跳到主要內容

臺灣博碩士論文加值系統

(98.84.25.165) 您好!臺灣時間:2024/11/10 01:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:余宗翰
研究生(外文):Tsung Han Yu
論文名稱:類LIGA技術製造微鑽石磨錠工具之研究
論文名稱(外文):A study of the micro diamond pellet tool using the LIGA-like technology
指導教授:羅勝益羅勝益引用關係
指導教授(外文):Shenq Yih Luo
學位類別:博士
校院名稱:華梵大學
系所名稱:機電工程學系博碩專班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:145
中文關鍵詞:類LIGA微影複合電鑄電解加工微鑽石磨錠磨削粗糙度
外文關鍵詞:LIGA-likeLithographyComposite electroformingelectrolytic machiningMicro diamond grinding pelletGrindingRoughness
相關次數:
  • 被引用被引用:3
  • 點閱點閱:558
  • 評分評分:
  • 下載下載:73
  • 收藏至我的研究室書目清單書目收藏:0
本文主要在探討以類LIGA技術製作微鑽石研磨工具,製程部分共分微影製程與複合電鑄製程兩部分探討,微影製程探討JSR光阻塗佈厚度、烘烤時間、曝光時間與顯影時間等,而複合電鑄製程將探討鍍液組成、操作條件、添加劑與攪拌方式等。最後將所得微鑽石研磨錠進行磨削矽晶片加工測試,分析鑽石粒徑、主軸轉速、彈簧壓力與進給深度等,對晶片表面粗糙度、去除機構、去除深度及研磨錠的磨耗情形等影響。
實驗結果顯示:微影製程部分,使用JSR光阻單次塗佈可達110μm,透過多次塗佈技術亦可得到更高膜厚,並且配合不同幾何形狀的光罩,可得到不同幾何形狀微研磨工具。微複合電鑄過程,使用較多量的平滑劑與應力降低劑,與較低電流密度,將可獲得較高鎳鍍層硬度值,當無添加任何添加劑時,鍍層硬度平均值約HV220;添加10cc平滑劑與5cc應力降低劑時,鍍層硬度平均值約HV420。此外,為有效增加微研磨錠與基材結合強度,基材經電解加工產生根部結構與保留部分光阻之設計,與一般平面接合製程比較,其在磨耗試驗中以彈簧壓力785kPa與1000號Al2O3砂紙對磨,其微錠斷裂脫落比例僅1-2%,而後者高達35%。
使用類LIGA微研磨錠研磨盤與電鍍全平面研磨盤在磨削矽晶片之比較,在相同加工條件下,所獲得矽晶片表面粗糙度會隨著主軸轉速增加而降低;當用鑽石粒徑4-6μm之微研磨錠研磨盤,矽晶片表面粗糙度 Ra可達0.04μm,具有鏡面加工效果;電鍍全平面研磨盤者所得Ra為0.07μm。微研磨錠磨盤的材料去除深度也較平面研磨盤者佳,因微研磨錠研磨盤上柱狀結構設計,可有效排除切屑與切削液流動較佳,避免研磨盤表面塞屑。
當磨削矽晶片使用較小鑽石粒徑之微研磨錠及主軸轉速越快時,磨粒受壓力刺入矽晶片表面將較淺,單位時間內所產生的磨粒軌跡密度愈密,導致主軸進給切深越小及切屑厚度越小,工件越易產生延性磨削,使矽晶片表面粗糙度值越小。另外,矽晶片磨削面的內側與外側磨痕軌跡較密,使材料去除較中心位置大,整體磨削矽晶片去除機構大致為延性磨削。
The purpose of this paper is to investigate fabrication of the micro diamond grinding pellet tools using a LIGA-like process that has two sections of micro lithography and composite electroforming. The JSR photoresist coating, soft bake, exposure and development etc. in the micro lithography were investigated and the bath compositions, operating conditions, additives and agitation etc. were studied. Finally, the overall processes for producing micro diamond grinding pellet tools would be established to get a moderate operating condition. The micro diamond grinding pellet tools produced would be used to grind the silicon wafer. The effect of diamond size, spindle speed, feed, pressure, etc. on the roughness, the removal depth, the removal mechanism of wafer and the tool wear during the grinding would be investigated.
