(3.236.122.9) 您好!臺灣時間:2021/05/09 07:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝聖平
研究生(外文):Sheng-Ping Hsieh
論文名稱:天文台反射望遠鏡控制系統之設計
論文名稱(外文):Nutator Control System Design for an Observatory Reflector
指導教授:黃榮興黃榮興引用關係
指導教授(外文):Thong-Shing Hwang
學位類別:博士
校院名稱:逢甲大學
系所名稱:電機與通訊工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:159
中文關鍵詞:遺傳演算法模式參考反射望遠鏡天文台毫米波陣列進化演算法音圈馬達章動器最佳化
外文關鍵詞:Evolutionary AlgorithmsMillimeter ArrayObservatoryReflectorNutatorOptimizationVoice Coil MotorsModel ReferenceGenetic Algorithms
相關次數:
  • 被引用被引用:0
  • 點閱點閱:218
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
阿塔卡瑪 (Atacama) 大型毫米及次毫米波陣列是史上最大規模的地面天文台計畫,預定於智利北部興建12米陣列及Atacama緻密陣列望遠鏡。對章動器 (Nutator) 來說,主要的設計目標是快速切換,大波束偏向及一個無反作用力的機構。Nutator系統的控制器架構具有耦合的鏡子及搖擺機構平行迴路,兩者皆採用PID控制,整個Nutator動作近似為兩個耦合的諧波振盪器。Nutator系統控制是透過一個專用控制器及放大器裝置來執行,兩個主線性音圈馬達操作在一種推拉式結構來驅動次反射鏡,指令的操作模式是兩位置轉換其需要極高性能,對這種尺寸的反射望遠鏡它是不尋常的。天文台反射望遠鏡的控制系統必須在天線遭受外來干擾與其內部的不確定受控體動態之時,仍能使天線精確指向目標,其所需的技術規範是非常地講求精密,比起一般的系統更具挑戰。在控制上應用PID演算法並不能保證得到該系統之最佳控制,PID控制器常透過其他方法而得以增強,類神經模式參考控制也被提出作為控制系統之設計。本論文之目的在於Nutator動態模式分析及其控制系統設計,針對系統內部與外界的擾動,同時考慮到系統穩定與性能的強健性,從計算機模擬結果以期符合性能規範。為了消弭PID控制器須經調整程序的缺點,在非線性的Nutator交叉耦合系統上,應用基因式的進化演算法來求得最佳的控制器參數值,該自動調整演算法是強健的搜尋及具最佳化技術以利提供適當的控制參數,而不須經由試誤法來得到這些參數值。在本論文中亦提供相關模擬數據來驗證此法所得到的定位及追蹤性能是非常優越。
The ALMA is the largest scale ground observatory project in history scheduled to build a 12 m Array and Atacama Compact Array in Northern Chile. For the nutator, the principal design aims are swift switching, large beam deflection and a reactionless mechanism. The nutator system controller architecture has coupled mirror and rocker parallel loops, both adopting PID control. The entire nutator actions are approximated as two coupled harmonic oscillators. Nutator system control is performed through a dedicated controller and amplifier device. Two main linear voice coil motors, operating in a push-pull organization drive the nutator subreflector. The mandatory operation mode for the nutator system is two position switching. This mode requires extremely high performance, which is unusual for reflectors of this size. The observatory reflector control system must be always pointed to a target for undergoing external disturbance forces at antenna and internal uncertain plant dynamics. The required technical specifications for the nutator control system are precise requirement, system tracking control with a disturbance force more challenging than that in ordinary systems. Application of the PID algorithm for control does not guarantee optimal control of the system. The PID controllers are often enhanced by other methods; a neural network model reference control is also proposed to act as the control system design. The purpose of this dissertation is to analyze nutator dynamics modes and control system design for the ALMA nutator. The dissertation will also take account of stability and robustness for system to meet performance requirements via computer simulation under the internal and external disturbances conditions. To overcome the main drawback of tuning procedure for a PID controller, we present a method for using evolutionary algorithms to search for the optimal parameter values in cross-coupling actuators for a nonlinear nutator system. The autotune algorithms are robust search and optimization techniques that provide adequate control parameters without a trial and error method. To verify the merits of the proposed methodology in positioning and tracking performance, in this dissertation some related simulation data are provided.
