(3.226.72.118) 您好!臺灣時間:2021/05/12 06:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:李秀娟
研究生(外文):Hsiu-Chuan Li
論文名稱:台灣中部海線地區之產婦乳汁中微量金屬分佈及其影響因子
論文名稱(外文):actors affecting the distribution of trace metals in breast milk of primiparous women living in sea route of central region in Taiwan
指導教授:郭志宏郭志宏引用關係
指導教授(外文):Chih-Hung Guo
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:營養醫學研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:150
中文關鍵詞:母乳微量金屬運鐵蛋白細胞激素氧化壓力
外文關鍵詞:breast milktrace metaltransposter proteincytokineoxidative stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:266
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:1
本研究旨在觀察中部海線地區產婦初乳 (colostrum) 中必須性 (essential) 及有毒微量金屬含量,並進一步探討母乳中微量金屬分佈變化之影響因子。受試對象為沙鹿光田醫院生產之產婦,收集不同哺乳階段 (colostrum、transitional milk、1st month、2nd month mature milk) 的母乳,進行問卷收集及分析母乳中微量金屬、維生素 E (vit E)、細胞激素含量、運送蛋白及氧化壓力指標。結果顯示 colostrum 中有毒金屬鉛 (lead, Pb)、鎘 (cadmium, Cd) 和砷 (arsenic, As) 與必須性金屬鋅 (zinc, Zn)、銅 (copper, Cu)、鐵 (iron, Fe) 和硒 (selenium, Se) 含量,均高於 WHO/IAEA 參考值。另一方面,經產婦 (multipara) 有較高的 As 含量 (p>0.05),與受居住時間影響有關;教育程度較高者可能由於受社經環境條件而影響飲食習慣,有較高 Pb 含量。早產母親可能產婦體內本身含量影響,而有較高的 As 含量及較低的 Zn 含量。此外,Fe 含量亦與嬰兒出生身長呈顯著負相關 (p<0.05)。增加產婦產前魚類攝取頻率有較高的 Pb、Cd 含量;增加蝦貝類攝取頻率與 Se 含量有負相關趨勢;增加罐頭攝取頻率會增加 Pb 含量。另一方面,母乳中有毒金屬或必須性金屬含量,均隨著哺乳時間增加而遞減,與 lactoferrin 分泌減少有關。TNF-a 及IL-1b含量亦隨之減少,可能與免疫調節因子下降有關。然而,MDA 含量隨著哺乳時間增加而上升,與參與抗氧化過程的必須性金屬減少有關。至於金屬間之交互作用,如,colostrum 中的 Cd、Al 會與 Zn、Cu、Se 含量有正相關性;As 與 Cu、Pb 與 Fe 含量有負相關。transitional milk 時,Pb、Zn 含量有正相關;Cd、Se 含量有負相關。1st month mature milk 時,Cd、As 與 Fe 有正相關性,但 Cd、Pb 會與 Se 含量及 Al、Fe 含量呈負相關。顯示有毒金屬可能會因運送蛋白鍵結或氧化壓力而影響必須性金屬的分佈。然而,lactoferrin 含量在不同哺乳時間與微量金屬含量呈正相關。顯示 lactoferrin 會鍵結微量金屬運送到母乳中。此外,colostrum 中 Zn、Cu 和 Se 含量與脂質過氧化產物呈負相關性。且Cu、Fe 含量隨著哺乳時間增加,會誘發母乳的脂質過氧化產物增加。綜合上述結果,中部海線地區之產婦母乳中微量金屬,較 WHO/IAEA 之參考值高。此外,影響母乳中微量金屬分佈因子,包括有產婦懷孕期間的飲食習慣、哺乳時間、母乳中有毒金屬與必須性金屬的分佈、運送蛋白含量以及脂質過氧化程度。未來在臨床上,對 colostrum 中有毒金屬含量有疑慮之產婦,建議產後一週後再開始進行哺餵母乳。
The purpose of this study is to observe the essential and level of toxic trace metal of mother’s colostrum at sea route of central region, and realizing the affecting factors of changing of trace metals in breast milk. The childbirth maternal from Kuang Tien General Hospital of Shalu were the subjects. We collected breast milk from different lactation period (colostrum, transitional milk, 1st month and 2nd month mature milk), questionnaire survey, and analysed the levels of trace metals, vitamin E (vit E), cytokines, transporter proteins and the indicator of oxidative stress in breast milk. The results show that the values of toxic metals, such as lead (Pb), cadmium (Cd) and arsenic (As), and the values of essential metals, such as zinc (Zn), copper (Cu), iron (Fe) and selenium (Se) in colostrum, are all higher than WHO/IAEA reference values. On the other hand, Multipara have higher As level in colostrum (p>0.05). Trace metals in the maternals has relation with the length of living time. Maternals who are