The experiment results showed that for the micro lithography using JSR photoresist in each spin coating on the substrate can reach to 110 μm and using multi-spin coating would get the higher thickness of photoresist. Thereafter, using the different geometrical photomasks during lithography can copy and produce specific details of photoresist on the substrate to obtain a micro grinding pellet tool with a different shape. For micro composite electroforming, the hardness of nickel layer obtained on the substrate was increased with the increase of amount of level and stress relief additives and the decrease of the current density. When no additives or 10 cc of level agent and 5 cc of stress relief agent during plating were employed respectively, the average hardness of nickel layer obtained was about HV220 or HV420. Besides, to improve effectively the bonding strength between micro pellets and the substrate on the tool, the design of the root structure produced by the electrolytic machining and the partial photoresist retained on the substrate were employed. The resulting micro grinding pellet tool against Al2O3 sandpaper of 1000 mesh under pressure 785 kPa in the wearing test produced only a 1-2 % of micro-pellet pulled-out from the substrate. Oppositely, a tool obtained at the flat joint type in wearing test produced up to 35% of micro-pellet pulled-out.
Comparing the micro grinding pellet tool of LIGA-like with the electroplated tool, the roughness of silicon wafer obtained under the same grinding conditions decreased with the increase of spindle speed. When the micro grinding pellet tool with diamond size of 4-6 m was employed, the resulting wafer surface can obtain roughness Ra 0.04 m with a mirror effect. However, for the electroplated tool, the wafer roughness obtained was only about Ra 0.07 μm. In addition, the removal depth of wafer for the micro pellet tool was better than that of the electroplated tool. This may be because the micro pellet on the substrate can provide a better chip removal ability and better coolant fluidity, leading a less amount of chip loading on the tool.
When the micro pellet tool with a smaller diamond size under a faster spindle speed during grinding silicon wafer was used, the trajectory produced by the grains was denser and the chip thickness and the depth of cut were smaller, which caused the silicon wafer to produce the higher degree of the ductile grinding. Moreover, the inner and outer traces produced on the grinding traces of silicon wafer were denser than medium site, which caused the material removal amount to be larger. All in all, the material removal mechanism during grinding silicon wafer of the micro diamond pellet tool displayed mainly ductile grinding behavior.
致 謝 I
摘 要 II
ABSTRACT IV
目 錄 VII
表 錄 XI
圖 錄 XII
第一章 緒論 1
1.1前言 1
1.2文獻回顧 4
1.3研究動機與目的 7
1.4本文內容 9
第二章 相關理論基礎 10
2.1 LIGA 10
2.1.1 LIGA的特色 10
2.1.2 LIGA的製程 11
2.1.3類LIGA (LIGA-like) 14