Chinese Acknowledgments i

Chinese Abstract ii

Abstract iii
Table of Contents v

List of Figures viii
List of Tables xiii
Nomenclatures and Acronyms xiv

Chapter 1 Introduction 1
1.1 General Background Information 1
1.2 Literature Review 4
1.3 Research Hypothesis 8
1.4 Problem Statement 9
1.5 Contributions of the Dissertation 11
1.6 Overview 14
Chapter 2 Observatory Reflector System 17
2.1 Nutating Subsystem 19
2.1.1 Nutating Mechanism 19
2.1.2 Subreflector 24
2.1.3 Actuator and Drive Amplifier 29
2.1.4 Control Electronics 34
2.2 Nutator Operation and Control 36
2.3 Reflector System Requirements 38
Chapter 3 Nutator Dynamic Model Analysis 44
3.1 Mathematical Foundations 44
3.2 Internal and Auxiliary Excitation 46
3.3 Balanced and Unbalanced Mechanism 48
3.4 Uncertainty and Robustness 51
3.4.1 Plant Uncertainty 52
3.4.2 Robust Performance 55
Chapter 4 Analysis and Design of Nonlinear MIMO Control Systems 61
4.1 System Architecture 61
4.1.1 Mirror Loop Analysis 66
4.1.2 Rocker Loop Analysis 70
4.2 Nonlinear MIMO PID Control Loop Analysis 72
4.2.1 Design of the PID Control Loop 73
4.2.2 The Control System of Neural Network 76
4.3 Twin VCM Controller for Mirror and Rocker Systems 78
4.3.1 Gain-Schedualing Design 78
4.3.2 Sensitivity Analysis 81
4.4 Decoupling Control System Design 83
4.5 Computer Simulation 85
4.5.1 The PID controller simulation 85
4.5.2 The model reference controller simulation 93
4.5.3 The decoupling control simulation 95
4.6 Concluding Remarks 98
Chapter 5 Genetics-Based PID Control Loop Analysis and Design 99
5.1 GA-based Evolutionary Algorithms 99
5.2 Evolutionary Algorithms for Optimal Design of Nutator Systems 100
5.2.1 Genetic Algorithms and the Design Method 100
5.2.2 Genetics-Based Optimal PID Controller Design 103
5.3 Simulation Results and Discussions 107

Chapter 6 Residual Torque Measurement 112
6.1 Measurement Methodology 112
6.2 Measurement Results 114
6.3 Concluding Remarks 119
Chapter 7 Conclusions and Prospects 120
7.1 Conclusions 120
7.2 Prospects 121
References 123
Appendix A H2W Voice Coil Actuator Test Data Sheet 136
Appendix B Dynamic Signal Analyzer 139
Publication List 142
[1]A. Wootten, “The Atacama Large Millimeter Array (ALMA),” in Large Ground Based Telescopes, J. M. Oschmann and L. M. Stepp (eds.), Proc. SPIE 4837, 2002.
[2]A. Wilson ed., “The Duty and Molecular Universe,” ESA Conf Proc. SP-577, European Space Agency Publ. Div., Nordwijk, The Netherlands, 2005.
[3]H. A. Wootten ed., “Science with the Atacama Large Millimeter Array,” ASP Conf Proc. Vol. 235, San Francisco, USA, 2001.
[4] Atacama Large Millimeter Sub-millimeter Array, 2009,
Available: http://www.alma.nrao.edu/
[5] W. M. Keck Observatory, 2009, Available: http://www.keckobservatory.org/
[6] The Hubble Space Telescope, 2009, Available: http://hubble.nasa.gov/
[7]Alessandro Sozzetti, David Yong, Bruce W. Carney, John B. Laird, David W. Latham, and Guillermo Torres, “Chemical Composition of the Planet-Harboring Star TrES-1,” Astronomical Journal, Dec. 2005.
Available: http://arxiv.org/abs/astro-ph/0512510.
