(3.236.122.9) 您好!臺灣時間:2021/05/14 06:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:林君怡
研究生(外文):Chun-Yi Lin
論文名稱:利用乙型-澱粉蛋白刺激人類微小膠細胞中iNOS基因表現以為神經保護先導藥物篩選模式
論文名稱(外文):Inducible Nitric Oxide Synthase Gene Expression in Human Microglia Cells Induced with β-Amyloid as A Model for Screening Neuron Protection Lead Compounds
指導教授:郭育綺郭育綺引用關係
指導教授(外文):Yuh-Chi Kuo
學位類別:碩士
校院名稱:輔仁大學
系所名稱:生命科學系碩士班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:69
中文關鍵詞:乙型-澱粉蛋白乙型-澱粉蛋白
外文關鍵詞:ducible Nitric Oxide SynthaseMicroglia Cellsβ-Amyloid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
阿滋海默症(Alzheimer's disease ; AD)是一種神經退化性的疾病,阿茲海默症臨床症狀包括記憶的喪失、認知的失調,此疾病好發於老年時期。而阿茲海默症患者,不管是遺傳性的或自發性的都會發現由乙型-澱粉蛋白(β-amyloid;Aβ)沉積於病患腦中。Aβ主要是由細胞膜上的澱粉樣蛋白前驅蛋白 ( Amyloid precursor protein;APP ) 酵素切割後產生39到 43個胺基酸大小的片段。由Aβ聚集形成fibrillar Aβ會刺激中樞神經系統中的微小膠細胞(microglia cell)活化並吞噬這些fibrillar Aβ,同時高度表現inducible nitric oxide synthase ( iNOS ) 產生神經毒性物質nitric oxide ( NO ) 以及發炎性細胞激素如TNF-α 與 IL-1β等。目前在阿茲海默症的治療策略包括利用non-steroidal anti-inflammatory drugs ( NSAIDs ) 抑制 Aβ 所誘導的發炎反應及 NO 的釋放,也有研究指出,使用抗發炎的藥物可預防阿茲海默症的發生,因此研發能抑制 iNOS 基因表現之化合物,將有助於改善阿茲海默症先導藥物之開發。此研究中利用人類微小膠細胞株 ( C13NJ cells ) 為標的細胞,以 Aβ25-35 刺激C13NJ細胞,誘使其表現 iNOS mRNA 以建立篩藥模式,並利用由本校化學系周善行教授提供之合成化合物 ( No.2642 – No.2648 ) 進行藥物篩選,目前得到下列結果: (1)以20 μM Aβ25-35 活化C13NJ 細胞2小時,利用Reverse transcription-polmerase chain reaction ( RT-PCR ) 方法,可明顯偵測到 iNOS mRNA 於 C13NJ 細胞中表現;(2)在20 μM Aβ25-35 刺激12小時後,利用Western blotting方法,可偵測到 iNOS 蛋白質於 C13NJ 細胞中表現;(3)以 Aβ25-35 刺激 iNOS 基因表現為篩藥模式,目前發現編號 No.2644、 No.2647 及 No.2648 之化合物,能降低 iNOS mRNA 於C13NJ 細胞中表現;(4)藉由Alamar blue方法分析,No.2644、 No.2647及 No.2648 不具有細胞毒性;(5)於低、中、高不同濃度情況下,No.2644 與 No.2648 可劑量性降低由Aβ25-35 所誘導的 iNOS 基因於 C13NJ 細胞中之表現;(6)為了瞭解 Aβ25-35 是經由哪些訊息傳導因子活化而刺激 iNOS 基因於 C13NJ 細胞表現,以做為探討三個合成化合物作用機轉之依據,實驗中以 Aβ25-35 刺激情況下,加入Phosphoinositide 3-kinase ( PI3K )、NF-κB 與 Mitogen activated protein kinases ( MAPK ) 等抑制劑於 C13NJ 細胞中,檢測 iNOS mRNA 表現量是否受影響。結果顯示, p38、JNK 與 NF-B 抑制劑可降低 iNOS 基因之表現,得知 Aβ25-35 主要經由 p38、JNK 與 NF-B 活化途徑,而促使了iNOS 基因於 C13NJ 細胞中表現;(7) 為了確認Aβ25-35 是否能活化 C13NJ 細胞中 NF-B 訊息傳導途徑,實驗中以 Western blotting 偵測 IB 蛋白質之降解,結果發現 Aβ25-35 於刺激 C13NJ 細胞 20 分鐘後,能引起 IB 蛋白質顯著降解; (8)為了確認Aβ25-35 是否能活化 C13NJ 細胞中 MAPK 訊息傳導途徑,實驗中以 Western blotting 進行偵測,結果發現 Aβ25-35 於刺激 C13NJ 細胞 20 分鐘後,皆能引起 p38、JNK 與 ERK 之活化。(9)實驗中以 Western blotting偵測化合物 NO.2644及NO.2648 對 IB 降解的影響,結果顯示 2 化合物對於 Aβ25-35 所引起的C13NJ 細胞中IB 降解具有抑制作用。(10) Western blotting結果顯示, NO.2644及NO.2648 對於Aβ25-35 所引起 C13NJ 細胞中與p38活化皆無顯著抑制作用。由此研究成果顯示,NO.2644及NO.2648主要藉由降低 IB 降解以抑制 NF-kB 活化,繼而降低 iNOS 基因於 C13NJ 細胞中表現。藉由此研究進行,也建立了一個神經保護先導藥物篩選平台,未來可提供更多藥物之篩選。