2.2微工具設計與製造 17
2.2.1微研磨錠組成與特性 17
2.2.2微研磨錠研磨機構 19
2.3 JSR厚膜光阻 20
2.3.1光阻的種類與特性 20
2.3.2 JSR光阻的性質 21
2.4複合電鑄理論 23
2.4.1沈積理論 27
2.4.2電鑄基本原理 29
2.4.3法拉第電解定律 30
2.4.4電鑄鎳製程 31
2.4.5添加劑 32
2.4.6電鑄常見問題與其變因 34
2.5電解加工原理 36
第三章 微研磨錠製作及實驗流程與設備 38
3.1實驗架構 38
3.1.1光罩設計 45
3.2微影製程設備 46
3.2.1旋轉塗佈機 47
3.2.2烘烤 48
3.2.3曝光機 49
3.2.4顯影 51
3.3複合電鑄設備 52
3.4電解加工裝置 53
3.5磨耗試驗與磨削加工設備 54
第四章 微研磨錠製程分析 58
4.1微影製程 58
4.1.1前處理與表面酸洗 58
4.1.2 JSR光阻不同轉速對膜厚之關係 60
4.1.3曝光時間對JSR膜厚之關係 61
4.1.4 JSR膜厚與顯影時間關係 62
4.1.5 JSR光阻移除方式 63
4.2複合電鑄製程 64
4.2.1電流密度對微研磨錠之關係 64
4.2.2電鍍液添加劑及電流密度對鎳基底硬度 67
4.2.3 潤濕劑與溫度對微孔電鑄外觀之影響 69
4.2.4電流密度與電鑄時間對微磨錠高度關係 72
4.3微研磨錠根部結構設計 74
第五章 微研磨錠性質分析 79
5.1 鑽石集中度與分散性 79
5.2 微研磨錠硬度與磨耗分析 83
5.3 微研磨錠結構設計與黏著強度之關係 87
第六章 微研磨錠加工矽晶片之探討 91
6.1矽晶片表面粗糙度 91
6.1.1 主軸轉速與進給深度之影響 91
6.1.2 磨盤結構設計與鑽石粒徑之影響 101
6.2材料去除率 123
第七章 結論與未來展望 130
7.1結論 130
7.2未來展望 132
參考文獻 133
[1]周敏傑,機械工業雜誌,元月號,pp131,1996.
[2]B. Y. Shew, C. H. Kuo, Y. C. Huang and Y. H. Tsai, “UV-LIGA Interferometer Biosensor Based on the SU-8 Optical Waveguide,” Sensors and Actuators A: Physical 120 pp.383-89, 2005.
[3]R. J. Linderman, P. E. Kladitis and V. M. Bright, “Development of the Micro Rotary Fan,” Sensor and Actuators A: Physical 95, pp.135-142, 2002.
[4]Y. Yokoyama, M. Takeda, T. Umemoto and T. Ogushi, “Thermal Micro Pumps for a Loop-Type Micro Channel,” Sensors and Actuators A: Physical 111, pp.123–128, 2004.
[5]T. Kanda, A. Makino, T. Ono, K. Suzumori, T. Morita, M. K. Kurosawa, “A Micro Ultrasonic Motor Using a Micro-machined Cylindrical Bulk PZT Transducer,” Sensors and Actuators A: Physical 127, pp.131–138, 2006.
[6]C. H. Ho, K. P. Chin, C. R. Yang, H. M. Wu and S. L. Chen, “Ultrathick SU-8 Mold Formation and Removal and its Application to the Fabrication of LIGA-like Micromotors with Embedded Roots,” Sensors and Actuators A: Physical 102 pp.130-38, 2002.
[7]A. Johansson, M. Calleja, P.A. Rasmussen, A. Boisen, “SU-8 Cantilever Sensor System with Integrated Readout,” Sensors and Actuators A: Physical 123–124, pp.111–115, 2005.
[8]G. Soundararajan, M. Rouhanizadeh, H. Yu, L. DeMaio, E.S. Kimb, T. K. Hsiai, “MEMS Shear Stress Sensors For Microcirculation,” Sensors and Actuators A: Physical 118, pp.25–32, 2005.
[9]S. J. Lee, Y. P. Chen and C. H. Huang, “Electroforming of Metallic Bipolar Plates With Micro-featured Flow Field,” Journal of Power Sources Vol.145 pp.369-75, 2005.
[10]Matteucci M, Pérennès F, Marmiroli B, Miotti P, Vaccari L, Gosparini A, Turchet A and Fabrizio E Di, “Compact Micropumping System Based on LIGA Fabricated Microparts,” Microelectronic Engineering Vol.83 pp.1288-1290, 2006.
[11]C. H. Cheng, S. C. Chen and Z. S. Chen, “Multilevel Electroforming for the Components of a Microdroplet Ejector by UV LIGA Technology,” J. Micromech Microeng Vol.15 pp.843-48,2005.
[12]S. C. Tzeng and W. P. Ma, “Study of Flow and Heat Transfer Characteristics and LIGA Fabrication of Microspinnerets,” J. Micromech Microeng Vol. 13 pp.670-679, 2003.