high educated have more Pb content. It might cause by the diet habit which is effected by some conditions of environment and economy. Maternals of preterm infants have higher As level and lower Zn level. It might be in relation to the metal contents of the maternals own. Besides, It also shows clearly negative correlation between Fe content and the length of infants (p<0.05). Maternals who raise the taking times for fish before production have higher Pb and Cd content. It becomes a negative trend toward raising the taking times for shrimp and shellfish and Se content. And it shows a positive correlation trend toward raising the taking times for canned food and Pb content. On the other hand, the content in breast milk, such as toxic metals and essential metals, are all reduced by the breast-feeding time. That have relations with the reducible of lactoferrin secretion. The content of TNF-aand IL-1b are also reduced. It might be related to the reducing of immunological component. Then, the content of MDA is increased by the length of breast-feeding time. It has relation with the decreasing of essential metal levels that participate in antioxidation. As regards the interaction between metals in colostrum, Cd and Al have positive correlation with the amount content of Zn, Cu and Se. As in transitional milk have negative correlation with the content of Cu. Pb in transitional milk have negative correlation with the content of Fe. Cd and As in 1st month mature milk have positive correlation with the content of Fe. But, Cd and Pb in 1st month mature milk have negative correlation with the content of Se. Al in 1st month mature milk have negative correlation with the content of Fe. It shows that the distribution of essential metals is affected by toxic metals that caused by protein transportation and oxidative stress. However, the lactoferrin content shows the positive relationship between different breast-feeding time and trace metals content. It means lactoferrrin will combine with trace metals, and transport into breast milk. Zn, Cu and Se have negative correlation with lipid peroxidate production in colostrums. The content of Cu and Fe will cause the increasing of lipid peroxidate production in breast milk with the length of breat-feeding time. All in all, the content of toxic metals still in the safety range, even though the trace metals of mother’s colostrum at sea route of central region have been over the reference material of WHO/IAEA. The affecting factors of the changing of trace metals in breast milk, including the diet habit during pregnancy, breat-feeding time, the changing of toxic metals and essential metals in breast milk, the quality of transportation and the level of lipid peroxidation. If materals wonder about the content of toxic metals in colostrum, we suggest they can start the breast-feeding one week after birth.
摘要 ……………………………………………………………………… I
Abstract …………………………………………………………………… III