[8]N. Shirai and M. Ebihara, “Chemical composition of lherzolitic shergottites Yamato 000097,” Meteorite Newsletter 14, No. 1, National Institute of Polar Research, Tokyo, Japan, 2006.
[9]P. P. Papadopoulos, R. J. Ivison, C. L. Carilli, and G. F. Lewis, “Molecular gas in the distant universe: the case of APM 08279+5255,” Nature, 409, 58, 2001.
[10] C. L. Carilli et al., “A molecular Einstein ring,” Science, 300, 773, 2003.
[11]F. Walter, F. Bertoldi, C. Carilli et al., “Molecular Gas in the Host Galaxy of a Quasar at Redshift z=6.42,” Nature, 424, 406, 2003.
[12]Mohit Joshi, “Detection of extra solar planet’s atmosphere might help in finding extraterrestrial life,” 2007, Available: http://www.topnewa.in/
[13]D. Sudarsky, A. Burrows, and P. Pinto, “Albedo and Reflection Spectra of Extrasolar Giant Planets,” The Astrophysical Journal, 538, pp. 885-903, 2000.
[14]D. Sudarsky, A. Burrows, and I. Hubeny, “Theoretical Spectra and Atmospheres of Extrasolar Giant Planets,” The Astrophysical Journal, 588 (2), pp. 1121-1148, 2003.
[15] David L. Lambert, Seth Redfield, “Astronomer detects atmosphere of extra-solar planet,” University of Texas at Austin, Dec. 2007, Available: http:// www.physorg.com/ news116259172.html.
[16]Andrew J. R. Prentice, “Origin and chemical composition of the inner solar system,” Publications of Astronomical Society of Australia 23(1), pp. 1-11, March 2006.
[17]T. Encrenaz, “The chemical atmospheric composition of the giant planets,” Earth,Moon, and Planets, Springer Netherlands, Vol. 67, No. 1-3, pp. 77-78, 2004.
[18]C. L. Carilli, “Multifrequency Observations of Cygnus A and the Physics of Powerful Radio Galaxies,” Ph.D. Dissertation, Massachusetts Institute of Technology, USA, 1989.
[19]C. L. Carilli and D. E. Harris, Cygnus A: Study of a Radio Galaxy, Cambridge University Press, Cambridge, UK, 1996.
[20]B. R. McNamara et al., “The heating of gas in a galaxy cluster by X-ray cavities and large-scale shock fronts,” Nature, 433, 45, 2005.
[21]F. Walter, F. Bertoldi, C. Carilli et al., “Molecular Gas in the Host Galaxy of a Quasar at Redshift z = 6.42,” Nature, 424, 406, 2003.
[22] Maiolino R. et al., “Molecular gas in QSO host galaxies at z > 5,” A&A letters press, 2007.
[23]Y. Gao, C. Carilli, and P. Solomon, “HCN Observations of dense star forming gas in high redshift galaxies,” ApJ, 660, L93, 2007.
[24]B. McNamara et al., “The starburst in the Abell 1835 cluster central galaxy,” ApJ, 648, 164, 2006.
[25]C. Carilli et al., “A search for dense molecular gas in high redshift IR-luminous galaxies,” ApJ, 618, 586, 2005.
[26]E. Perlman et al., “The Apparent Host Galaxy of PKS 1413+135: Hubble Space Telescope, ASCA, and Very Long Baseline Array Observation,” AJ, 124, 240, 2002.
[27]L. Pentericci et al., “VLA Radio Continuum Observations of a New Sample of High Redshift Radio Galaxies,” A&A (supp), 145, 121, 2000.
[28]C. L. Carilli, “Radio observations of the first luminous objects during cosmic reionization,” in The Cool Universe, ed. D. Alloin, ASPC, 334, 50, 2004.
[29] C. L. Carilli, “X-ray observations of high redshift radio galaxies,” New Astro. Rev., 47, 231, 2003.
[30]K. Y. Frcd Lo, “ALMA and Sub-millimeter-wave Astronomy,” Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, Shanghai, China, page 3-3, Sept. 2006.