[13]Pérennès F, Marmiroli B , Matteucci M , Tormen M , Vaccari L and Fabrizio E Di, “ Sharp Beveled Tip Hollow Microneedle Arrays Fabricated by LIGA and 3D Soft Lithography with Polyvinyl Alcohol,” J. Micromech Microeng Vol. 16 pp.473-479, 2006.
[14]S. C. Shen, C. T. Pan, Y. R. Wang and C. C. Chang, “Fabrication of Integrated Nozzle Plates for Inkjet Print Head Using Microinjection Process,” Sensors and Actuators A: Physical 127 pp.241-247, 2006.
[15]Li B and Chen Q, “ Solid Micromechanical Valves Fabricated with in Situate UV-LIGA Assembled Nickel,” Sensors and Actuators A: Physical 126 pp.187-193, 2006.
[16]Niedermann Ph, Berthou H, Zwickl S, Schonholzer U, Meier K, Gantner Ch, Kapp-Schwoerer D, “A Novel Thick Photoresist for Microsystem Technology,” Microelectronic Engineering A 67 pp.259-265, 2003.
[17]Katoh T, Nishi N, Fukagawa M, Ueno H and Sugiyama S, “Direct Writing for Three-Dimensional Microfabrication Using synchrotron Radiation Etching,” Sensors and Actuators A: Physical 89 pp.10-15, 2001.
[18]S. M. Allameh, J. Lou,F. Kavishe, T. Buchheit, W.O. Soboyejo, “An Investigation of Fatigue in LIGA Ni MEMS Thin Films,” Materials Science and Engineering A 371, pp.256–266, 2004.
[19]R. D. Chien, “Micromolding of Biochip Devices Designed with Microchannels,” Sensors and Actuators A: Physical 128 pp.238-247, 2006.
[20]M. Matteucci, F. Pe’renne`s, B. Marmiroli, P. Miotti, L. Vaccari, A. Gosparini, A. Turchet, E. Di Fabrizio, “Compact Micropumping System Based on LIGA Fabricated Microparts,” Microelectronic Engineering Vol.83, pp.1288–1290, 2006.
[21]K. Takahata and Yogesh B. Gianchandani, “Batch Mode Micro-electro-dischargem Machining,” J. of Microelectromechanical System. Vol. 11, No. 2. April 2002.
[22]H. Yang, C. T. Pan, and M. C. Chou, “Ultra-fine Machining Tool/molds by LIGA technology,” Journal of Micromechanics and Microengineering, pp.94-99, 2001.
[23]蔡宗勳,高深寬比微電鑄技術與複製過程研究,國立中興大學機械工程系博士論文,民國九十一年六月。
[24]J. W. Dini, H. R. Johnson, “The Influence of Nickel Sulfamate Operating Parameters on the Impurity Content and Properties of Electrodeposits,” Thin Solid Films, Vol. 54, pp.183-188, 1978.
[25]T. Semba, H.Sato, “Development of Electroformed Diamond Tool with Fine Grains Covered with Metal Oxide Coating,” Annals of the CIRP, Vol. 49/1/2000.
[26]R. G. King, Surface Treatment and Finishing of Aluminium, Pergamon press , New York , pp.34-44, 1988.
[27]K. Kondo and K. Fukui, “The Current Evolution of Electro Deposition Copper Bumps with Photoresist Angel,” J. Electrochem. Soc, Vol.145, pp.840-843, 1998.
[28]K. Kondo, K. Hayashi, K. Fukui and Z. Tanaka, “Shap Evolution of Electrodeposited Bumps into Deep Cavity,” J. Electrochem. Soc, Vol.148, pp.1152-1154, 2000.
[29]K. Kondo and K. Fukui, “Shap Evolution of Electrodeposited Bumps into Deep Cavity,” J. Electrochem. Soc, Vol.145, pp.3007-3010, 1998.