目錄 ……………………………………………………………………… V
縮寫表 …………………………………………………………………… XI
第一章 序論 ……………………………………………………………… 1
第二章 文獻回顧
一、 中部海線地區的微量金屬汙染風險 …………………………… 3
二、 微量金屬進入人體內的途徑 …………………………………… 4
三、 母親血液中金屬與乳汁中金屬之關係 ………………………… 5
四、 有毒金屬對人體之傷害
1. Pb ……………………………………………………………… 6
2. Cd ……………………………………………………………… 7
3. Al ……………………………………………………………… 8
4. As ……………………………………………………………… 9
五、 母乳的重要性 …………………………………………………… 10
六、 必須性金屬在人體扮演的角色
1. Zn …………………………………………………………… 12
2. Cu …………………………………………………………… 14
3. Fe …………………………………………………………… 15
4. Se …………………………………………………………… 16
七、 微量金屬進入母乳中的途徑 ………………………………… 18
八、 微量金屬的交互作用 ………………………………………… 19
九、 微量金屬與細胞激素之關係
1. 細胞激素 …………………………………………………… 20
2. 有毒金屬扮演的角色 ……………………………………… 20
3. 必須性金屬扮演的角色 …………………………………… 21
十、 微量金屬與氧化壓力之相關性
1. 母乳中氧化壓力來源 ……………………………………… 22
2. 有毒金屬扮演的角色 ……………………………………… 24
3. 必須性金屬扮演的角色 …………………………………… 24
十一、 細胞激素與氧化壓力之相關性 ……………………………… 25
十二、 實驗假說與研究目的 ………………………………………… 26
第三章 材料和方法
一、 實驗流程 ………………………………………………………… 28
二、 研究對象 ………………………………………………………… 29
三、 母乳採樣與資料收集
1. 母乳採樣 …………………………………………………… 29
2. 資料收集 …………………………………………………… 30
四、 實驗藥品與儀器………………………………………………… 31
五、 金屬分析
1. Pb 含量分析 ……………………………………………… 34
2. Cd 含量分析 ……………………………………………… 35
3. Al 含量分析 ……………………………………………… 36
4. As 含量分析 ……………………………………………… 37
5. Zn 含量分析 ……………………………………………… 38
6. Cu 含量分析 ……………………………………………… 39
7. Fe 含量分析 ……………………………………………… 40
8. Se 含量分析 ……………………………………………… 41
9. 元素之方法偵測極限 …………………………………… 42
六、 Lipid peroxides 含量分析 ……………………………………… 45
七、 維生素 E 含量之分析 ………………………………………… 46
八、 Cytokines 含量分析
1. TNF-含量 ………………………………………………… 48
2. IL-1含量 ………………………………………………… 50
九、 Lactoferrin 和 Casein 蛋白質分析 …………………………… 53
十、 Lactoferrin 含量 ……………………………………………… 56
十一、 蛋白質含量 ………………………………………………… 58
十二、 統計分析 …………………………………………………… 58
第四章 結果
一、 產婦與嬰兒之基本資料 ………………………………………… 59
1. 產婦基本資料 ……………………………………………… 59
2. 嬰兒出生狀態 ……………………………………………… 59
二、 初乳中微量金屬之影響因子
1. 微量金屬含量與 WHO/IAEA 參考值之比較 …………… 61
2. 產前產後體重變化 ………………………………………… 62
3. 生產之產次 ………………………………………………… 62
4. 不同分娩方式 ……………………………………………… 62
5. 職業狀態 …………………………………………………… 66
6. 不同教育程度 ……………………………………………… 67
7. 足月與早產 ………………………………………………… 68
8. 嬰兒出生身長與 Apgar score ……………………………… 68
9. 產前飲食頻率 ……………………………………………… 70
10. 有毒金屬含量與必須性金屬之相關性 …………………… 73
11. 運送蛋白含量 ……………………………………………… 76
12. Cytokines 含量 …………………………………………… 77
13. Vitamine E 含量 …………………………………………… 78
14. MDA 含量 ………………………………………………… 78
三、 不同哺乳時間之母乳微量金屬分佈
1. 有毒金屬含量 ……………………………………………… 82
2. 必須性金屬含量 …………………………………………… 82
3. 有毒金屬與必須性金屬之相關性………………………… 83
4. 運送蛋白含量 ……………………………………………… 90
5. Cytokines 含量 …………………………………………… 95
6. Vitamin E含量 …………………………………………… 100
7. MDA含量 ………………………………………………… 102
第五章 討論
一、初乳中微量金屬之影響因子
1. 微量金屬含量評估 ……………………………………… 108
2. 產婦基本資料相關性探討 ……………………………… 109
3. 嬰兒出生狀態相關性探討 ……………………………… 110
4. 產婦產前飲食攝取 ………………………………………… 111
5. 有毒金屬含量與必須性金屬之相關性 ………………… 113
6. 運送蛋白含量 …………………………………………… 113
7. Cytokines 含量 …………………………………………… 114
8. Vitamine E 含量 ………………………………………… 114
9. MDA 含量 ………………………………………………… 115
二、 不同哺乳時間之母乳微量金屬分佈
1. 有毒金屬與必須性金屬含量 …………………………… 115