Alzheimer's disease ( AD ) is a progressive neurodegenerative disorder and characterized with the cerebral deposition of senile plaque which arises from the abnormal accumulation of -amyloid ( A). A is a peptide of 39–43 amino acids from cleavage of the amyloid precursor protein ( APP ). Several evidences indicate that A-activated microglia cells are involved in the neuropathology observed in AD. High levels of inducible nitric oxide synthase ( iNOS ) and nitric oxide ( NO ) have been detected in microglial cells of AD patients and cause neurons death. Epidemiological studies have shown that non-steroidal anti-inflammatory drugs ( NSAIDs ) prevent or delay the onset of AD. To identify potential lead compounds with neuron protection activities, a human microglial cell line, C13NJ, was used as target cells and A-stimulated cells to express iNOS mRNA as an drug-screening model. The following results were obtained: (1) Data of reverse transcription- polymerase chain reaction (RT-PCR) demonstrated that iNOS mRNA could be induced by 20 M A at 2 hr postactivation. (2) Results of Western blotting shown that iNOS proteins expressed in A-activated C13NJ cells at 12 hr postactivation. (3) The data from RT-PCR indicated that there were 3 synthetic compounds (No. 2644, No. 2647, and No. 2648) to downregulate iNOS mRNA expression in C13NJ cells stimulated with A (4) To elucidate Ainduced iNOS mRNA expression in C13NJ cells by which signaling pathways, various inhibitors including phosphoinositide 3-kinase ( PI3K ), NF-κB, and mitogen activated protein kinases ( MAPK ) inhibitors were added into C13NJ cells then iNOS mRNA expression was determined by RT-PCR. The results indicated that p38, JNK, and NF-B inhibitors decreased iNOS gene expression in C13NJ cells stimulated by A. (5) To confirm whether A stimulated NF-B activation, the IB degradation was analyzed with Western blotting. The data shown that IB was significantly degraded at 20 min postactivation. (6) To elucidate whether A. stimulated MAPK activation, the phosphorylation of p38, JNK, and ERK was assayed by Western blotting. The results demonstrated that the phosphorylation of p38, JNK, and ERK could be significantly induced at 20 min postactivation. Based on these results, I suggest that p38, JNK, and NF-B activation are involved in iNOS gene expression in C13NJ cells induced by A. (7) The data of Western blotting indicated that No.2644 and No.2648 increased the levels of IB proteins in A -activated C13NJ cells. (8) Both No.2644 and No.2648 did not affect phosphorylation of JNK and p38 in C13NJ cells induced by A. I suggest that No.2644 and No.2648 inhibit iNOS gene expression in C13NJ cells by modulation of NF-B activation. Furthermore, I set up a neuron protection drug-screening platform in this study. This model can be used to screening more bioactive lead compounds in future.
