[1] 林盈熙,第二屆奈米工程暨微系統技術研討會論文集,(1999), pp. 2-31,台北
[2] 徐國財,張立德,納米複合材料,化學工業出版(2002)
[3] 馬振基,奈米材料科技原理與應用,全華科技圖書出版(2005)
[4] P. Balaz, Z. Bastl, T. Havlik and I. Toth, Characterization of Mechanosynthetized Sulphides, Materials Science Forum, 217 (1997) 235.
[5] 張立德,奈米材料,五南圖書出版(2002)
[6] 尹邦躍,奈米時代,五南圖書出版(2002)
[7] 馬遠榮,低維奈米材料,科學發展,382期,(2004), pp.72-75
[8] 徐國財,張立德,奈米複合材料,五南圖書出版(2003)
[9] A. P. Alivisatos, Semiconductor Clusters Nanocrystals and Quantum Dots, Science, 271 (1996) 933.
[10] 蔡信行,孫光中,奈米科技導論-基本原理及運用,新文京開發出版 (2004)
[11] J. Callister, Materials Science and Engineering an Introduction, 5thed., John Wiley, New York, (2000) 616.
[12] A. D. Neamen, Semiconductor Physics and Devices, 2thed., Mc GrawHill, New York, (1999) 1-25
[13] L. Qi, B. I. Lee and J. M. Kim, Synthesis and Characterization of ZnS Cu Al Phosphor Prepared by a Chemical Solution Method, Journal of Luminescence, 104 (2003) 261.
[14] W. Park, J. S. King, C. W. Neff and C. Liddell, ZnS-Based Photonic Crystals, Phys. Stat. Sol, 229 (2002) 949.
[15] A. P. Greef and H.C. Swart, Quantifying the Cathodoluminescence Generated in ZnS-Based Phosphor Powders, Surf. Interface Anal, 34 (2002) 593.
[16] Y. Y. Chen and J. G. Duh, Luminescent mechanisms of ZnS Cu Cl and ZnS Cu Al Phosphors, Thin Solid Films, 392 (2001) 50.
[17] A. P. Greef and H. C. Swart, Monte Carlo Simulation on The Electron Beam Incident Angle with Spherical Particles Applied to the Energy Loss in ZnS Phosphor Powders, Surf. Interface Anal, 29 (2000) 807.
[18] S. Naka, Phosphor Handbook, CRC press, Florida, (1999) 293.
[19] C. Caizer and Z. Schlett, Dynamic Magnetic Behavior of Fe3O4 Colloidal Nanoparticles, J. Appl. Phys, 92 (2002) 2125.
[20] 曹茂盛,奈米材料導論,學富文化事業(2002)
[21] 高逢時,奈米科技,科學發展,386期,2005年2月,pp.66-71
[22] N. Toshima and T. Yonezawa, Bimetallic Nanoparticles Novel Materials for Chemical and Physical Applications, New J. Chem, 22 (1998) 1179.
[23] 林鴻明,林中魁,奈米科技應用研究與展望,工業材料,179,(2001),pp.84-91[24] B. H. Kear, Navel Research Revi, Four, (1994) 4-14
[25] H. Gle, Nanocrystalline Materials, Materials Science and
Engineering, 117 (1989) 33.
[26] T. Hyeon and S. S. Lee, Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites Without a Size-Selection Process, J. Am. Chem. Soc, 123 (2001) 12798.
[27] K. C. Grabar, Perparation and Characterization of Au Colliod Monnolayers, Anal. Chem, 67 (1995) 735.
[28] C. D. Bain, Formation of Monolayer Films by the Spontaneous Assembly of Organic Thiols from Solution Onto Gold, J. Am. Chem. Soc, 111 (1989) 321.
[29] H. S. Nalwa, Handbook of Nanostructured Materials and Nanotechnolog, (1999) 1-5
[30] G. Schmid, Cluster and Colloids from Theory to Applications, VCH, Weinheim, (1994)
[31] V. K. Lamer and R. H. Dinegar, Theory Production and Mechanism of Formation of Monodispersed Hydrosols, J. Am. Chem. Soc, 72 (1950) 4847.
[32] C. B. Murry, Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies, Annu. Rev. Mater, 30 (2000) 545.
[33] J. W. Mullin, Crystallizatio Butterworth Heinemann, Boston, (1993)
[34] V. K. Lamer and R. H. Dinegar, Theory Production and Mechanism of Formation of Monodispersed Hydrosols, J. Am. Chem. Soc, 72 (1950) 4847.
[35] W. Smulders and M. J. Montelro, Seeded Emulsion Polymerization of Block Copolymer Core−Shell Nanoparticles with Controlled Particle Size and Molecular Weight Distribution Using Xanthate-Based RAFT Polymerization, Macromolecules, 37 (2004) 4474.
