSSST)氣膠化裝置對黴菌逸散特性之影響 46
4.3 UVC光對黴菌(Aspergillus versicolor)逸散特性之影響 55
4.4 溼度對黴菌(Aspergillus versicolor)逸散特性之影響 61
4.5 培養時間對黴菌(Aspergillus versicolor)逸散特性之影響 66
4.6 建築材料對黴菌(Aspergillus versicolor)逸散特性之影響 70
4.7 保存方法對黴菌(Aspergillus versicolor)生物特性影響 75
4.8 田野逸散至空氣中之黴菌生物特性比較 78
4.9 活性與(1→3)-β-D glucan在孢子與孢子碎片含量之關係比較 83
第五章 結論與建議 86
5.1 結論 86
5.2 建議 87
第六章 參考文獻 89
Abdel Hameed A.A., and Khodr M.I. 2001. Suspended particles and bioaerosols emitted from an agricultural non-point source. Journal of Environmental Monitoring, 3, 206-209.

Adhikari A., Jung J., Reponen T., Lewis J.S., DeGrasse E.C., Grimsley L.F., Chew G.L., and Grinshpun S.A. 2009. Aerosolization of fungi, (1→3)-β-D-glucan, and endotoxin from flood-affected materials collected in New Orleans homes. Environment Research, 109(3), 215-224.

Baur X., Preisser A., and Wegner R. 2003. Asthma due to grain dust. Pneumologie, 57(6), 335-339.

Becker R., Samson R.A., Flannigan B., Flannigan M.E., Verhoeff A.P., Adan O.C.G., and Hoekstra E.S. 1994. Fungal disfigurement of constructions-analysis of the effects of various factors. Air quality monographs-health implication of fungi in indoor environments, 2, 361-380.

Bell A.A., and Wheeler M.H. 1986. Biosynthesis and function of fungal melanin. Annual Review of Phytopathology, 24, 411-451.

Bintsis T., Litopoulou-Tzanetaki E., and Robinson R.K. 2000. Existing and potential applications of ultraviolet light in the food industry-a critical review. Journal of the Science of Food and Agriculture, 80, 637-645.

Burge H.A., and Otten J.A. 1999. Fungi. In: Macher J (ed), Bioaerosols: Assessment and Control, American Conference of Governmental Industrial Hygienists (ACGIH), 19, 1-13.

Brasel T.L., Martin J.M., Carriker C.G., Wilson S.C., and Straus D.C. 2005a. Detection of airborne Stachybotrys Chartarum macrocyclic trichothecene mycotoxins on particulates smaller than conidia. Applied and Environmental Microbiology, 71, 114-122.

Brasel T.L., Martin J.M., Garriker C.G., Wilson S.C., and Straus D.C. 2005b. Detection of airborne Stachybotrys chartarum macrocyclic trichothecene mycotoxins in the indoor environment. Applied and Environmental Microbiology, 71, 7376-7388.

Burge H.A., and Ammann H.M. 1999. Fungal toxins and β-(1→3)-d-glucans In J. Macher (ed.), Bioaerosols: assessment and control. American Conference of Governmental Industrial Hygienists, Cincinnati, Ohio, 24.1-24.13.

Burge H.A., and Rogers C.A. 2000. Outdoor allergens. Environmental Health Perspectives, 108, 653-659.

Burge H.A. 2001. Fungi: toxic killers or unavoidable nuisances? Ann. Allergy Asthma Immunol, 87(3), 52-56.

Chaffin W.L., López-Ribot J.L., Casanova M., Gozalbo D., and Martínez J.P. 1998. Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiology and Molecular Biology Reviews, 62(1), 130-180.

Chen B.T., Feather G.A., Maynard A., and Rao C.Y. 2004. Development of a personal sampler for collecting fungal spores. Aerosol Science and Technology, 38(9), 926-937.

Chen P.S., and Li C.S. 2005. Real-Time Quantitative PCR with Gene Probe, Fluorochrome, and Flow Cytometry for Bioaerosol Analysis. Journal of Environment Monitoring, 3, 257-262.

