跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 07:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖翊傑
研究生(外文):Yi-Jie Liao
論文名稱:以化學轉變法合成膠體Bi2(S1-xSex)3奈米棒與半導體能隙調控
論文名稱(外文):Chemical-Converted Synthesis of Colloidal Guanajuatite Bi2(S1-xSex)3 Nanorods with Tunable Optical Band Gaps
指導教授:蔣瑞光朱清俊
指導教授(外文):Ray-Kuang ChiangChing-Jinug Chu
學位類別:碩士
校院名稱:遠東科技大學
系所名稱:機械研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:102
中文關鍵詞:硫化鉍熱裂解奈米棒
外文關鍵詞:Bismuth Sulfidesthermal decomposition methodnanorods
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在探討以醋酸鉍及硫粉為反應物以油胺為溶劑及界面保護分子在170℃下以熱裂解方法合成出粒徑均勻之硫化鉍(Bi2S3)奈米棒,其棒的長度為125 nm直徑為20 nm。若上述反應添加油酸鈉時則會形成較為細長奈米棒,其棒的長度為372 nm直徑約為10 nm。另外,由實驗結果發現熱裂解反應中添加不同量的硫粉,可以控制Bi2S3奈米棒產物之尺寸,一系列不同尺寸之奈米棒經由此法獲得,其棒的長度由52 nm至125 nm直徑12.5 nm至20 nm。經由吸收光譜之吸收邊量測顯示這一系列的奈米棒具有可調變的能隙寬度由1.42 eV到1.63 eV ,相對於Bi2S3塊材之能隙為1.3 eV,顯示這一系列的奈米棒具有能隙藍移的效果。此外,使用油醇或Oleyl Amide取代油胺,產物會轉變成奈米花。其花尺寸為0.5μm。
利用上述合成粒徑均Bi2S3奈米棒為板模,將其與不同濃度的硒/ODE(1-Octadecene)溶液於200℃下反應,發現可生成Bi2(S1-XSeX)3 (X = 0.08~0.92)奈米棒,經由吸收光譜之吸收邊量測顯示這一系列的奈米棒具有可調變的能隙寬度由1.37 eV到1.02 eV 。 (Bi2Se3塊材之能隙為0.35 eV )。
此外,以TEM之EDS以Line scanning之方式得知奈米棒知兩端有較高之硒濃度,顯示硒可能經由奈米棒之兩端逐步擴散奈米棒之全體。
Size-uiformed Bi2S3 nanorods (125 nm x 20 nm) have been synthesized via the reaction of bismuth acetate and elemental sulfur in oleylamine at 170 oC. Addition of sodium oleate in the above reaction can lead to more slender nanorods (372 nm x 10 nm). The relative ratio of sulfur to bismuth in the same amount of oleylamine has an effect on the sizes of the products. Higher ratio gives larger nanorods. A series of nanorods ranged from 52 nm to 125 nm in length and 12.5 nm to 20 nm in diameter can be obtained. The absorption spectra of them indicate a blue-shifted and tunable band-gap width from 1.42 to 1.63 eV with respect to the bulk value of 1.3 eV. Replace ing the solvent of oleyamine with oleylalcohol or oleylamide, star-shaped nanoflowers are obtained.
The obtained nanorods in the above-described reactions can be further treated with Se/1-ODE solutions of different concentration to produce Bi2(S1-xSex)3 (guanajuatite) nanorods. The series of guanajuatite nanorods obtained also show tunable band-gap widths (1.37 eV to 1.02 eV, 0.35 eV for the bulk Bi2Se3) with the variation in compositions in the absorption spectra. From the EDS study of the intermediates of the above reactions, the Se concentration is higher at the two ends of the nanorods indicates the diffusion may be preferentially along the b-axis, which is consistent with its chain structures.