2. 有毒金屬與必須性金屬之交互作用 …………………… 116
3. 運送蛋白含量 …………………………………………… 117
4. Cytokines 含量 …………………………………………… 118
5. Vitamine E含量 …………………………………………… 120
6. MDA含量 ………………………………………………… 120
三、母乳中健康風險評估 ……………………………………………… 121
第七章 結論 …………………………………………………………… 124
第六章 参考文獻 ……………………………………………………… 126
附錄
附件一 ………………………………………………………………… 141
附件二 ………………………………………………………………… 145
吳白玟 、陳石松、林瑞著、張碧秋、林阿洋和周薰修 (1991) 水產罐頭食品重金屬及組織胺含量調查。藥物食品檢驗局調查研究年報 9:257-
266。
呂針美 (1995) 高鋁攝食對幼鼠鐵營養狀況之影響。輔仁大學食品營養系研究所。
林明輝 (2007) 中部科學園區 (台中園區) 大氣懸浮微粒中含砷濃度的調查研究。中興大學環境工程學研究所。
洪瑜伶 (2007) 中部科學園區附近居民與學童呼吸到影響及家戶室內外懸浮微粒濃度之測定。中國醫藥大學環境醫學研究所。
陳佩伶、徐慈鴻和李貽華 (2001) 粒狀污染物與農作物。藥毒所專題報導 62:1-8。
郭曉惠 (2005) 國人捐贈乳中一般成份及礦物質含量之建立與研究。輔仁大學食品營養研究所。
劉純妃和鄭秋真 (1990) 台灣地區市售養殖魚類中重金屬含量之調查。藥物食品檢驗局調查研究年報 8:189-195。
蔡佳芬,潘志寬,鄭秋真和周薰修 (1990) 台灣地區養殖類重金屬含量之調查。藥物食品檢驗局調查研究年報 8:196-208。
蔡欣芳 (2003) 飲食型態與母乳中鉛、鎘、銅、鋅金屬元素濃度之關係研究。台北醫學大學公共衛生研究所。
蔡清讚 (2005) 建立中部科學園區開發所至空氣污染之健康風險評估模組之子計畫-中部科學園區半導體及光電產業無機酸與懸浮微粒環境監測極長期變化趨勢。國科會永續會研究成果報告。
Abadin HG, Hibbs BF and Pohl HP (1997) Breast-feeding exposure of infants to cadmium, lead, and mercury: a public health viewpoint. Toxicol and Health. Toxicol Ind Health 13:495-517.
Abdulrazzaq YM and Osman N (2004) Breast milk trace metals and nutriaents in UAE women in the first postpartum month. Clin Pediatr 1:21-26.
Ahmad SA, Sayed MH, Barua S, Khan MH, Faruquee MH, Jalil A, Hadi SA and Talukder HK (2001) Arsenic in drinking water and pregnancy outcomees. Environ Health Perspect 109: 629–631.
Ainscough EW, Brodie AM and Plowman JE (1980) Zinc transport by lactoferrin in human milk. Am J Clin Nutr 33:1314-1315.
Almeida AA, Lopes CMPV, Silva AMS and Barrado E. (2008) Trace elements in human milk: Correlation with blood levels, inter-element correlateions and changes in concentration during the first month of lactation. J Trace Elem Med Biol. 22:196-205.
Ambalavanan N, Carlo WA, D'Angio CT, McDonald SA, Das A, Schendel D, Thorsen P and Higgins RD (2009) Cytokines associated with bronchopulmon-ary dysplasia or death in extremely low birth weight infants. Pediatrics. 123:1132-1141.
Bates CJ, Thane CW, Prentice A, Delves HT and Gregory J (2002) Selenium status and associated factors in a British National Diet and Nutrition Survey: young people aged 4-18 y. Eur J Clin Nutr 56:873-881.
Bianchi MLP, Cruz A, Zanettti MA and Dore JG (1999) Dietary intake of selenium and its concentration in breast milk. Biol Trace Elem Res 70:273-277.
Boersma ER, Offringa PJ, Muskiet FA, Chase WM and Simmons IJ (1991) Vitamin E, lipid fractions, and fatty acid composition of colostrum, transitional milk, and mature milk: an international comparative study. Am J Clin Nutr 53:1197-1204.
Borschel MW, Kirksey A and Hannemann RE (1986) Evaluation of test-weighing for the assessment of milk volume intake of formula-fed infants and its application to breast-fed infants. Am J Clin Nutr 43:367-373.
Bremner I (1998) Manifestations of copper excess. Am J Clin Nutr 67:1069S-1073S.