Chew G.L. 2001. Fungal extracellular polysaccharides, β-(1→3)-glucans and culturable fungi in repeated sampling of house dust. Indoor Air, 11, 171-178.

Chew G.L., Rogers C., Burge H.A., Muilenberg M.L., and Gold D.R. 2003. Dustborne and airborne fungal particles represent a different spectrum of fungi with differing relations to home characteristics. Allergy, 58, 13-20.

Cho S.H., Seo S.C., Schmechel D., Grinshpun S.A., and Reponen T. 2005. Aerodynamic characteristic and respiratory deposition of fungal fragments. Atmospheric Environment, 39, 5454-5465.

Delfino R.J., Zeiger R.S., Seltzer J.M., Street D.H., Matteucci R.M., and Anderson P.R., et al. 1997. The effect of outdoor fungal spore concentrations on daily asthma severity. Environmental Health Perspectives, 105, 622-635.

Douwes J. 2005. (1→3)-Beta-D-glucans and respiratory health: a review of the scientific evidence. Indoor Air, 15(3), 160-169.

Douwes J., van der Sluis B., Doekes G., van Leusden F., Wijnands L., van Strien R., Verhoeff A., and Brunekreef B. 1999. Fungal extracellular polysaccharides in house dust as a marker for exposure to fungi relations with culturable fungi, reported home dampness, and respiratory symptoms. Journal of Allergy and Clinical Immunology, 103, 494-500.

Douwes J., van Strien R., Doekes G., Smit J., Kerkhof M., Gerritsen J., Postma D., de Jongste J., Travier N., and Brunekreef B. 2006. Does early indoor microbial exposure reduce the risk of asthma? The Prevention and Incidence of Asthma and Mite Allergy birth cohort study. Journal of Allergy and Clinical Immunology, 117(5), 1067-1073.

Duchaine C., and Mériaux A. 2001. The importance of combining air sampling and surface analysis wher studying problematic houses for mold biodiversity determination. Aerobiologia, 17, 121-125.

Foarde K.K., Vanosdel D.W., Menetrez M.Y., and Chang J.C.S. 1999. Investigating the influence of relative humidity, air velocity, and amplification on the emission rates of fungal spores. In: G. Raw, C. Aizlewood and P. Warren (eds), Proceedings of Indoor Air, 99, 1, London, CRC, 507-512.

Foarde K.K., VanOsdel D.W., Menetrez M.Y., Chang J.C.S., Raw G., Aizlewood C., and Warren P. 1999. Investigating the influence of relative humidity, air velocity, and amplification on the emission rates of fungal spores. Proceedings of Indoor Air 99, 1, 507-512.

Fogelmarker B., and Rylander R. 1997. (1→3)-β-D-glucan in some indoor air fungi. Indoor Built Environment, 6(5), 291-294.

Fogelmark B., Thorn J., and Rylander R. 2001. Inhalation of (1→3)-beta-D-glucan causes airway eosinophilia. Mediators Inflammation, 10, 13-19.

Fong Y.K., Anuar S., Lim H.P., Tham F.Y., and Sanderson F.R. 2000. A modified filter paper technique for long-term preservation of some fungal cultures. Mycologist 14(3), 127-130.

Foto M., Plett J., Berghout J., and Miller J.D. 2004. Modification of the Limulus amebocyte lysate assay for the analysis of glucan in indoor air environments. Analytical and Bioanalytical Chemistry, 379, 156-162.

Garrett M.H., Rayment P.R., Hooper M.A., Abramson M.J., and Hooper B.M. 1998. Indoor airborne fungal spores, house dampness and associations with environmental factors and respiratory health in children. Clinical Experimental Allergy, 28, 459-467.

Gauslaa Y., and Solhaug K.A. 2001 Fungal melanins as a sun screen for symbiotic green algae in the lichen Lobaria pulmonaria. Oecologia, 126, 462-471.

