(35.175.212.130) 您好!臺灣時間:2021/05/18 04:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:林信宏
研究生(外文):Hsin-Hung Lin
論文名稱:利用CMOS0.18製程之射頻低雜訊放大器電路的設計與製作
論文名稱(外文):Design and Implementation of the RF Low Noise Amplifier Circuits Using the CMOS 0.18 μm process
指導教授:何滿龍何滿龍引用關係
指導教授(外文):Man-Long Her
學位類別:碩士
校院名稱:逢甲大學
系所名稱:通訊工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:128
中文關鍵詞:低雜訊放大器全球互通微波存取超寬頻
外文關鍵詞:Worldwide Interoperability for Microwave AccessUltra Wide Band (UWB)Low Noise Amplifier
相關次數:
  • 被引用被引用:1
  • 點閱點閱:299
  • 評分評分:
  • 下載下載:98
  • 收藏至我的研究室書目清單書目收藏:0
本論文分為三部分,第一個部分為第五章,主要是以全球互通微波存取(Worldwide Interoperability for Microwave Access, WiMAX)為頻率設計一個低雜訊放大器,為單端輸入與單端輸出。第二個部分為第六章,以全球互通微波存取為頻率設計一個低雜訊放大器(Low Noise Amplifier, LNA),但是為單端輸入與雙端輸出。第三個部分為第八章,其頻率為超寬頻(Ultra Wide Band, UWB)系統,設計一個低雜訊放大器。
  本篇論文的設計流程,電路模擬,電路佈局與電路量測都是以互補式金氧半(CMOS) 0.18 μm製程,在第一個電路的設計為應用在WiMAX系統,其主架構為疊階,疊階可以抑制米勒效應,利用二極體來提升1 dB壓縮點,並且利用源級退化電感來增加穩定度。在頻率3.3~3.8 GHz模擬結果中,輸入返回損耗(S11)最小值為14.412,輸出返回損耗(S22)最小值為-14.834 dB,增益(S21)最大值12.198 dB,隔離度(S12)最大值為-37.47 dB,雜訊指數最小值為2.127 dB,全頻帶無條件穩定,P1dB為-2 dBm。再改良第一顆LNA的量測結果,S11最小值為-17.36 dB,S22最小值為-18.33 dB,S21最大值9.97 dB,S12最大值為-36.23 dB,雜訊指數最小值為2.133 dB,全頻帶無條件穩定,P1dB為-1 dBm。第二次改良的模擬結果,S11最小值為-7.496 dB,S22最小值為-13.188 dB,S21最大值13.539 dB,S12最大值為-38.32 dB,雜訊指數最小值為1.82 dB,全頻帶無條件穩定,P1dB為-4 dBm。
第二個部分為差動LNA,應用於WiMAX系統,其主要架構為疊階,疊階可以抑制米勒效應,利用源級退化電感來增加穩定度,使用回授網路可以增加頻寬與穩定度,並且利用主動巴倫器提升增益與減少面積的使用。在主動八倫器方面,使用電流鏡達到精準的電流源。對於差動的LNA,在頻率3.3~3.8 GHz模擬結果中,其S11最小值為-13.884 dB,S22最小值為-20.226 dB,S33最小值為-20.804 dB,S21最大值26.601 dB,S31最大值24.105 dB,埠2的雜訊指數最小值為2.143 dB,埠3的雜訊指數最小值為2.179 dB,埠2與埠3為全頻帶無條件穩定,埠2的P1dB為-34 dBm,埠3的P1dB為-34 dBm。相位為185度。
第三個電路為應用於UWB系統,其主架構為三階的串接,可以達到寬頻與高增益的需求,在第一級使用了回授架構,可以提升電路平坦度,必且使用了中間級的電感抑制米勒效應,在頻率3.1~10.6 GHz中,其量測結果中,S11最小值為-14.9695 dB,S22最小值為-12.7996 dB,S21最大值為10.3721 dB,S12最大值為-44.7844 dB,雜訊指數最小值為4.85 dB,全頻帶無條件穩定,P1dB為-26 dBm @ 6.1 GHz。再改良量測結果,S11最小值為-35.0657 dB,S22最小值為-12.3755 dB,S21最大值為17.7427 dB,S12最大值為-50.22 dB,雜訊指數最小值為3.64925 dB,全頻帶無條件穩定,P1dB為-26 dBm @ 6.1 GHz。
This thesis id divided into three parts. The first part is the chapter 5, deals with the design a LNA (Low Noise Amplifier) for the Worldwide Interoperability for Microwave Access (WiMAX) system. The LNA is the single input and single output. The second part is the chapter 6 and designs a WiMAX LNA. The LNA is the single input and double outputs. The third part is the chapter 8 and designs an Ultra Wide Band (UWB) system.
