跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/02/05 23:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:薛國松
研究生(外文):Kuo-Sung Hsueh
論文名稱:模式錯誤假設對電腦化測驗的影響
論文名稱(外文):The effect of model misspecification on computerized testing
指導教授:盧宏益盧宏益引用關係
指導教授(外文):Hung-Yi Lu
學位類別:碩士
校院名稱:輔仁大學
系所名稱:應用統計學研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:61
中文關鍵詞:試題反應理論電腦化適性測驗模式錯誤假設
外文關鍵詞:item response theorycomputerized adaptive testinmodel misspecification
相關次數:
  • 被引用被引用:1
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
試題反應理論被廣泛地使用在電腦化適性測驗上,其以機率的觀點,透過試題反應模式,解釋考生能力與試題間的關係。在電腦化測驗的施測過程中,藉由所選擇的試題反應模式,系統可以根據考生的作答情形選擇最適合考生的題目施測。本研究旨在探討試題反應模式錯誤假設對測驗結果造成之影響。在不同測驗情境中,分別比較估計的精確性及決策的正確性與有效性。研究結果顯示,試題反應模式錯誤假設會對估計產生較大的影響,尤以題庫測驗模式為3PLM時,若使用錯誤試題反應模式進行估計,會導致較嚴重的後果,不但估計誤差明顯增加,所花費的測驗題數也明顯增加。至於決策方面,從SPRT精熟測驗分類結果可看出,試題反應模式錯誤假設對分類決策的影響不大,但會造成測驗題數的增加,浪費施測成本。
Item response theory (IRT) is the most commonly used model in computerized adaptive testing (CAT), and the logistic type models are the most popular models used in IRT based tests. These models are mainly used to describe the relationship between the latent abilities of examinees and the probability of correct response. In CAT, examinees are presented with different sets of items chosen from an item bank, and it can be used to test the examinees in accordance with their capabilities.
The purpose of this study is to investigate the effect of model misspecification on computerized testing. In this study, we discuss the one-parameter (1PLM), two-parameter (2PLM), and three-parameter logistic models (3PLM) in the item response theory and compare precision of trait estimation, accuracy of classification, and test length under different test situations.
Results indicated that model misspecification has a great effect on precision of trait estimation, especially at item bank of three-parameter logistic model (3PLM). In this situation, both the RMSE and test length will obviously increase if using the wrong item response models. It was also found that model misspecification has no effect on the accuracy of the classification. However, it will waste the cost of testing.
表次 Ⅱ
圖次 Ⅲ
第壹章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與問題 3
第三節 研究流程 4
第貳章 文獻探討 5
第一節 試題反應理論 5
第二節 電腦化適性測驗 10
第三節 連續機率比檢定 13
第四節 模式錯誤假設相關文獻 16
第參章 研究方法 20
第一節 研究工具 20
第二節 研究設計 20
第三節 研究步驟 23
第肆章 結果與討論 28
第一節 能力估計值之比較 28
第二節 SPRT精熟測驗分類結果 43
第伍章 結論與建議 54
第一節 結論 54
第二節 建議 56
參考文獻 57
中文部分
王寶墉(1993)。現代測驗理論。台北:心理出版社。
何榮桂(1999)。量身訂製的測驗-適性測驗。測驗與輔導,157期,3288-3293頁。
余民寧(1992a)。試題反應理論的介紹(二)-基本概念和假設。研習資訊,9(1),5-9。
余民寧(1992b)。試題反應理論的介紹(五)-模式與資料間的適合度。研習資訊,9(4),6-10。
余民寧(1992c)。試題反應理論的介紹(七)-訊息函數。研習資訊,9(6),5-9。
余民寧(1992d)。試題反應理論的介紹(十二)-電腦化適性測驗。研習資訊,10(5),5-9。
郭生玉(1985)。心理與教育測驗。台北:精華書局。
謝曜安(2003)。資金成本之模型誤設-台灣實證研究。輔仁大學經濟學研究所未出版碩士論文,台北縣。
英文部分
Attfield, C. L. F. (1983). Consistent Estimation of Certain Parameters in the Unobservable Variable Model when there is Specification Error. Review of Economics and Statistics, 65, 164-167.
Baker, Frank B. (1990). Some observations on the metric of PC-BILOG results. Applied Psychological Measurement, 14, 139-150.
Begg, M. D., & Lagakos, S. W. (1990). On the consequences of model misspecification in logistic regression. Environmental Health Perspectives, 87, 69-75.
Begg, M. D., & Lagakos, S. W. (1992). Effects of mismodeling on tests of association based on logistic regression models. Annals of Statistics, 20, 1929-1952.
Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In Lord, F. M. & Novick, M. R. (Eds.). Statistical theories of mental test scores. Reading, MA: Addison-Wesley.
Chang,Y.-C.I. (2001). Sequential confidence regions of generalized linear models with adaptive designs. Journal of Statistical Planning and Inference, 93, 277-293.
Drasgow, F. (1989). An evaluation of marginal maximum likelihood estimation for the two-parameter logistic model. Applied Psychological Measurement, 13, 77-90.