誌謝 I
摘要 III
Abstrant IV
目錄 V
表目錄 IX
圖目錄 X
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
第二章 理論基礎與文獻回顧 3
2-1 半導體奈米粒子之定義與特性 3
2-1-1 半導體材料分類 4
2-1-2 非侷限型(Unlocalized Type)發光材料 6
2-1-3 侷限型(Localized Type)發光材料 6
2-1-4 化合物半導體奈米粒子之光物理(Photophysics)特性 7
2-2 奈米粒子之物理性質 8
2-2-1 小尺寸效應 8
2-2-2 表面效應 8
2-2-3 量子穿遂效應 10
2-2-4 量子尺寸效應 10
2-3 奈米粒子之合成與穩定性 12
2-3-1 奈米粒子之合成 12
2-3-2 膠體奈米粒子之穩定性 17
2-4 奈米粒子之成核與成長 18
2-4-1 La Mer 高均勻度膠體粒子成長模型 19
2-4-2 成核與成長理論 19
2-4-3 成核與成長機制 20
2-4-4 異向成長機制 21
2-4-5 自組裝 ( Self-Assembly ) 26
2-5 硫化鉍之結構 27
2-6 文獻回顧 30
第三章 實驗方法與步驟 34
3-1 實驗流程 34
3-1-1 實驗流程圖 35
3-1-2 實驗裝置與設備圖 36
3-2 實驗藥品 37
3-2-1 藥品化學結構圖 38
3-3 實驗步驟 40
3-3-1 硫化鉍奈米棒之合成 40
3-3-2 硫化鉍奈米細棒之合成 40
3-3-3 硫化鉍奈米花之合成 41
3-3-4 硫化鉍摻雜硒化物之合成 42
3-4 儀器鑑定之材料特性分析 43
第四章 結果與討論 52
4-1 硫化鉍之合成條件 52
4-1-1 硫化鉍(Bi2S3)奈米棒之合成 53
4-1-2 硫化鉍(Bi2S3)奈米棒之合成參數變化 58
4-1-3 Sodium Oleate對硫化鉍(Bi2S3)之影響 62
4-1-4 界面活性劑對硫化鉍(Bi2S3)奈米棒之影響 66
4-2 硫化鉍摻雜硒化物之合成 74
4-2-1 硫化鉍(Bi2S3)摻雜硒化物之合成參數變化 74
4-2-2 硫化鉍(Bi2S3)摻雜硒化物之EDS分析 79
4-3 硫化鉍之光學特性 86
4-3-1 硫化鉍(Bi2S3)光學性質研究 86
4-3-2 硫化鉍(Bi2S3)奈米棒合成之參數變化光學性質研究 88
4-3-3 Sodium Oleate對硫化鉍(Bi2S3)之光學性質研究 90
4-3-4 界面活性劑對硫化鉍(Bi2S3)之光學性質研究 91
4-3-5 硫化鉍(Bi2S3)摻雜硒化物光學性質研究 93
第五章 結論 96
参考文獻 97
自述 102
[1] 林盈熙,第二屆奈米工程暨微系統技術研討會論文集,(1999), pp. 2-31,台北
[2] 徐國財,張立德,納米複合材料,化學工業出版(2002)
[3] 馬振基,奈米材料科技原理與應用,全華科技圖書出版(2005)
[4] P. Balaz, Z. Bastl, T. Havlik and I. Toth, Characterization of Mechanosynthetized Sulphides, Materials Science Forum, 217 (1997) 235.
[5] 張立德,奈米材料,五南圖書出版(2002)
[6] 尹邦躍,奈米時代,五南圖書出版(2002)
[7] 馬遠榮,低維奈米材料,科學發展,382期,(2004), pp.72-75
[8] 徐國財,張立德,奈米複合材料,五南圖書出版(2003)
[9] A. P. Alivisatos, Semiconductor Clusters Nanocrystals and Quantum Dots, Science, 271 (1996) 933.
[10] 蔡信行,孫光中,奈米科技導論-基本原理及運用,新文京開發出版 (2004)
[11] J. Callister, Materials Science and Engineering an Introduction, 5thed., John Wiley, New York, (2000) 616.
[12] A. D. Neamen, Semiconductor Physics and Devices, 2thed., Mc GrawHill, New York, (1999) 1-25
[13] L. Qi, B. I. Lee and J. M. Kim, Synthesis and Characterization of ZnS Cu Al Phosphor Prepared by a Chemical Solution Method, Journal of Luminescence, 104 (2003) 261.