縮簡表 -----------------------------------------------------------------2
中文摘要 --------------------------------------------------------------4
英文摘要 --------------------------------------------------------------7
壹、緒論 --------------------------------------------------------------9
貳、材料與方法 ----------------------------------------------------17
參、結果 -------------------------------------------------------------25
肆、討論 -------------------------------------------------------------35
伍、參考文獻 -------------------------------------------------------41
表 ----------------------------------------------------------------------49
圖 ----------------------------------------------------------------------51
Akashi, S., Shimazu, R., Ogata, H., Nagai, Y., Takeda, K., Kimoto, M. and Miyake, K. (2000). Cutting edge: cell surface expression and lipopolysaccharide signaling via the toll-like receptor 4-MD-2 complex on mouse peritoneal macrophages. J Immunol, 164(7): 3471-3475.
Akiyama, K. and Suemaru, J. (2000). Effect of acute and chronic administration of methamphetamine on calcium-calmodulin dependent protein kinase II activity in the rat brain. Ann N Y Acad Sci, 914:263-74.
Aksenov, MY., Aksenova, MV., Butterfield, DA., Geddes, JW. and Markesbery, WR. (2001). Protein oxidation in the brain in Alzheimer’s disease. Neurosci, 103(2): 373-83.
Baldwin, AS. (1996). The NF-B and IB proteins: new discoveries and insights. Ann Rev Immunol, 14: 649-681.
Bal-Price, A. and Brown, GC. (2001). Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci, 21(17): 6480-6491.
Bamberger, ME., Harris, ME., McDonald, DR., Husemann, J. and Landreth, GE. (2003). A cell surface receptor complex for fibrillar beta-amyloid mediates microglial activation. J Neurosci, 23(7):2665-2674.
Banati, R.B., Gehrmann, J., Schubert, P. and Kreutzberg, GW. (1993). Cytotoxicity of microglia. Glia, 7(1):111-118.
Ban, JY., Cho, SO., Jeon, SY., Bae, K., Song, KS. and Seong, YH. (2007). 3,4-Dihydroxybenzoic acid from Smilacis chinae rhizome protects amyloid beta protein (25-35)-induced neurotoxicity in cultured rat cortical neurons. Neurosci Lett, 420(2):184-188.
Brookmeyer, R., Johnson, E., Zeigler-Graham, K., and Arrighi, HM. (2007). Forecasting the global burden of Alzheimer’s disease. Alzheimer’s and Dementia, 3(3):186-191.
Casoli, T., Di Stefano, G., Giorgetti, B., Balietti, M., Recchioni, R., Moroni, F., Marcheselli, F., Bernardini, G., Fattoretti, P. and Bertoni-Freddari, C. (2008). Platelet as a physiological model to investigate apoptotic mechanisms in Alzheimer beta-amyloid peptide production. Mech Ageing Dev, 129(3):154-62.
Cherny, RA., Atwood, CS., Xilinas, ME., Gray, DN., Jones, WD., McLean, CA., Barnham, KJ., Volitakis, I., Fraser, FW., Kim, Y., Huang, X., Goldstein, LE., Moir, RD., Lim, JT., Beyreuther, K., Zheng, H., Tanzi, RE., Masters, CL. and Bush, AI. (2001). Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer's disease transgenic mice. Neuron, 30(3): 665-676.
Cherny, RA., Legg, JT., McLean, CA., Fairlie, DP., Huang, X., Atwood, CS., Beyreuther, K., Tanzi, RE., Masters, CL. and Bush, AI. (1999). Aqueous dissolution of Alzheimer's disease Abeta amyloid deposits by biometal depletion. J Biol Chem, 274(33): 23223-23228.