[30]E. C. Lee, J. W. Choi, “A Study on the Mechanism of Formation of Electrocodeposited Ni-diamond Coatings,” Surface and Coating Technology, Vol. 148, pp.234-240, 2001.
[31]L.B. Zhou, H. Eda, J. Shimizu, “State-of-the Art Technologies and Kinematical Analysis for One-stop Finishing of 300mm Si Wafer”, J. Mater. Process. Technol. 129 pp.34-40, 2002.
[32]C. G. Scott and S. Danyluk, “Examination of Silicon Wear Deberis Generated in a Liner Scratch Test,” Wear, Vol. 152, pp183-182, 1992.
[33]N. Yasunaga, “Recent Advances in Ultraprecision Surface Finishing Technologies in Japan,” lnt. J. Japan Soc. Prec. Eng., Vol. 28. No. 3 1994.
[34]N. Yasunaga, “ECO-polishing of Hard Materials by Applying Mechanochemical Effect,” School of Engineering, Tokai university 1117, Japan.
[35]E. W. Becker, W. Ehrfel, P. Hagmann, A. Maner and D. Munchmeyer, Microelectronic Engineering, Vol. 4, pp.35, 1986.
[36]M. Harmening, W. Becher, P. Bley, A. El-Kholi, H. Kablb, B. Kowanz, W. Menz, A. Michael and J. Mohr, IEEE/Micro ElectroMechanical System 92 workshop, pp. 202-207.
[37]W. Bacher, W. Menz and M. Jurgen, “The LIGA Technique and its Potential for Microsystems-A Survey,” IEEE transaction on industrial electronics, Vol.42, pp.431, October, 1995.
[38]Die LIGA-Technology report, Institute of Mikrotechnik Mainz.
[39]A. Holmes, S.Saidam and R. Lawes, “IEEE Microengineering Technologies and How to Exploit Them,” pp. 1-4, 1997.
[40]W. Lang, H. Sandmaier, “Micro Electro Mechanical System:From Research to Application,” Jap. J. Appl. Phys. Part I. 37(12). pp.7047, 1998.
[41]吳清沂、鍾震桂,微機電系統簡介,科儀新知第18卷3期。
[42]T. Matsuo, M. Toug and H. Ymada, “High-Precision Surface Grinding of Ceramics with Surperfine Grain Cup Wheels,” Annals of CIRP, Vol. 46/1, pp249-252, 1997.
[43]H.K. Tönshoff, W.v. Schmieden, I. Inasaki, W. Konig, G. Spur, “Abrasive Machining of Silicon,” Ann. CIRP, 39/2 pp.463-471, 1990.
[44]Z.J. Pei, A. Strasbaugh, “Fine Grinding of Silicon Wafers: Designed Experiments,” Int. J. Mach. Tools Manufact. 42 pp.395-404, 2002.
[45]I. Zarudi, L.C. Zhang, “Effect of Ultraprecision Grinding on the Microstructural Change in Silicon Monocrystals,” J. Mater. Process. Technol. 84 pp.149-158, 1998.
[46]Z.J. Pei, S.R. Billingsley, S. Miura, “Grinding Induced Subsurface Cracks in Silicon Wafers,” Int. J. Mach. Tools Manufact. 39 pp.1103-1116, 1999.
[47]Woong Cho, Yoomin Ahn, Chang-Wook Baek and Yong-Kweon Kim, “Effect of Mechanical Process Parameters on Chemical Mechanical Polishing of Al Thin Films,” Microelectronic Engineering 65, pp12-23, 2003.
[48]Yong-Jin Seo, Sang-Yong Kim, Woo-Sun, “Reduction of Process Defects Using a Modified Set-up for Chemical Mechanical Polishing Equipment,”,Microelectronic Engineering 65, pp371-379, 2003.
[49]Y. Lu, Y. Tani and K. Kawata, “Proposal of New Polishing Technology without Using a Polishing Pad,” Annals of the CIRP Vol.51/1/, pp255-258, 2002.
