中文部分
王寶墉(1993)。現代測驗理論。台北:心理出版社。
何榮桂(1999)。量身訂製的測驗-適性測驗。測驗與輔導,157期,3288-3293頁。余民寧(1992a)。試題反應理論的介紹(二)-基本概念和假設。研習資訊,9(1),5-9。
余民寧(1992b)。試題反應理論的介紹(五)-模式與資料間的適合度。研習資訊,9(4),6-10。余民寧(1992c)。試題反應理論的介紹(七)-訊息函數。研習資訊,9(6),5-9。余民寧(1992d)。試題反應理論的介紹(十二)-電腦化適性測驗。研習資訊,10(5),5-9。郭生玉(1985)。心理與教育測驗。台北:精華書局。
謝曜安(2003)。資金成本之模型誤設-台灣實證研究。輔仁大學經濟學研究所未出版碩士論文,台北縣。英文部分
Attfield, C. L. F. (1983). Consistent Estimation of Certain Parameters in the Unobservable Variable Model when there is Specification Error. Review of Economics and Statistics, 65, 164-167.
Baker, Frank B. (1990). Some observations on the metric of PC-BILOG results. Applied Psychological Measurement, 14, 139-150.
Begg, M. D., & Lagakos, S. W. (1990). On the consequences of model misspecification in logistic regression. Environmental Health Perspectives, 87, 69-75.
Begg, M. D., & Lagakos, S. W. (1992). Effects of mismodeling on tests of association based on logistic regression models. Annals of Statistics, 20, 1929-1952.
Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In Lord, F. M. & Novick, M. R. (Eds.). Statistical theories of mental test scores. Reading, MA: Addison-Wesley.
Chang,Y.-C.I. (2001). Sequential confidence regions of generalized linear models with adaptive designs. Journal of Statistical Planning and Inference, 93, 277-293.
Drasgow, F. (1989). An evaluation of marginal maximum likelihood estimation for the two-parameter logistic model. Applied Psychological Measurement, 13, 77-90.
Ferguson, R. L. (1969a). Computer-assisted criterion-referenced measurement (Report WP-41). Pittsburgh: Pittsburgh University, Learning Research and Development Center.
Ferguson, R. L. (1969b). The development, implementation, and evaluation of a computer-assisted branched test for a program of individually prescribed instruction. Unpublished doctoral dissertation, University of Pittsburgh.
Gleser, L. J. (1981). Estimation in a multivariate “errors in variables” regression model: Large sample results. The Annals of Statistics, 9, 24-44.
Gujarati, D. N. (1992). Essentials of econometrics (2nd ed.). New York: London, McGraw-Hill, INC.
Hambleton, R. K., & Swaminathan H. (1985). Item Response Theory: Principles and Application. Boston, MA: Kluwer-Nijhoff.
Jiao, H., & Lau, A. C. (2003). The effects of model misfit in computerized classification test. Paper presented at the Annual Meeting of the National Council on Measurement in Education. Chicago, IL.
Kalohn, J. C., & Spray, J. A. (1999). The effect of model misspecification on classification decisions made using a computerized test. Journal of Educational Measurement, 36, 47-59.
Kingsbury, G. G., & Weiss, D. J. (1983). A comparison of IRT-based adaptive mastery testing and a sequential mastery testing procedure. In D. J. Weiss (Ed.), New Horizons in Testing: Latent Trait Theory and Computerized Adaptive Testing. New York: Academic Press.
Lagakos, S. W. (1988). Effect of mismodelling and mismeasuring explanatory variables on tests of their association with a response variable. Statistics in Medicine, 7, 257-274.
Lord, F. M. (1952). A theory of test scores. Psychometric Monograph, No. 7.
Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale, NJ: Lawrence Erlbaum Associates.
Mehrens, W. A. & Lehmann, I. J. (1975). Measurement and evaluation in education and psychology (2nd ed.). New York: Holt, Rinehart and Winston.
Mislevy, R. J. & Stocking, M. L.(1989). A Consumer's Guide to LOGIST and BILOG. Applied Psychological Measurement, 13, 57-75.
Parshall, C. G., Spray, J. A., Kalohn, J. C., & Davey, T. (2006). Practical considerations in computer-based testing. New York: Springer.
Pindyck, R. S. & Rubinfeld, D. L. (1998). Econometric Models and Economic Forecasts (4th ed.). Boston: Irwin, McGraw-Hill, Inc.
Rasch, G. (1960). Probabilistic models for some intelligent and attainment tests. Copenhagen: Danmarks Paedogogiske Institut.
Reckase, M. D. (1973). An interactive computer program for tailored testing based on the one-parameter logistic model. Paper presented to the National Conference on the Use of On-Line computers in Psychology, St. Louis. MO.
Reckase, M. D. (1983). A procedure for decision making using tailored testing. In D. J. Weiss (Ed), New horizons in testing: Latent trait test theory and computerized adaptive testing (pp. 237-255). New York: Academic Press.
Sand, W. A., Water, B. K., & McBride, J. R. (1997). Computerized Adaptive Testing: From Inquiry to Operation (Eds.). Washington, DC: American Psychological Association.
Skaggs, G. & Stevenson, J. (1989). A comparison of pseudo-bayesian and joint maximum likelihood procedures for estimating item parameters in the three-parameter IRT model. Applied Psychological Measurement, 13(4), 391-402.
Stefanski, L. A., & Carroll, R. J. (1985). Covariate measurement error in logistic regression. Annals of Statistics, 13, 1335-1351.
Stone, C. A. (1992). Recovery of marginal maximum likelihood estimates in the two parameter logistic response model: An evaluation of MULTILOG. Applied Psychological Measurement, 16, 1-16.
Urry, V. W. (1970). A Monte Carlo investigation of logistic test models. West Lafayette, IN: Unpublished doctoral dissertation, Purdue University.
Urry, V. W. (1977). Tailor testing: A successful application of latent trait theory. Journal of Educational Measurement, 14, 181-196.
Veerkamp, W. J. J., & Berger, M. P. F. (1997). Some new item selection criteria for adaptive testing. Journal of Educational and Behavioral Statistics, 22, 203-226.
Wainer, H., Dorans, N. J., Flaugher, R., Green, B. F., Mislevy, R. J., Steinberg, L., et al. (1990). Computerized adaptive testing: A primer. Hillsdale, NJ: Lawrence Erlbaum Associates.
Wald, A. (1947). Sequential Analysis. New York: Wiley.
Weiss, D. J. (1974). Strategies of adaptive ability measurement (Research Report 74-5). University of Minnesota, Department of Psychology, Psychometric Methods Program.
Weiss, D. J. (1982). Improving measurement quality and efficiency with adaptive testing. Applied Psychological Measurement, 6, 379-396.
Weiss, D. J. (1985). Item response theory and computerized adaptive testing conference proceedings (Ed.). MN: University of Minnesota press.
Yang, X., Poggio, J. C., & Glasnapp, D. R. (2006). Effects of Estimation Bias on Multiple-Category Classification with an IRT-Based Adaptive Classification Procedure. Educational and Psychological Measurement, 66, 545-564.