Chou, SSP., Chen, PW. (2008). Cycloaddition reactions of 4-sulfur-substituted dihydro-2-pyridones and 2-pyridones with conjugated dienes. Tetrahedron, 64(8):1879-87.
Crapper-McLachlan, DR., Dalton, AJ., Kruck, TP., Bell. MY., Smith, WL., Kalow, W. and Andrews, DF. (1991). Intramuscular desferrioxamine in patients with Alzheimer's disease. Lancet, 337 (8753): 1304-1308.
Delgado, M., Varela, N. and Gonzalez-Rey E. (2008). Vasoactive intestinal peptide protects against beta-amyloid-induced neurodegeneration by inhibiting microglia activation at multiple levels. Glia, 56(10):1091-1103.
Eva, C., Barbara, AC., Stefanie, L., Thomas, K., Thomas, BL., Hermann, E., Sabine, P., Robert, S., Justin, W. T., Claus UP., Todd, E. G., Jens, W., Karlheinz, B., Edward HK. and Sascha, W. (2008). Independent Generation of Aβ42 and Aβ38 Peptide Species by -Secretase. J. Biol. Chem., 283 (25): 17049-17054.
Francis, PT., Palmer, AM., Snape, M. and Wilcock, G. (1999). The cholinergic htpothesis of Alzheimer’s disease: a review of progress. J. Neurol. Neurosug. Psychiatry, 66(2):137-147.
Giulian, D, Vaca, K. and Corpuz, M. (1993). Brain glia release factors with opposing actions upon neuronal survival. J. Neurosci., 13(1): 29-37.
Good, TA. and Murphy, RM. (1997). Effect of beta-amyloid block of the fast-inactivating K+ channel on intracellular Ca2+ and excitability in a modeled neuron. Proc Natl Acad Sci U S A., 93(26): 15130-15135.
Goodwin, J.L., Uemura, E., Cunnnick, J.E. (1995). Microglial release of nitric oxide by the synergistic action of -amyloid and IFN-. Brain Research, 692(1): 207-214.
Haass, C. and Selkoe, D.J. (1993). Cellular processing of -amyloid precursor protein and the genesis of amyloid peptide. Cell, 75(6): 1039-1042.
Halliday, G., Robinson, S.R., Shepherd, C. and Kril, J. (2000). Alzheimer’s disease and inflammation: a review of cellular and therapeutic mechanisms. Clin. Exp. Pharm. Phy., 27(1-2): 1-8.
Hooper, C. and Pocock, JM. (2007). Chromogranin A activates diverse pathways mediating inducible nitric oxide expression and apoptosis in primary microglia. Neurosci Lett. 413(3):227-232.
Ito, S., Sawada, M., Haneda, M., Fujii, S., Oh-Hashi, K., Kiuchi, K., Takahashi, M. and Isobe, K. (2005). Amyloid-beta peptides induce cell proliferation and macrophage colony-stimulating factor expression via the PI3-kinase/Akt pathway in cultured Ra2 microglial cells. FEBS Lett. 579(9): 1995-2000.
Iversen, L.L., Mortishire-Smith, R.J., Pollack, S.J. and Shearman, M.S. (1995). The toxicity in vitro of beta-amyloid protein. Biochem J., 311(Pt 1): 1-16.
Iwatsubo, T., Odaka, A., Suzuki, N., Mizusawa, H., Nukina, N. and Ihara, Y. (1994). Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals:evidence that an initially deposited species is Aβ 42(43). Neuron, 13(1):45-53.
Klegeris, A., Walker, DG. and McGeer, PL. (1994). Activation of macrophages by Alzheimer amyloid peptide. Biochem. Biophy. Res. Commun., 199(2): 984-991.
Ko, L.W., Ko, E.C., Nacharaju, P., Liu, W.K., Chang, E.,; Kenessey, A. and Yen, S.H.C. (1999). An immunochemical study on tau glycation in paired helical filaments. Brain Res., 830(2): 301-313.
Lleó, A., Greenberg, SM. And Growdon, JH. (2006). Current pharmacotherapy for Alzheimer's disease. Annu Rev Med., 57: 513-33.