This thesis, from the design flow, circuit simulation, layout of the circuit, and the circuit measurement are based on the TSMC 0.18 μm standard. For the first circuit design was applied WiMAX system. The main schematic is the cascode and cascode can restrain the miller effect. Using the diode to raise the P1dB and using the source degeneration for stabilization of the inductor. Operating of the 3.3~3.8 GHz and the simulation results, the minimum S11 is -14.412 dB; the minimum S22 is -14.834 dB; the maximum S21 is 12.198 dB; the maximum S12 is -37.47 dB; the minimum NF (noise figure) is 2.127 dB; unconditional stability; the P1dB is -2 dBm. Modification of the first LNA, for the measurement results, the minimum S11 is -17.36 dB; the minimum S22 is -18.33 dB; the maximum S21 is 9.97 dB; the maximum S12 is -36.32 dB; the minimum NF is 2.133 dB; unconditional stability; the P1dB is -1 dBm. Modification of the second LNA, for the simulation results, the minimum S11 is -7.496 dB; the minimum S22 is -13.188 dB; the maximum S21 is 13.539 dB; the maximum S12 is -38.32 dB; the minimum NF is 1.82 dB; unconditional stability; the P1dB is -4 dBm.
Second part is the differential LNA for the WiMAX system. The main schematic is the cascode and cascode can restrain the miller effect. Using the source degenerated inductor for stabilization. Using the feedback network can to raise the bandwidth and flatness and using the active balun can to raise the gain and reduce the area. For the active balun, we used the mirror current for precise control the current. For the differential LNA, the minimum S11 is -13.884 dB; the minimum S22 is -20.226 dB; the minimum S33 is -20.804 dB; the maximum S21 is 26.601 dB; the maximum S31 is 24.105 dB; the minimum NF is 2.143 dB at port 2; the minimum NF is 2.179 dB at port 3; unconditional stability; the P1dB is -34 dBm at port 2 and the P1dB is -34 dBm at port 3. The phase is 185 degree.
The third part is the UWB LNA. The main schematic is the three stages cascade and it can raise the bandwidth and gain. At the first stage, we used the feedback network for raise the flatness and used the inter stage inductor for restrain the miller effect. At the frequency of the 3.1~10.6 GHz and the measurement results, the minimum S11 is -14.9695 dB; the minimum S22 is -12.7996 dB; the maximum S21 is 10.3721 dB; the maximum S12 is -44.7844 dB; the minimum NF is 4.85 dB; unconditional stability; the P1dB is -26 dBm @ 6.1 GHz. Modification of the first LNA, for the measurement, the minimum S11 is -35.0657 dB; the minimum S22 is -12.3755 dB; the maximum S21 is 17.7427 dB; the maximum S12 is -50.22 dB; the minimum NF is 3.64925 dB; unconditional stability; the P1dB is -26 dBm @ 6.1 GHz.