Ferguson, R. L. (1969a). Computer-assisted criterion-referenced measurement (Report WP-41). Pittsburgh: Pittsburgh University, Learning Research and Development Center.
Ferguson, R. L. (1969b). The development, implementation, and evaluation of a computer-assisted branched test for a program of individually prescribed instruction. Unpublished doctoral dissertation, University of Pittsburgh.
Gleser, L. J. (1981). Estimation in a multivariate “errors in variables” regression model: Large sample results. The Annals of Statistics, 9, 24-44.
Gujarati, D. N. (1992). Essentials of econometrics (2nd ed.). New York: London, McGraw-Hill, INC.
Hambleton, R. K., & Swaminathan H. (1985). Item Response Theory: Principles and Application. Boston, MA: Kluwer-Nijhoff.
Jiao, H., & Lau, A. C. (2003). The effects of model misfit in computerized classification test. Paper presented at the Annual Meeting of the National Council on Measurement in Education. Chicago, IL.
Kalohn, J. C., & Spray, J. A. (1999). The effect of model misspecification on classification decisions made using a computerized test. Journal of Educational Measurement, 36, 47-59.
Kingsbury, G. G., & Weiss, D. J. (1983). A comparison of IRT-based adaptive mastery testing and a sequential mastery testing procedure. In D. J. Weiss (Ed.), New Horizons in Testing: Latent Trait Theory and Computerized Adaptive Testing. New York: Academic Press.
Lagakos, S. W. (1988). Effect of mismodelling and mismeasuring explanatory variables on tests of their association with a response variable. Statistics in Medicine, 7, 257-274.
Lord, F. M. (1952). A theory of test scores. Psychometric Monograph, No. 7.
Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale, NJ: Lawrence Erlbaum Associates.
Mehrens, W. A. & Lehmann, I. J. (1975). Measurement and evaluation in education and psychology (2nd ed.). New York: Holt, Rinehart and Winston.
Mislevy, R. J. & Stocking, M. L.(1989). A Consumer's Guide to LOGIST and BILOG. Applied Psychological Measurement, 13, 57-75.
Parshall, C. G., Spray, J. A., Kalohn, J. C., & Davey, T. (2006). Practical considerations in computer-based testing. New York: Springer.
Pindyck, R. S. & Rubinfeld, D. L. (1998). Econometric Models and Economic Forecasts (4th ed.). Boston: Irwin, McGraw-Hill, Inc.
Rasch, G. (1960). Probabilistic models for some intelligent and attainment tests. Copenhagen: Danmarks Paedogogiske Institut.
Reckase, M. D. (1973). An interactive computer program for tailored testing based on the one-parameter logistic model. Paper presented to the National Conference on the Use of On-Line computers in Psychology, St. Louis. MO.
Reckase, M. D. (1983). A procedure for decision making using tailored testing. In D. J. Weiss (Ed), New horizons in testing: Latent trait test theory and computerized adaptive testing (pp. 237-255). New York: Academic Press.
Sand, W. A., Water, B. K., & McBride, J. R. (1997). Computerized Adaptive Testing: From Inquiry to Operation (Eds.). Washington, DC: American Psychological Association.
Skaggs, G. & Stevenson, J. (1989). A comparison of pseudo-bayesian and joint maximum likelihood procedures for estimating item parameters in the three-parameter IRT model. Applied Psychological Measurement, 13(4), 391-402.
Stefanski, L. A., & Carroll, R. J. (1985). Covariate measurement error in logistic regression. Annals of Statistics, 13, 1335-1351.
Stone, C. A. (1992). Recovery of marginal maximum likelihood estimates in the two parameter logistic response model: An evaluation of MULTILOG. Applied Psychological Measurement, 16, 1-16.
Urry, V. W. (1970). A Monte Carlo investigation of logistic test models. West Lafayette, IN: Unpublished doctoral dissertation, Purdue University.
Urry, V. W. (1977). Tailor testing: A successful application of latent trait theory. Journal of Educational Measurement, 14, 181-196.
Veerkamp, W. J. J., & Berger, M. P. F. (1997). Some new item selection criteria for adaptive testing. Journal of Educational and Behavioral Statistics, 22, 203-226.
Wainer, H., Dorans, N. J., Flaugher, R., Green, B. F., Mislevy, R. J., Steinberg, L., et al. (1990). Computerized adaptive testing: A primer. Hillsdale, NJ: Lawrence Erlbaum Associates.
Wald, A. (1947). Sequential Analysis. New York: Wiley.
Weiss, D. J. (1974). Strategies of adaptive ability measurement (Research Report 74-5). University of Minnesota, Department of Psychology, Psychometric Methods Program.
Weiss, D. J. (1982). Improving measurement quality and efficiency with adaptive testing. Applied Psychological Measurement, 6, 379-396.
Weiss, D. J. (1985). Item response theory and computerized adaptive testing conference proceedings (Ed.). MN: University of Minnesota press.
Yang, X., Poggio, J. C., & Glasnapp, D. R. (2006). Effects of Estimation Bias on Multiple-Category Classification with an IRT-Based Adaptive Classification Procedure. Educational and Psychological Measurement, 66, 545-564.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top