[31]Carilli et al., “Studying the first galaxies with ALMA,” in Science with ALMA: a new era for Astrophysics, ed. R. Bachiller, Springer, Berlin, 2007.
[32]Hitoshi Kiuchi, Tetsuya Kawanishi et al., “Photonic Millimeter-wave Generation Developments for the ALMA Radio Telescope,” National Astronomical Observatory of Japan, Tokyo, pp. 737-738, 2007.
[33]C. L. Carilli, “Studies of cosmic first light using ALMA,” Science with ALMA, J. Cernicharo (ed.), Springer, 2006.
[34] K. Y. Frcd Lo, “ALMA and Sub-millimeter-wave Astronomy,” Joint 31th Intl. Conf. on Infrared Millimeter Waves & 14th Intl. Conf. on Terahertz, pp. 18-22, Sep. 2006.
[35] Klaus Willmeroth, Uwe Mutzberg, “Fast Swiching Modes at the 12m ALMA Telescope,” American Control Conference, Portland, OR, USA, pp.3770-3772, June 8-10, 2005.
[36] C. L. Carilli, “ALMA: Galaxies and AGN,” in Dusty - ALMA and Hershel, ed. A. Wilson, ESA publication (SP-577), p. 47, 2004.
[37] C. L. Carilli, “ALMA calibration – example of scientific impact,” ALMA memo 492, 2004.
[38]M. Holdaway, C. L. Carilli, and F. Bertoldi, “ALMA Calibration Source Counts at 250 GHz,” ALMA memo 805, 2004.
[39]M. Holdaway, C. Carilli, A. Weiss, and F. Bertoldi, “Estimating calibrator counts at 250 GHz using MAMBO observations of flat spectrum quasars,” ALMA memo 545, 2005.
[40] C. L. Carilli, R. A. Perley, “Holography status,” VLA Test memo 224, 2003.
[41] C. L. Carilli, R. Broilo, “Encoder upgrade at the VLA: Mid-term update,” VLA Test memo 223, 2002.
[42] Z. Wang, M. Takeda, and Y. Uzawa “Development of low-noise SIS mixer with NbN technique for ALMA Band 10” IEEE Joint 31th Intl. Conf. on Infrared and Millimeter Waves & 14th Intl. Conf. on Teraherts Electronics, p.349, 2006.
[43]Masanori Takinorieda, Yosh Uzawa, and Zhen Wang, “SIS Mixer Based on NbN Techniques for ALMA Band 10,” IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, Vol. 17, No. 2, pp.359-362, June 2007.
[44] S. Claude, P. Dindo et al., “The Band 3 Receiver(84-116 GHz) for ALMA,” IEEE Joint 30th Intl. Conf. on Infrared and Millimeter Waves & 13th Intl. Conf. on Teraherts Electronics, pp.407-408, 2005.
[45]A. M. Baryshev, R. Hesper et al., “Design and Performance of the 600-720 GHz ALMA Band 9 Cartridge,” IEEE Joint 30th Intl. Conf. on Infrared and Millimeter Waves & 13th Intl. Conf. on Teraherts Electronics, pp.70-71, 2005.
[46]L. Samoska, E. Bryerton et al., “Medium Power Amplifiers Covering 90-130 GHz for ALMA Telescope Local Oscillators,” Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA. pp.1583-1586, 2005.
[47]S. V. Shitov, O. V. Koryukin et al., “Study on SIS Mixers for ALMA Band-10,” Symposium Proceedings, Kharkov, Ukraine, pp.219-221, June 25-30, 2007.
[48]J. Zmuidzinas and P. L. Richards, “Superconducting detectors and mixers for millimeter and submillimeter astrophysics,” Proc. IEEE, vol. 92, N0. 10, pp. 1597-1616, Oct. 2004.
[49]Wenlei Shan, Takashi Noguchi, Shengcai Shi, and Yutaro Sekimoto, “Design and Development of SIS Mixer for ALMA Band 8,” IEEE Transactions on Applied Superconductivity, Vol. 15, No. 2, pp. 503-506, 2005.