Gòrny R., Mainelis G., Grinshpun S.A., Willeke K., Dutkiewicz J., and Reponen T. 2003. Release of Streptomyces albus particles from contaminated surfaces. Environmental Research, 91, 45-53.
Gòrny R.L., Reponen T., Grinshpun S.A., and Willeke K. 2001. Source strength of fungal spore aerosolization from moldy building material. Atmospheric Environment, 35, 4853-4862.

Gòrny R.L., Reponen T., Willeke K., Schmechel D., Robine E., Boissier M., and Grinshpun S.A. 2002. Fungal fragments as indoor air biocontaminants. Applied and Environmental Microbiology, 68, 3522-3531.

Green B.J., Tovey E.R., Sercombe J.K., Blachere F.M., Beezhold D.H., and Schmechel D. 2006. Airborne fungal fragments and allergenicity. Medical Mycology: official publication of the International Society for Human and Animal Mycology, 44(1), 245-255.

Gregory P.H. 1973. The Microbiology of Atmosphere, Plymouth M.A. Leonard Hill Books, 39-42.

Grinshpun S.A., Gòrny R.L., Reponen T., Willeke K., Trakumas S., Hall P., and Dietrich D.F. 2002. New method for assessment of potential spore aerosolization from contaminated surfaces. Proceedings of the Sixth International Aerosol Conference, 2, Taipei, Taiwan, 767-768.

Guerrero-Beltrán J.A., and Barbosa-Cánovas G.V. 2004. Advantages and limitations on processing foods by UV light. Food Science and Technology International, 10, 137-147.

Gutarowska B., and Piotrowska M. 2007. Methods of mycological analysis in buildings. Building and Environment, 42(4), 1843-1850.

Haines J., Escamilla B., Muilenberg M., Gallup J., and Levetin E. 1999. Mycology of the air. Pan American Aerobiology Association, 1-5.

Hanhela R., Louhelainen K., and Pasanen A.L. 1995. Prevalence of microfungi in Finnish cow barns and some aspects of the occurrence of Wallemia sebi and Fusaria. Scand. Journal Work Environmental Health, 21, 223-228.

Hobbie B., and Mancke R.B. 1977. Oil monopoly divestiture: A clash of media versus expert perceptions. Energy Policy, 5(3), 232-244.

Iossifova Y., Reponen T., Bernstein D., Levin L., Zeigler H., and Kalra H., et al. 2007. House dust (1→3)-β-D-glucan and wheezing in infants. Allergy, 62, 504-513.

Kanaani H., Hargreaves M., Ristovski Z., and Morawska L. 2007. Performance assessment of UVAPS: Influence of fungal spore age and air exposure. Journal of Aerosol Science, 38(1), 83-96.

Kanaani H. Hargreaves M., Smith J., Ristovski Z., Agranovski V., and Morawska L. 2008. Performance of UVAPS with respect to detection of airborne fungi. Journal of Aerosol Science, 39(2), 175-189.

Kepner R.J., and Pratt J.R. 1994. Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiolical Reviews, 58(4), 603-615.

Kurup V.P., Shen H.D. and Banerjee B. 2000. Respiratory fungal allergy. Microbes and Infection, 2(9), 1101-1110.

Lacey J., and Dutkiewicz J. 1994. Bioaerosols and occupational lung disease. Jurnal of Aerosol Science, 25(8), 1371-1404.

Lange J.L., Thorne P.S., and Lynch N. 1997. Application of flow cytometry and fluorescent in situ hybridization for assessment of exposures to airborne bacteria. Applied Environment Microbiology, 63(4), 1557-1563.

Lee J.H., and Jo W.K. 2006. Characteristics of indoor and outdoor bioaerosols at Korean high-rise apartment buildings. Environmental Research, 101, 11-17.

Levetin E. 1995. Fungi. In H. Burge (ed.), Bioaerosols. Lewis Publisher/CRC Press, Inc., Boca Ratio, Fla, 87-120.