Louise, B., Asha, N., Barbara, C. and Greer, M. M. Jr. (1996). Beta-Amyloid Peptide Secretion by a Microglial Cell Line is Induced by beta-Amyloid-(25-35) and Lipopolysaccharide. JBC, 271(27): 16084-16089.
Luo, Y., Bolon, B., Kahn, S., Bennett, B. D., Babu-Khan, S., Denis, P., Fan, W., Kha, H., Zhang, J., Gong, Y., Martin, L., Louis, J. C., Yan, Q., Richards, W. G., Citron, M. and Vassar, R. (2001). Mice deficient in BACE1, the Alzheimer’s β-secretase, have normal phenotype and abolished β-amyloid generation. Nature Neuroscience, 4:231-232.
Markesbery, W.R. and Carney, J.M. (1999). Oxidative alterations in Alzheimer’s disease. Free Radic. Biol. Med. 23: 134-147.
Martin, S., Vincent, JP. and Mazella, J. (2003) Involvement of the neurotensin receptor-3 in the neurotensin-induced migration of human microglia. J Neurosci, 23(4): 1198-1205.
McKee, AC., Kosik, KS. and Kowall, NW. (1991). Neuritic pathology and dementia in Alzheimer’s disease. Ann. Neurol., 30(2): 156-165.
Maurice, T., Lockhart, B. P. and Privat, A. (1996). Amnesia induced in mice by centrally administered β-amyloid peptides involves cholinergic dysfunction. Brain Research, 706(2): 181-193.
McGeer, P.L. and McGeer, E.G. (1995). The inflammatory system of brain: implications for therapy of Alzheimer and other neurodegenerative disorders. Brain Research Reviews, 21(2): 195-218.
McGeer, EG., and McGeer, PL.. (1999). Brain inflammation in Alzheimer disease and the therapeutic implications. Curr Pharm Des., 5(10): 821-836.
McGeer, PL. Schulzer, M. and McGeer, EG. (1996). Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease:a review of 17 epidemiologic studies. Neurology, 47(2): 425-432.
Moore, KJ., El Khoury, J., Medeiros, LA., Terada, K., Geula, C., Luster, AD. and Freeman, MW. (2002). A CD36-initiated signaling cascade mediates inflammatory effects of beta-amyloid.  J Biol Chem., 277(49): 47373-47379.
Mrak, R.E., Sheng, J.G. and Griffin, W.S. (1995). Glial cytokines in Alzheimer’s disease: review and pathogenic implications. Hum. Pathol., 26: 816-823.
Nathan, C., Calingasan, N., Nezezon, J., Ding, A., Lucia, MS., La Perle, K., Fuortes, M., Lin, M., Ehrt, S., Kwon, NS., Chen, J., Vodovotz, Y., Kipiani, K. and Beam, MF. (2005). Protection from Alzheimer’s-like disease in the mouse by genetic ablation of inducible nitric oxide synthase. J. Exp. Med., 202: 1163-1169.
Nomura, Y. and Kitamura, Y. (1993). Inducible nitric oxide synthase in glial cells. Neurosci Res., 18(2): 103-107.
Nordstedt, C., Naslund, J., Thyberg, J., Messamore, E., Gandy, S.E. and Terenius, L. (1994). Human neutrophil phagocytic granules contain a truncated soluble form of the Alzheimer beta/A4 amyloid precursor protein (APP). J.Biol. Chem. 269(13): 9805-9810.
Paresce, DM., Ghosh, RN. and Maxfield, FR. (1996). Microglial cells internalize aggregates of the Alzheimer's disease amyloid beta-protein via a scavenger receptor. Neuron, 17(3):553-565.
Pietrzik, C. and Behl, C. (2005). Concepts for the treatment of Alzheimer's disease: molecular mechanisms and clinical application. Int J Exp Pathol., 86(3):173-185.
Sangram S. Sisodia and Peter H. St George-Hyslop. (2002). γ-Secretase, notch, Aβ and alzheimer's disease: Where do the presenilins fit in? Nat Rev Neurosci., 3(4):281-290.