[50]W. L. Shan, M. J. Wang, S. C. Shi, Y. Irimajiri, and T. Noguchi, “An anomalous peak on intermediate frequency response of superconductor-insulator- superconductor mixers and its effect on mixing performance,” Japanese Journal of Applied Physics, vol. 43, pp. L617-L619, 2004.
[51]S. Claude, P. Dindo et al., “The Band 3 Receiver (84-116 GHz) for ALMA,” Joint 30th Intl. Conf. on Infrared and Millimeter Waves & 13th Intl. Conf. on Terahertz Electronics, pp. 407-408, 2005.
[52]P. Dindo et al., “Design and Characterization of Two Sideband SIS Mixer RF Hybrids for the Band 3 Receiver (84-116),” 30th Intl. Conf. on Infrared and Millimeter Waves, Williamsburg, USA, September 19-23, 2005.
[53]A. M. Baryshev et al., “Design and Performance of the 600-720 GHz ALMA Band 9 Cartridge,” Joint 30th Intl. Conf. on Infrared and Millimeter Waves & 13th Intl. Conf. on Terahertz Electronics, pp. 70-71, 2005.
[54]Masanori Takeda, Yoshinori Uzawa, and Zhen Wang, “SIS Mixers Based on NbN Techniques for ALMA Band 10,” IEEE Transactions on Applied Superconductivity, Vol. 17, No. 2, pp. 359-362, June, 2007.
[55]Masanori Takeda, Yoshinori Uzawa, and Zhen Wang, “Waveguide-type SIS receiver using all-NbN Technique,” IEIC Trans. Electron., Vol. E89-C, No. 2, pp. 162-169, 2006
[56] Wenlei Shan, Shengcai Shi, Teruhiko Matsunaga, Manabu Takizawa, Akira Endo, Takashi Noguchi, and Yoshinori Uzawa, “Design and Development of SIS Mixer for ALMA Band 10,” IEEE Transactions on Applied Superconductivity, Vol. 17, No. 2, pp. 363-366, 2007.
[57]W. L. Shan, S. Asayama, M. Kamikura, T. Noguchi, S. C. Shi, and Y. Sekimoto, “A 385-500 GHz low noise superconductor-insulator-superconductor mixer for ALMA band 8” IEIC Trans. Electron., Vol. E89-C, pp. 170-176, 2006.
[58]Sergey V. Shitov et al., “Design of Balanced Mixers for ALMA Band-10,” IEEE Transactions on Applied Superconductivity, Vol. 17, No. 2, pp. 347-350, 2007.
[59]A Baryshev, M Carter, M Candotti, N Trappe, and J. A Muephy, “Verification of the optical design for Band 9 of the ALMA receiver,” Joint 29th Intl. Conf. on Infrared and Millimeter Waves & 12th Intl. Conf. on Terahertz, pp. 769-770, 2004.
[60]James W. Lamb, “Low-Noise, High-Efficiency Optics Design for ALMA Receivers,” IEEE Transactions on Antennas and Propagation, Vol. 51, No. 8, pp. 2035-2047, 2003.
[61]F. P. Mena, A. M. Baryshev, J. Kooi, C. F. J. Lodewijk, G. Gerlofsma, R. IIesper, and W. Wild, “Side-band-separating heterodyne mixer for band 9 of ALMA,” IEEE Joint 31th Intl. Conf. on Infrared and Millimeter Waves & 14th Intl. Conf. on Terahertz, p.522, 2006.
[62]F. P. Mena et al., “Design of a side-band-separating heterodyne mixer for band 9 of ALMA,” IEEE Joint 30th Intl. Conf. on Infrared and Millimeter Waves & 13th Intl. Conf. on Terahertz, pp. 463-464, 2005.
[63] Thomas A. Sebring, Riccardo Giovanelli, Simon Radford, and Jonas Zmuidzinas, “Cornell Caltech Atacama Telescope (CCAT): a 25 m aperture telescope above 5000 m altitude,” California Institute of Technology, Pasadena, CA & Cornell University, Ithaca, NY, 2007. Available: http://www.submm.org/
[64]Minoru Sasaki, Takuya Murase, and Nobuharu Ukita, “Neural Networks Based Identification and Control of a Large Flexible Antenna,” ICCAS, The Shangri-La Hotel, Bangkok, Thailand, August 25-27, 2004.