Lindsley W.G., Schmechel D., and Chen B.T. 2006. A two-stage cyclone using microcentrifuge tubes for personal bioaerosol sampling. Journal of Environment Monitoring, 8(11), 1136-1142.

Lin X., Willeke K., Ulevicius V., and Grinshpun S.A. 1997. Effect of sampling time on the collection efficiency of all-glass impingers. American Industrial Hygiene Association Journal, 58(7), 480-488.

Lopez-Malo A., and Palou E. 2005. Ultraviolet light and food preservation. In: G.V. Barbosá-Cánovas, M.S. Tapia, M.P. Cano (eds.), Novel Food Processing Technologies. CRC Press, Boca Raton, FL, pp. 405-421.

Madelin T.M. 1994. Fungal aerosol: a review. Journal of Aerosol Science, 25, 1405-1412.

Madlin T.M., and Madelin M.F. 1995. Biological analysis of fungi and associated molds. In C.S. Cox and C.M. Wathes (ed.), Bioaerosol handbook. Lewis Publishers/CRC Press, Inc., Boca Raton, Fla, 361-386.

Mandrioli P., Negrini M.G., Cesari G., and Morgan G. 1983. Anthropogenic aerosol particles in the atmosphere. Grana 23, 45-53.

Mariam B., Hocking A.D., and Miskelly D. 2009. Inactivation of food spoilage fungi by ultraviolet(UVC) irradiation. International Journal of Food Microbiology, 129, 74-77.

Martinez K.F., Rao C.Y., and Burton N.C. 2004. Exposure assessment and analysis for biological agents. Grana, 43(4), 193-208.

Miller J.D. 1992. Fungi as contaminants of indoor air. Atmospheric Environment, 26, 2163-2172.

Molocznik A. 2002. Qualitative and quantitative analysis of agricultural dust in working environment. Annals Agricultural Environmental Medicine, 9(1), 71-78.

Murphy T.M. 1990. Effect of broad-band ultraviolet and visible radiation on hydrogen peroxide formation by cultured rose cell. Plant Physiol., 80, 63-68.

Murphy T.M., and Wilson C. 1982. The UV-stimulated K + efflux from rose cells. Plant Physiol., 70, 709-713.

Murphy T.M., Hurrel H.C., and Sasaki T.L. 1985. Wavelength dependence of ultraviolet radiation-induced mortality and K + efflux in cultured cells of Rosa damascena. Photochem. Photobiol., 42, 281-286.

Palmgren U., Strom G., Blomquist G., and Malmberg P. 1986. Collection of airborne micro-organisms on Nuclepore filters, estimation and analysis-CAMNEA method. Journal of applied Bacteriology, 61(5), 401-406.

Pandit T., Singh S., and Singh A.B. 1995. Prevalence of culturable and non-culturable airborne fungi in a grain sotre in Delhi. Aerobiologia, 11, 177-182.

Pasanen A.L., Pasanen P., Jantunen M.J., and Kalliokoski P. 1991. Significance of air humidity and air velocity for fungal spore release into the air. Atmospheric Environment, 25, 459-462.

Radon K., Garz S., Riess A., Koops F., Monso E., Weber C., Danuser B., Iversen M., Opravil U., Donham K., Hartung J., Pedersen S., and Nowak D. 2003. Respiratory diseases in European farmers-II. Part of the European farmers'' project. Pneumologie, 57(9), 510-517.

Rao C.Y., Cox-Ganser J.M., Chew G.L., Doekes G., and White S. 2004. Use of surrogate markers of biological agents in air and settled dust samples to evaluate a water-damaged hospital. Indoor Air, 15(9), 89-97.

Roberson R.W. 1993. Cryofixation and freeze substitution of teliospores of Gymnosporangium clavipes: an ultrastructural investigation. Mycological Research, 97(2), 195-204.