Abstract (in English) Ⅰ
Abstract (in Chinese) Ⅱ
Content Ⅲ
List of Figures Ⅷ
List of Tables ⅩⅣ
Chapter 1 Introduction 1
1.1 Research motivation of the RFIC 1
1.2 Research motivation of the UWB system 1
1.2.1 Research motivation of the WiMAX system 1
1.2.2 Research motivation of the UWB system 2
1.3 Research motivation of the low noise amplifier 2
1.4 Thesis Organization 3
Chapter 2 Basic Concepts of the CMOS Amplifiers 4
2.1 Overview 4
2.2 Basic concept of the amplifier 4
2.2.1 Dynamic range 4
2.2.2 1-dB compression point 5
2.2.3 IP3 points and inter-modulation products 10
2.2.4 1-dB compression and IP3 points 12
2.2.5 Noise figure 12
Chapter 3 Basic Schematic of the Amplifier 15
3.1 Introduction of the amplifier schematic 15
3.2 Filter 15
3.2.1 Simulation results of the WiMAX filter 16
3.2.2 Simulation results of the UWB filter 17
3.2 Cascode schematic 18
3.3 Feedback 20
3.3.1 Feedback concept 21
3.3.2 Feedback characteristic 22
3.4 Source degeneration for stabilization of the inductor 24
3.5 Current mirror 25
3.5.1 Basic MOSFET current source 26
3.6 Source follower 27
3.7 Design flow of the circuit 29
Chapter 4 Overview of WiMAX Technology 30
4.1 Introduction of WiMAX technology 30
4.2 WiMAX system applications 31
Chapter 5 Design and Implementation of the Fully Integrated CMOS LNA for the WiMAX System 32
5.1 Introduction of the WiMAX system 32
5.2 Motivation of the WiMAX LNA 32
5.3 Design and analysis of the WiMAX LNA 34
5.3.1 Main schematic of the LNA 34
5.3.2 Load diode by the MOS 35
5.4 Simulation methods of the WiMAX LNA 36
5.4.1 Simulation results of the WiMAX LNA 36
5.4.2 Layout of the WiMAX LNA 41
5.4.3 Performance summary of the WiMAX LNA 42
5.5 Modification of the WiMAX LNA 43
5.5.1 Modification of the diode 43
5.5.2 Modification of the current density of the inductor 45
5.5.3 Modification of the methods of the simulation 46
5.5.4 Modification of the signal passes loss 47
5.5.5 Enhancement of the amount of the bypass capacitor 48
5.5.6 Simulation and measurement methods of the WiMAX LNA 48
5.5.7 Simulation and measurement results of the WiMAX LNA 49
5.5.8 Layout 53
5.5.9 Performance summary of the simulated and measured results 54
5.6 Modification of the second WiMAX LNA 55
5.6.1 Modification of the active diode 55
5.6.2 Modification of the inductors shape 56
5.6.3 Modification of the pads 56
5.6.4 Performance of the modification of circuit 57
5.6.5 Layout 62
5.6.6 Performance summary of the modification WiMAX LNA 63
5.7 Performance summary of the three WiMAX LNAs 64
Chapter 6 Design and Implementation of the Fully Integrated CMOS Differential LNA for the WiMAX System 65
6.1 Introduction of the WiMAX system 65
6.2 Motivation of the WiMAX front-end concept 65
6.3 Design and analysis of the WiMAX differential LNA 66
6.3.1 Main schematic of the LNA 66
6.3.2 Analysis of the differential schematic 67
6.4 Simulation methods of the WiMAX Differential LNA 69
6.4.1 Simulation results of the WiMAX Differential LNA 69
6.4.2 Layout 77
6.4.3 Performance summary of the differential WiMAX LNA 78
Chapter 7 Overview of UWB Technology 79
7.1 Introduction of WiMAX Technology 79
7.2 UWB System Applications 80
Chapter 8 Design and Implementation of the Fully Integrated CMOS LNA for the UWB System 81
8.1 Introduction of the UWB system 81
8.2 Motivation of the UWB Front-end concept 81
8.3 Design and analysis of the UWB LNA 82
8.3.1 Main schematic of the LNA 82
8.3.2 Analysis of the cascade stage 83
8.3.3 Analysis of the first stage 84
8.4 Simulation and measurement methods of the UWB LNA 84
8.4.1 Simulation and measurement results of the UWB LNA 85
8.4.2 Layout 92
8.4.3 Performance summary of the UWB LNA 93
8.5 Modification of the UWB LNA 94
8.5.1 Performance of the UWB LNA 94
8.5.2 Layout 99
8.5.3 Performance summary of the modification of the UWB LNA 100
8.6 Performance summary of the three UWB LNAs 100
Chapter 9 Conclusions 101
9.1 Summary of the WiMAX LNAs 101
9.1.1 Summary of the first WiMAX LNA 101
9.1.2 Summary of the modification of the WiMAX LNA 101
9.1.3 Summary of the second modification of the WiMAX LNA 102
9.1.4 Summary of the three WiMAX LNAs 103
9.2 Summary of the differential WiMAX LNA 103
9.3 Summary of the UWB LNAs 104
9.3.1 Summary of the first UWB LNA 104
9.3.2 Summary of the modification of the UWB LN 105
9.3.3 Summary of the two UWB LNAs 107
References 107
[1]A. Bruce Carlson, Paul B. Crilly, Janet C. Rultedge, “Communication Systems An Introduction to Signals and Noise in Electrical Communication Fourth Edition,” Mc Graw Hill.
[2]Behzad Razavi, “RF MICROELECTRONICS”, PRENTICE HALL COMMUNICATIONS ENGINEERING AND EMERGING TECHNOLOGIES SERIES Theodore S. Rappaport, Series Editor.