[65] Simon J. E. Radford, Paul Boynton, and Francesco Melchiorri, “Nutating subreflector for a millimeter wave telescope,” Rev. Sci. Instrum., Vol. 61, No.3, March 1990.
[66]Jacob W. M. Baars, “Characteristics of reflector antenna-Parameters, graphs and formulae for Cassegrain systems with Mathematica expressions for numerical computation,” ALMA Memo 456, NRAO, Tucson, Arizona, USA, April 2003.
[67]J. W. Lamb, “Optimized optical layout for MMA 12-m antennas,” MMA Memo 246, NRAO, January 1999.
[68]Thomas S. Angell, Andreas Kirsch, and Ralph E. Kleinman,“Antenna Control and Optimization”, Proceeding of the IEEE, Vol. 79, No. 10, pp.1559-1568, October 1991.
[69] Wodek Gawronski, “Antenna Control Systems: From PI to H∞”, IEEE Antennas and Propagation Magazine, Vol. 43, No.1, February 2001.
[70]Verica Marinkovic and Branislav Pavic, “The Control of Antenna System in the Radio System of the Special Purpose”, Proceedings of 2005 International Symposium on Intelligent Signal Processing and Communication Systems, pp.709-712, Dec. 2005.
[71]Yevhen Yashchyshyn and Marcin Piasecki, “Improved Model of Smart Antenna Controlled by Genetic Algorithm”, CADSM 2001 Proceedings, Ukraine, pp. 147-150., 2001.
[72] A. R. Skatvold, “Beam Steering Antenna Control Technique”, Microwave Symposium Digest, IEEE MTT-S International, Vol. 81, No.1, pp.422-427, 1981.
[73]Michael L. VanBlaricum and Catherine J. Swann, “Photonic Systems for Antenna Control”, IEEE Proceedings of International Symposium on Signals, Systems, and Electronics, pp.287-290, 1995.
[74] N. Emerson and J. Zivick, “The Design and Manufacture of the ALMA Nutator System,” Technical Specification, Version: A20, NRAO, Virginia, USA, 2006.
[75]Qian Dong and Jianying Xie, “Designing and tuning of PID controllers for a digital DC position servo system,” In Proc.World Congress on Intelligent Control and Automation, Shanghai, Chian, pp.905-908, June 2002.
[76]Zhenyu Yang and Gerulf Pedersen, “Automatic Tuning of PID Controller for a 1-D Levitation System Using a Genetic Algorithm – A Real Case Study,” In Proc. IEEE International Symposium on Intelligent Control, Munich, Germany, pp.3098-3103, October 2006.
[77]K. Kristinsson and G. A. Dumont, “System identification and control using genetic algorithm,” IEEE Trans. Systems, Man and Cybernetics, Vol. 22, No. 5, pp. 1033-1046, 1992.
[78]C. Vlachos, D. Williams, and J. B. Gomm, “Genetic approach to decentralized PI controller tuning for multivariable processes,” IEE Proc. D-Control Theory Applications, Vol. 146, No. 1, pp. 58-64, 1999.
[79]Z. Michalewicz and J. B. Krawezyk, “A modified genetic algorithm for optimal control problems,” Computers and Mathematics with Applications; Vol. 23, No. 12, pp. 83-94, 1992.
[80]C. L. Lin, H. Y. Jan, and N. C. Hsieh, “GA-based multiobjective PID control for a linear brushless DC motor,” IEEE/ASME Trans. Mechatronics; Vol. 8, No. 1, pp. 56-65, 2003.
[81]P. Zhang, M. Yuan, and H. Wang, “Self-tuning PID based on adaptive genetic algorithms with the application of activated sludge aeration process,” In Proc. World Congress on Intelligent Control and Automation, Dalian, China, pp. 9327-9330, 2006.
[82]H. Yunan and B. Qu, “Application of Iterative Learning Genetic Algorithms for PID Parameters Auto-Optimization of Missile controller,” In Proc. World Congress on Intelligent Control and Automation, Dalian, China, pp. 3435-3439, 2006.