Roy C.J., and Thorne P.S. 2003. Exposure to particulates, microorganisms, beta(1-3)-glucans, and endotoxins during soybean harvesting. AIHA Journal, 64(4), 487-495.

Schmechel D., Gòrny R.L., Simpson J.P., Reponen T. Grinshpun S.A., and Lewis D.M. 2003. Limitations of monoclonal antibodies for monitoring of fungal aerosols using Penicillium brevicompactum as a model fungus. Journal of Immunological Methods, 283(1-2), 235-245.

Schram-Bijkerk D., Doekes G., Douwes J., Boeve M., Riedler J., Ublager E., Mutius E., Benz M.R., Pershagen G., Hage M., Scheynius A., Braun-Fahrländer C., Waser M., and Brunekreef B. 2005. Bacterial and fungal agents in house dust and wheeze in children: the PARSIFAL study. Clinical and Experimental Allergy, 35(10), 1272-1278.

Schram D., Doekes G., Boeve M., Douwes J., Riedler J., Ublagger E., von Mutius E., budde J., Pershagen G., Nyberq F., Alm J., Braun-Fahrländer C., Waser M., and Brunefreef B. 2005. Bacterial and fungal components in house dust of farm children, Rudolf Steiner school children and reference children-the PARSIFAL Study. Allergy, 60(5), 611-618.

Seo S.C., Grinshpun S.A., Iossifova Y., Schmechel D., Rao C., and Reponen T. 2007. A new field-compatible methodology for the collection and analysis of fungal fragments. Aerosol Science and Technology, 41, 794-803.

Seo S.C., Reponen T., Levin L., Borchelt T., and Grinshpun S.A. 2009. Aerosolization fo particulate (1→3)-β-D-glucan from moldy materials. Applied and Environment Microbiology, 74, 585-593.

Sivasubramani S.K., Niemeier R. T., Reponen T., and Grinshpun S.A. 2004. Assessment of the aerosolization potential for fungal spores in moldy homes. Indoor Air, 14, 405-412.

Sivasubramani S.K., Niemeier R. T., Reponen T., and Grinshpun S.A. 2004. Fungal spore source strenght tester: laboratory evaluation of a new concept. Science Total Environment, 329, 75-86.

Skaug M.A., Eduard W., and Stormer F.C. 2001. Ochratoxin A in airborne dust and fungal condia. Mycopathologia, 151, 93-98.

Sletomoen M., and Stokke B.T. 2008. Higher order structure of (1,3)-beta-D-glucans and its influence on their biological activities and complexation abilities. Biopolymers, 89(4), 310-321.

Smith D., and Onions A.H.S. 1983. The Preservation and Maintenance of Living Fungi. Commonwealth Mycological Institute, Kew, England, 51 pp.

Trunov M., Trakumas S., Willeke K., Grinshpun S.A., and Reponen T. 2001. Collection of bioaerosol particles by impaction: effect of fungal spore agglomeration and bounce. Journal of Aerosol Science, 35, 617-624.

Verhoeff A.P., and Burge H.A. 1997. Health risk assessment of fungi in home environments. Annals of Allergy, Asthma & Immunology, 78(6), 120-128.

Wasser S.P., and Weis A.L. 1999. Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Critical Reviews in Immunology, 19(1), 65-96.

Willeke K., Ulevicius V., Reponen T., and Grinshpun S.A. 1996. Development and evaluation of aerosol generators for biological materials. Journal of Aerosol Science, 27(1), 249-250.

Wilson S.C., Morrow-Tesch J., Straus D.C., and Cooley J.D. 2002. Airborne microbial flora in a cattle feedlot. Applied and Environmental Microbiology, 68, 3238-3242.

Zober M.H. 1961. Take-off mold spores in relation to wind speed and humidity. Annals of Botany, 25, 53-64.

http://www.bgiusa.com/agc/collison.htm

江婉嘉,應用螢光染色法以螢光顯微鏡與流式細胞儀評估醫院污水處理廠水中微生物特性,臺灣大學環境衛生研究所碩士論文,2004。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top