[50]G. Byrne, B. Mullany and P.Young, “The Effect of Pad Wear on the Chemical Mechanical Polishing of Silicon Wafers,” Annals of the CIRP, Vol.48, pp113-121, 1999.
[51]陳谷全,平面超細磨削矽晶圓加工之研究,華梵大學機電工程學系碩士論文,民國九十一年六月。
[52]蕭俊任,組合式拋光工具應用於化學機械拋光與彈射加工之研究,華梵大學機電工程學系碩士論文,民國九十二年六月。
[53]F. G. Tseng and C. S. Yu, “High Aspect Ratio Ultrathick Micro-stencil by JSR THB-430N Negative UV Photoresist,” Sensors and Actuators A 97-98, pp764-770, 2002.
[54]JSR Corporation Specialty Materials Laboratory Fine Electronic Research Laboratories.
[55]楊錫杭,微機械加工概論,全華科技圖書股份有限公司。
[56]許坤明、涂肇嘉,以複合電鑄法製作顆粒強化銅基複合材料,粉末冶金會刊,pp.7-9,民國88年2月。
[57]D. R. Brown, F.W. Salt, “The Mechanism of Electrophoretic Deposition,” Journal of Applied Chemistry, pp.40-48, Jan. 1965.
[58]P. W. Martin, Journal Metal Finishing, pp.399, 1965.
[59]N. Guglielmi, “Kinetic of the Deposition of Inert Particles from Electrolytic Baths,” J. Electrochem Soc., Vol.119, No. 8, pp.1009-1012, August 1972.
[60]J. P. Celis, J. R. Roos, C. Buelens, “A Mathematical Model for the Electrolytic Codeposition of Particles with a Metallic Matrix,” J. Electrochem Soc., Vol.134, No. 6, pp.1402-1408, June 1987.
[61]J. R. Roos, J. P. Celis and Kelchtermans H, “Electrolytic Deposition of Copper Powders Containing a Dispersion of Fine Alumina Particles,” Powder Technology 20 pp.139-142, 1978.
[62]Garcia I, Fransaer J and J. P. Celis, “Electrodeposition and Sliding Wear Resistance of Nickel Composite Coatings Containing Micron and Submicron SiC Particles,” Surface and Coatings Technology 148 pp.171-178, 2001.
[63]M. Randall, “Powder Metallurgy Science, Princeton,” 1994.
[64]蕭國瑋,精密電鑄鑽石刀片之研究,華梵大學機電工程學系碩士論文,民國九十四年六月。
[65]Z. J. Wei, Y. Y. Wang, C. C. Wan and C. H. Huang, “Study of Wetters in Nickel Electroforming of 3D Microstructures,” Materials Chemistry and Physics 63, pp.235-239, 2000.
[66]謝佑聖,類LIGA製程用之光阻劑之合成與性質研究,國立清華大學化學工程所博士論文,民國九十年七月。
[67]M. Schwartz, S. Yoon and K. Nobe, “Effect of Chloride Lons and Organic Additives,” Plating & Surface Finishing, February, pp. 64-70, 1995.
[68]Liu L, Zhao H, Hu W and Shen B, “Analysis of Tensile Strength and Microstructure of Ni–SiC Composites Prepared by Electroforming,” Materials Letters 59 pp.3014-3017, 2005.
[69]Heyderman L J, Schift H, David C, Ketterer B, Auf der Maur M and Gobrecht J, “Nanofabrication Using Hot Embossing Lithography and Electroforming,” Microelectronic Engineering 57 pp.375-380, 2001.
[70]M. Donten, “Pulse Electroplating of Rich-in Tungsten Thin Layers of Amorphous Co-W Alloys,” J. Applied Electro-chemistry, Vol.26, pp.665-672, 1996.
[71]陳宏澤,“界面活性劑在金屬脫脂及酸洗方面之應用”,金屬表面技術雜誌,Vol.71, pp.53, 1981。
[72]方景禮,電鍍添加劑總論,傅勝出版社。
[73]田福助,電化學理論與應用,新科技書局。
[74]蘇品書,特殊加工,復漢出版社。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top