[14] W. Park, J. S. King, C. W. Neff and C. Liddell, ZnS-Based Photonic Crystals, Phys. Stat. Sol, 229 (2002) 949.
[15] A. P. Greef and H.C. Swart, Quantifying the Cathodoluminescence Generated in ZnS-Based Phosphor Powders, Surf. Interface Anal, 34 (2002) 593.
[16] Y. Y. Chen and J. G. Duh, Luminescent mechanisms of ZnS Cu Cl and ZnS Cu Al Phosphors, Thin Solid Films, 392 (2001) 50.
[17] A. P. Greef and H. C. Swart, Monte Carlo Simulation on The Electron Beam Incident Angle with Spherical Particles Applied to the Energy Loss in ZnS Phosphor Powders, Surf. Interface Anal, 29 (2000) 807.
[18] S. Naka, Phosphor Handbook, CRC press, Florida, (1999) 293.
[19] C. Caizer and Z. Schlett, Dynamic Magnetic Behavior of Fe3O4 Colloidal Nanoparticles, J. Appl. Phys, 92 (2002) 2125.
[20] 曹茂盛,奈米材料導論,學富文化事業(2002)
[21] 高逢時,奈米科技,科學發展,386期,2005年2月,pp.66-71
[22] N. Toshima and T. Yonezawa, Bimetallic Nanoparticles Novel Materials for Chemical and Physical Applications, New J. Chem, 22 (1998) 1179.
[23] 林鴻明,林中魁,奈米科技應用研究與展望,工業材料,179,(2001),pp.84-91
[24] B. H. Kear, Navel Research Revi, Four, (1994) 4-14
[25] H. Gle, Nanocrystalline Materials, Materials Science and
Engineering, 117 (1989) 33.
[26] T. Hyeon and S. S. Lee, Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites Without a Size-Selection Process, J. Am. Chem. Soc, 123 (2001) 12798.
[27] K. C. Grabar, Perparation and Characterization of Au Colliod Monnolayers, Anal. Chem, 67 (1995) 735.
[28] C. D. Bain, Formation of Monolayer Films by the Spontaneous Assembly of Organic Thiols from Solution Onto Gold, J. Am. Chem. Soc, 111 (1989) 321.
[29] H. S. Nalwa, Handbook of Nanostructured Materials and Nanotechnolog, (1999) 1-5
[30] G. Schmid, Cluster and Colloids from Theory to Applications, VCH, Weinheim, (1994)
[31] V. K. Lamer and R. H. Dinegar, Theory Production and Mechanism of Formation of Monodispersed Hydrosols, J. Am. Chem. Soc, 72 (1950) 4847.
[32] C. B. Murry, Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies, Annu. Rev. Mater, 30 (2000) 545.
[33] J. W. Mullin, Crystallizatio Butterworth Heinemann, Boston, (1993)
[34] V. K. Lamer and R. H. Dinegar, Theory Production and Mechanism of Formation of Monodispersed Hydrosols, J. Am. Chem. Soc, 72 (1950) 4847.
[35] W. Smulders and M. J. Montelro, Seeded Emulsion Polymerization of Block Copolymer Core−Shell Nanoparticles with Controlled Particle Size and Molecular Weight Distribution Using Xanthate-Based RAFT Polymerization, Macromolecules, 37 (2004) 4474.
[36] C. B. Murray and D. J. Noms, Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites, J. Am. Chem. Soc, 115 (1993) 8706.
[37] P. D. Cozzoli, T. Pellegrino and L. Manna, Synthesis Properties and Perspectives of Hybrid Nanocrystal Structures, Chem. Soc. Rev, 35 (2006) 1195.
[38] G. M. Whi and B. Grz, Self-Assembly at All Scales, Sciencei, 295 (2002) 2418.
[39] S. Sun and C. B. Murray, Polymer Mediated Self-Assembly of Magnetic Nanoparticles, J. Am. Chem. Soc, 124 (2002) 2884.