[83]F. A. Mohamed and H. N. Koivo, “Diesel engine systems with genetic algorithm self tuning PID controller,” In Proc. International Conference on Future Power Systems, Amsterdam, Netherlands, pp. 1-5, 2005.
[84]R. Singh and I. Sen, “Tuning of PID controller based AGC system using genetic algorithms,” In Proc. IEEE Region 10 Conference, Chiang Mai, Thailand, pp. 531-534, 2004.
[85]D. H. Kim, “Comparison of PID controller tuning of power plant using immune and genetic algorithms,” In Proc. IEEE International Symposium on Computational Intelligent for Measurement Systems and Applications, Lugano, Switzerland, pp. 169-174, 2003.
[86] J. M. Payne, “Switching Subreflector for Millimeter Wave Radio Astronomy,” Rev. Sci Instr. 47, pp. 222-223, 1976.
[87] H. C. Lo, ed., Artificial Neural Network--Application of MATLAB, Gau Lih Book Co., Ltd. Press, Taiwan, R.O.C., 2005.
[88]K. J. Astrom and B. Wittenmark, Adaptive Control, Addison-Wesley Publishing Company, Inc., second edition, 1995.
[89]J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice-H, Inc., Englewood Ciffs, N.J., 1991.
[90]Wilson J. Rugh, “Analytical Framework for Gain Scheduling,” IEEE Control Systems Magazine, Vol. 11, No.1, pp. 79-84, 1991.
[91] P. Cheimets, “Design and test of the submillmeter array (SMA) chopping subreflector,” in Amplitude and Intensity Spatial Interferometry Ⅱ, J. B. Breckinridge, ed., Proc. SPIE 2200, pp. 347-358, 1994.
[92]James W. Lamb, “Optimized Optical Layout for MMA 12-m Antennas,” MMA Memo 246, NRAO, 1999.
[93] D. P. Magee, “Optimal Filtering to Improve Performance in Hard Disk Drives: Simulation Results,” American Control Conference, Vol. 1, pp. 71-75, 1999.
[94] J. S. Wayne and J. C. Timothy, “Constant-Current Versus Constant-Voltage VCM Drive Analysis,” IEEE Transactions on Magnetics, Vol. 26, No.3, pp. 1217-1224, 1990.
[95] H2W Technologies Inc., Valencia, CA, USA, 2009,
Available: http://www.h2wtech.com/
[96]Mick Brook, Larry D’Addario, and Ralph Marson, “ALMA Monitor and Control Bus Interface Specification,” ALMA-70.35.10.03-001-B-SPE, NRAO, 2006.
[97]N. Emerson, “Nutator Interface and Clearance Volume,” ANTD-35.03.00.00-004-A, NRAO, Tucson, AZ, USA, 2005.
[98]Ralph Marson, “ALMA Environmental Specification,” ALMA-80.05.02.00-001- B-SPE, NRAO, 2006.
[99]Mick Brook and Ralph Marson, “Antenna/Antenna Nutator and Computing/ Control Software,” ALMA-35.02.00.00-70.35.20.00-A-ICD, 2005.
[100] J. M. Payne and W. P. Shillue, “Photonic Techniques for Local Oscillator Generation and Distribution in Millimeter-Wave Radio Astronomy,” in Proc. International Topical Meeting on Microwave Photonics, pp. 9-12, 2002.
[101] R. C. Dorf, Electric Circuits, 4th ed., John Wiley & Sons, New York, 1999.
[102]I. Cochin, Analysis and Design Dynamic Systems, Addison-Wesley Publishing Co., Reading, MA, 1997.
[103] J. W. Nilsson, Electric Circuit, 5th ed., Addison-Wesley, Reading, Mass., 1996.
[104]J. E. Simon and K. R. Rebecca, “ALMA Nutator Dynamics,” NRAO Technical Memorandum 666, Tucson, pp. 8-10, 2002.
[105]Utkin, Vadim I., Sliding modes in control and optimization, Springer, Communications and Control Engineering Series, Berlin, 1992.