[3]Chuen-Zhu Guo, “2.4GHz CMOS Linearized Power Amplifier,” 2003, 06 Department of Institute of Microelectronics, Notional Cheng Kung University.
[4]John Rogers, Calvin Plett, “Radio Frequency Integrated Circuit Design,” Artech House, Boston.London.
[5]David M. Pozar, “Microwave Engineering,” 2nd edition, Wiley, 2000.
[6]Behzad Razavi, “Design of Analog CMOS Integrated Circuits,” McGRAW-HILL INTERNATIONAL EDITION Electrical Engineering Series.
[7]Chi-Feng Lin, “Design and Implementation of the CMOS RF Front-end Circuit for WiMAX System Application,” 2008, 06 Department of Communications Engineering, Feng Chia University.
[8]Yu-Jui Yang, “The Design of 3.5 GHz Microwave Power Amplifier” 2003, 06 Department of Institute of Microelectronics, Notional Cheng Kung University.
[9]Ishida, H.; Miyatsuji, K.; Tanaka, T.; Takenaka, H.; Furukawa, H.; Nishitsuji, M.; Tamura, A.; Ueda, D, “A low-current and low-distortion wideband amplifier using 0.2-μm gate MODFET fabricated by using phase-shift lithography,” Volume 48, Issue 5, May 2000 Page(s):771 – 776.
[10]Guillermo Gonzalez, “MICROWAVE TRANSISTOR AMPLIFIERS Analysis and Design,” 2nd edition, Prentice Hall.
[11] Adel S. Sedra, Kenneth C. Smith, “Microelectronic CIRCUITS, FIFTH EDITION,” New York Oxford UNIVERSITY PRESS 2004.
[12]Yu-Siang Chen, “Design and Implementation of the CMOS RF Front-end Amplifier for WiMAX System Application,” 2008, 06 Department of Communications Engineering, Feng Chia University.
[13]Che-yao Fan, “Design and implementation of the quadrature voltage controlled oscillator for WiMAX system application,” 2006, 06 Department of Communications Engineering, Feng Chia University.
[14]Shi-Ming Wang, “Development of IS-95 CDMA RF Transceiver Including a Power Amplifier MMIC Design,” 2000, 06 Department of Electrical Engineering, Notional Cheng Kung University.
[15]Kuei-Cheng Lin, “The Design and Implementation of Linear Compensation Power Amplifiers for W-CDMA and WLAN Applications,” 2004, 07 Department of Electrical Engineering, National Central University.
[16]Cheng-Chi Yen, “2.4 GHz ISM-Band CMOS Transceiver RF Front-end and CMOS PA with Diode Linearizer,” Department of Electrical Engineering, National Cheng Kung University.
[17]Chun-Chieh Chiu, “Design and Implementation of RF Front-end Circuit WiMAX 3.5 GHz Receiver,” 2007, 06 Department of Communications Engineering, Feng Chia University.
[18]Wei-Ting Lee, “Research on 2.4-GHz CMOS Single-Mixer Transceiver/5-GHz PA RFIC and High-Q Spiral Inductor for Wireless Communication Applications,” 2004, 06 Department of Electrical Engineering, Notional Cheng Kung University.
[19]Jaewon Kim; Byunghoo Jung; Cheung, P.; Harjani, R. “Novel CMOS low-loss transmission line structure,” 19-22 Sept. 2004 Page(s):235 - 238.
[20]Ian Oppermann, Matti Hämäläinen and Jari Iinatti, “UWB Theory and Applications,” WILEY.
[21]Ming-Yi Shen, “Design and Implementation of A Fully Integrated 3.1 – 10.6 GHz Low Noise Amplifier for Ultra Wideband System Application,” 2006, 06 Department of Communications Engineering, Feng Chia University.
[22]Shao-Ren Chang, “Design and Implementation of A Fully Integrated 3.1 – 10.6 GHz Low Noise Amplifier for Ultra Wideband System Application,” 2007, 06 Department of Communications Engineering, Feng Chia University.
[23]Zhe-Yang Huang; Che-Cheng Huang; Yeh-Tai Hung; Meng-Ping Chen, “A CMOS current reused low-noise amplifier for ultra-wideband wireless receiver,” Volume 3, 21-24 April 2008 Page(s):1499 – 1502.
[24]Gao, Y.; Zheng, Y.J.; Ooi, B.L, “0.18 μm CMOS dual-band UWB LNA with interference rejection,” Volume 43, Issue 20, September 27 2007 Page(s):1096 – 1098.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