[40] S. K. Srivastava , X-ray Diffraction Topographical Studies and Thermal Behavior of Layer-Type CdIn2S4-xSex (1.75 ≤ x ≤ 2.75) and Its Lithium Intercalation Compounds, Chem. Mater, 16 (2004) 4168.
[41] H. Cui and X. Liu, Synthesis of Bi2Se3 Thermoelectric Nanosheets and Nanotubes Through Hydrothermal Co-reduction Method, J. Solid. State. Chem, 177 (2004) 4001.
[42] B. B. Nayak and N. Acharya, Structural Characterization of Bi2−xSbxS3 Films Prepared by the Dip-Dry Method, Thin Solid Films, 105 (1983) 17.
[43] P. A. Kri, Formation of Stoichiometric Bismuth Trisulphide Compound Films, J. Mat. Sci. Lett, 3 (1984) 837.
[44] D. Arivuoli and F. D. Gnanam, Equilibrium Diagrams for Some AB3 (A=Sb, Bi, As and B=Cl, Br, I) Compounds, J. Mate. Sci. Lett, 7 (1985) 22.
[45] Y. N. Xia and P. D. Yang, One-Dimensional Nanostructures Synthesis Characterization and Applications, Adv. Mater, 15 (2003) 353.
[46] X. Yang and X. Wang, Facile Solvothermal Synthesis of Single-Crystalline Bi2S3 Nanorods on a Large Scale, Materials Chemistry and Physics, 95 (2006) 154.
[47] Y. X. Ma and L. Liu, Surfactant-Assisted Solvothermal Synthesis of Bi2S3 Nanorods, Journal of Crystal Growth, 306 (2007) 159.
[48] J. Lu, F. Q. Han and J. X. Yang, Microwave-Assisted Synthesis and Characterization of 3D Flower-Like Bi2S3 Superstructures, Materials Letters, 61 (2007) 2883.
[49] J. Lu, F. Q. Han and J. X. Yang, Preparation of Bi2S3 Nanorods Via a Hydrothermal Approach, Materials Letters, 61 (2007) 3425.
[50] H. X. Liao and H. Wang, Preparation of Bi2S3 Nanorods by Microwave Irradiation, Materials Research Bulletin, 36 (2001) 2339.
[51] Y. Jiang and J. X. Zhu, Rapid Synthesis of Bi2S3 Nanocrystals with Different Morphologies by Microwave Heating, Materials Letters, 60 (2006) 2294.
[52] C. An, S. Wang and Y. Liu, Controlled Creation of Self-Supported Patterns of Radially Aligned One-Dimensional Bi2S3 Nanostructures, Materials Letters, 61 (2007) 2284.
[53] J. Tang and P. A. Alivisatos, Crystal Splitting in the Growth of Bi2S3, Nano Lettles, 6 (2006) 2701.
[54] D. Ari, D. F. Gna and P. Ram, Growth and Microhardness Studies of Chalcogneides of Arsenic Antimony and Bismuth, J Mater Sci. Lett, 7 (1988) 711.
[55] X. Gang and Q. P. Zheng, A Single-Source Approach to Bi2S3 and Sb2S3 Nanorods Via a Hydrothermal Treatment, Crystal Growth & Design, 4 (2004) 513.
[56] L. F. Lundegaardl and T. Balic-Zunic, Crystal Structure and Cation Lone Electron Pair Activity of Bi2S3 Between 0 and 10 GPa, Physics and Chemistry of Minerals, 32 (2005) 578.
[57] 段洪昌,固態物理學,復文書局(1993)
[58] 鮑忠興,劉思謙,近代穿透式電子顯微鏡實務,鼎隆出版(2008)
[59] 林智仁,羅聖全,場發射穿透式電子顯微鏡簡介,工業材料雜誌,201期,(2003),pp.90-98
[60] 陳陵援,儀器分析,三民書局(1993)
[61] 孫逸民,陳玉舜,趙敏勳,謝明學,劉興鑑,儀器分析,全威圖書(1997)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top