[106]Slotine, E. Jean-Jacques, and Weiping Li, Applied Nonlinear Control, Prentice-Hall, New Jersey, USA, 1991.
[107] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control, Prentice Hall, Upper Saddle River, 1996.
[108] G. J. Balas, J. C. Doyle, K. Glover, A. Packard, and R. Smith, μ-Analysis and Synthesis Toolbox, The MathWorks Inc., Natick, MA, 1998.
[109] T. Matsuo and K. Nakano, “A parametrization of all stabilizing compensators with a static output feedback in the central part and its application to PID controller,” in Proc. 13th IFAC World Congress, pp. 229-234, 1996.
[110]J. Doyle, B. Francis and A. Tannenbaum, Feedback Control Theory, Macmillan Publishing Company, 1992.
[111]Lu Xia and Willian Messner, “Loop Shaping Robust Performance Using Rbode Plot,” American Control Conference, Portland, OR, USA, June 8-10, pp. 2869-2874, 2005.
[112] H. Y. Jan, C. L. Lin, and T. S. Hwang, “Self-Organized PID Control Design using DNA Computer Approach,” Journal of the Chinese Institute of Engineers, Vol. 29, No. 2, pp. 252-261, 2006.
[113]N. Nichols, W. Manger and E. Krohn, General Design Principles of Servomechanisms, in James, H., N. Nichols and R. Phillips (ed.), Theory of servo mechanisms, McGraw-Hill, New York.
[114] J. G. Ziegler and N. B. Nichols, “Optimum Settings for Automatic Controllers,” Trans. ASME, pp. 759-768, 1942.
[115]K. S. Narendra and K. Parthasarathy, “Identification and control of dynamics systems using neural networks,” ICASE Journal, Vol. 1, No. 1, pp. 123-126, 1996.
[116] G. Stein, “Adaptive flight control--A pragmatic view,” in Applications of Adaptive Control, K. S. Narendra and R. V. Monopoli, Eds. New York: Academic, 1980.
[117] K.J. Ǻström and B. Wittenmark, Adaptive Control, Addison-Wesley, 1989.
[118]G. Avanzolini, P. Barbini, and A. Cappello, “Sensitivity Analysis of the Systemic Circulation with View to Computer Simulation and Parameter Estimation,” Journal of Biomed. Eng., pp. 861-867, 1989.
[119] Y. Wang, J. Wang, and R. X. Wang, “Performance Improvement of VAV System in the Method Diagonal Matrix Decoupling Control,” China Academic Journal Electronic Publishing House, 23(6):3-7, 2004.
[120] MATLAB, MATLAB Reference Guide, The Math Works, Inc., Natick, Mass, USA, 2006.
[121]L. J. Fogel, , A. J. Owens, and M. J. Walsh, Artificial Intelligence through Simulated Evolution, John Wiley and Sons, New York, N.Y. , 1966.
[122]D. B. Fogel, and J. W. Atmar, “Evolutionary Programming―Evolutionary Programming Soc.,” Proc. 1st Annu. Conf., La Jolla, CA, 1992.
[123]I. Rechenberg, Cybernetic Solution Path of an Experimental Problem, Tech. Rep., Farmborough, Hants, Germany, 1995.
[124]H. P. Schwefel, Evolutionsstrategie und numerische Optimierung, Ph.D. dissertation, Tech. Univ. Berlin, Berlin, Germany, 1975.
[125]J. H. Holland, Adaptation in Natural and Artificial Systems, Ann Arbor, MI: University of Michigan Press, 1975.
[126]R. Caponetto, L. Fortuna, S. Graziani, and M. Xibilia, “Genetic Algorithms and Applications in System Engineering: a Survey,” Trans Inst. Meas. Control, Vol. 15, pp. 143-156, 1993.
[127]D. Goldberg, Genetic Algorithms in Search Optimization, and Machine Learning, Addison-Wesley, 1989.
[128] G. M. L. Gladwell, “Vibration control of active structure,” Sol. Mech. Appl., Vol. 50, pp. 65-66, 1997.
[129] K. Astrom and T. Hagglund T., PID Controllers: Theory, Design, and Tuning, NC: Instrument Society of America, 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