[36] C. B. Murray and D. J. Noms, Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites, J. Am. Chem. Soc, 115 (1993) 8706.
[37] P. D. Cozzoli, T. Pellegrino and L. Manna, Synthesis Properties and Perspectives of Hybrid Nanocrystal Structures, Chem. Soc. Rev, 35 (2006) 1195.
[38] G. M. Whi and B. Grz, Self-Assembly at All Scales, Sciencei, 295 (2002) 2418.
[39] S. Sun and C. B. Murray, Polymer Mediated Self-Assembly of Magnetic Nanoparticles, J. Am. Chem. Soc, 124 (2002) 2884.
[40] S. K. Srivastava , X-ray Diffraction Topographical Studies and Thermal Behavior of Layer-Type CdIn2S4-xSex (1.75 ≤ x ≤ 2.75) and Its Lithium Intercalation Compounds, Chem. Mater, 16 (2004) 4168.
[41] H. Cui and X. Liu, Synthesis of Bi2Se3 Thermoelectric Nanosheets and Nanotubes Through Hydrothermal Co-reduction Method, J. Solid. State. Chem, 177 (2004) 4001.
[42] B. B. Nayak and N. Acharya, Structural Characterization of Bi2−xSbxS3 Films Prepared by the Dip-Dry Method, Thin Solid Films, 105 (1983) 17.
[43] P. A. Kri, Formation of Stoichiometric Bismuth Trisulphide Compound Films, J. Mat. Sci. Lett, 3 (1984) 837.
[44] D. Arivuoli and F. D. Gnanam, Equilibrium Diagrams for Some AB3 (A=Sb, Bi, As and B=Cl, Br, I) Compounds, J. Mate. Sci. Lett, 7 (1985) 22.
[45] Y. N. Xia and P. D. Yang, One-Dimensional Nanostructures Synthesis Characterization and Applications, Adv. Mater, 15 (2003) 353.
[46] X. Yang and X. Wang, Facile Solvothermal Synthesis of Single-Crystalline Bi2S3 Nanorods on a Large Scale, Materials Chemistry and Physics, 95 (2006) 154.
[47] Y. X. Ma and L. Liu, Surfactant-Assisted Solvothermal Synthesis of Bi2S3 Nanorods, Journal of Crystal Growth, 306 (2007) 159.
[48] J. Lu, F. Q. Han and J. X. Yang, Microwave-Assisted Synthesis and Characterization of 3D Flower-Like Bi2S3 Superstructures, Materials Letters, 61 (2007) 2883.
[49] J. Lu, F. Q. Han and J. X. Yang, Preparation of Bi2S3 Nanorods Via a Hydrothermal Approach, Materials Letters, 61 (2007) 3425.
[50] H. X. Liao and H. Wang, Preparation of Bi2S3 Nanorods by Microwave Irradiation, Materials Research Bulletin, 36 (2001) 2339.
[51] Y. Jiang and J. X. Zhu, Rapid Synthesis of Bi2S3 Nanocrystals with Different Morphologies by Microwave Heating, Materials Letters, 60 (2006) 2294.
[52] C. An, S. Wang and Y. Liu, Controlled Creation of Self-Supported Patterns of Radially Aligned One-Dimensional Bi2S3 Nanostructures, Materials Letters, 61 (2007) 2284.
[53] J. Tang and P. A. Alivisatos, Crystal Splitting in the Growth of Bi2S3, Nano Lettles, 6 (2006) 2701.
[54] D. Ari, D. F. Gna and P. Ram, Growth and Microhardness Studies of Chalcogneides of Arsenic Antimony and Bismuth, J Mater Sci. Lett, 7 (1988) 711.
[55] X. Gang and Q. P. Zheng, A Single-Source Approach to Bi2S3 and Sb2S3 Nanorods Via a Hydrothermal Treatment, Crystal Growth & Design, 4 (2004) 513.
[56] L. F. Lundegaardl and T. Balic-Zunic, Crystal Structure and Cation Lone Electron Pair Activity of Bi2S3 Between 0 and 10 GPa, Physics and Chemistry of Minerals, 32 (2005) 578.
[57] 段洪昌,固態物理學,復文書局(1993)
[58] 鮑忠興,劉思謙,近代穿透式電子顯微鏡實務,鼎隆出版(2008)
[59] 林智仁,羅聖全,場發射穿透式電子顯微鏡簡介,工業材料雜誌,201期,(2003),pp.90-98
[60] 陳陵援,儀器分析,三民書局(1993)
[61] 孫逸民,陳玉舜,趙敏勳,謝明學,劉興鑑,儀器分析,全威圖書(1997)