Randall, J., Bateman, ER., Siemers, KG., Mawuenyega, GW., Karen, R., Browning, WC., Sigurdson, KE., Yarasheski, SW., Friedrich, RB., DeMattos, PC., May, SM. and Paul, DM. (2008). Geranylgeranyl pyrophosphate stimulates -secretase to increase the generation of Aβ and APP-CTF. FASEB J., 22(1):47-54.
Sano, M., Ernesto, C., Thomas, R.G., Klauber, M. R., Schafer, K., Grundman, M., Woodbury, P., Growdon, J., Cotman, C. W., Pfeiffer, E., Schneider, L. S. and Thal, L. J. (1997). A controlled traial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. NEJM 336(17):1216-1222.
Sberna, G., Sáez-Valero, J., Beyreuther, K., Masters, CL. and Small, DH. (1997). The amyloid beta-protein of Alzheimer's disease increases acetylcholinesterase expression by increasing intracellular calcium in embryonal carcinoma P19 cells. J Neurochem, 69(3):1177-84.
Selkoe, D.J. (1993). Cellular processing of b-amyloid precursor protein and the genesis of amyloid -peptide. Cell, 75: 1039-1042.
Selkoe, D. J. (1996). Amyloid b-protein and the genetics of Alzheimer’s disease. J Biol. Chem., 271(31): 18295-18298.
Shukla, C. and Bridges, L.R. (1999). Regional distribution of tau, beta-amyloid and beta-amyloid precursor protein in the Alzheimer's brain: a quantitative immunolabelling study. Neuroreport, 10(18): 3785-3789.
Suo, Z., Humphrey, J., Kundtz, A., Sethi, F., Placzek, A., Crawford, F. and Mullan, M. (1998). Soluble Alzheimers beta-amyloid constricts the cerebral vasculature in vivo. Neurosci Lett., 257(2):77-80.
Van Marum RJ. (2008). Current and future therapy in Alzheimer’s disease Fundam. Clin. Pharmacol, 22:264-274.
Vodovotz, Y., MS. Lucia, KC. Flanders, L. Chesler, QW. Xie, TW. Smith, J. Weidner, R. Mumford, R. Webber, C. Nathan, Roberts, CF. and Sporn, MB. et al. (1996). Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimer’s disease. J. Exp. Med. 184: 1425-1433.
Wang, H. H., Liao, J. F. and Chen, C. F. (2001). Dehydroevodiamine attenuate β-amyloid peptide-induced amnesia in mice. European Journal of Pharmacology 413:221-225.
Wang, SJ., Chou, SH., Kuo, YC., Chou, SS P., Tzeng, WF., Leu, CY., Huang, RF. S. and Liew, YF. (2008). HDT-1, a new synthetic compound, inhibits glutamate release in rat cerebral cortex nerve terminals (synaptosomes). Acta Pharmacol Sin. 29:1289-1295
Wilkinson, B., Koenigsknecht-Talboo, J., Grommes, C., Lee, CY. And Landreth, G. (2006). Fibrillar beta-amyloid-stimulated intracellular signaling cascades require Vav for induction of respiratory burst and phagocytosis in monocytes and microglia. J Biol Chem. 281(30):20842-50.
Wu, A., Derrico, C. A., Hatem, L. and Colvin, R. A. (1997). Alzheimer’s amyloid-β peptide inhibits sodium/calcium exchange measured in rat and human brain plasma membrane vesicles. Neuroscience 80:675-684.
Yankner, B. A., Duffy, L. K. and Kirschner, D. A. (1990). Neurotrophic and neurotoxic effects of amyloid β protein: reversal by tachykinin neuropeptides. Science 250:79-282.
Zhu, Y., Hou, H., Nikolic, WV., Ehrhart, J., Rrapo, E., Bickford, P., Giunta, B. and Tan, J. (2008) CD45RB is a novel molecular therapeutic target to inhibit Abeta peptide-induced microglial MAPK activation. PLoS One. 3(5):e2135.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