Briefel RR, Reidy K, Karwe V, Jankowski L and Hendricks K (2004) Toddlers' transition to table foods: Impact on nutrient intakes and food patterns. J Am Diet Assoc 104:S38-44.
Bucala R, Makita Z, Koschinsky T, Cerami A and Vlassara A (1993) Lipid advanced glycosylation: pathway for lipid oxidation in vivo. Proc Natl Acad Sci USA 90: 6434-6438.
Campbell A , Becaria A, Lahiri DK, Sharman K and Bondy SC (2003) Chronic exposure to aluminum in drinking water increases inflammatory parameters selectively in the brain. J Neurosci Res 75:565-572.
Carter JD, Ghio AJ, Samet JM and Devlin RB (1997) Cytokine production by human airway epithelial cells after exposure to an air pollution particle Is metal-dependent. Toxicol Appl Pharmacol 146:180-188.
Casey BM, McIntire DD and Leveno KJ (2001) The continuing value of the Apgar score for the assessment of newborn infants. N Engl J Med 344:
467-471.
Caulfield LE, Zavaleta N, Shankar AH and Merialdi M (1998) Potential contribution of maternal zinc supplementation during pregnancy to maternal and child survival. Am J Clin Nutr 68:499S-508S.
Chandra Sekhar K, Chary NS, Kamala CT, Venkateswara Rao J, Balaram V and Anjaneyulu Y (2003) Risk assessment and pathway study of arsenic in industrially contaminated sites of Hyderabad: a case study. Environ Int 29:601-611.
Chien LC, Yeh CY, Lee HC, Chao HJ, Shieh MJ and Han BC (2006) Effect of the mother’s consumption of traditional Chinese herbs on estimated infant daily intake of lead from breast milk. Sci Total Environ 354:120-126.
Colomina MT, Esparza JL, Corbella J and Domingo JL (1998) The effect of maternal restraint on developmental toxicity of aluminum in mice. Neurotoxicol Teratol 20: 651-656.
Colomina MT, Roig JL, Torrente M, Vicens P and Domingo JL (2005) Concurrent exposure to aluminum and stress during pregnancy in rats: Effects on postnatal development and behavior of the offspring. Neurotoxicol Teratol 27: 565-574.
Concha G, Vogler G, Nermell B and Vahter M (1995) Low-level arsenic excretion in breast milk of native Andean women exposed to high levels of arsenic in the drinking water. Int Arch Occup Environ Health 71:42-46.
Cordano A (1998) Clinical manifestations of nutrition copper deficiency in infants and children. Am J Clin Nutr 67:1012S-1016S.
Cui X and Okayasu R (2008) Arsenic accumulation, elimination, and interaction with copper, zinc and manganese in liver and kidney of rats. Food Chem Toxicol 46:3646-3650.
D’Haese PC, Couttenye MM, Lamberts LV, Elseviers MM, Goodman WG, Schrooten I, Cabrera WE and Broe MED (1999) Aluminum, iron, lead, cadmium, copper, zinc, chromium, magnesium, strontium, and calcium content in bone of endstage renal failure patients. Clin Chem 45:1548-1556.
Dakeishi M, Murata K and Grandjean P (2006) Long-term consequences of arsenic poisoning during infancy due to contaminated milk powder. Environ Health 31;5:31.
Daniels L, Gibson R and Simmer K (1996) Randomised clinical trial of parenteral selenium supplementation in preterm infants. Arch Dis Child 74:158-164.
Delvin EE, Salle BL, Claris O, Putet G, Hascoet JM, Desnoulez L, Messai S and Levy E (2005) Oral Vitamin A, E and D Supplementation of Pre-Term Newborns either Breast-Fed or Formula-Fed: a 3-Month Longitudinal Study. J Pediatr Gastroenterol Nutr 40:43-47.
Domellof M, Lonnerdal B, Dewey KG, Cohen RJ and Hernell O (2004) Iron, zinc, and copper concentrations in breast milk are independent of maternal mineral status. Am J Clin Nutr 79:111-115.
Domingo JL, Gomez M and Colomina TM (2000) Risks of aluminium exposure during pregnancy. Contrib Mar Sci 1:479-487.
Dorea JG (2000) Iron and copper in human milk. Nurition 16:209-220.
Dorea JG and Donangelo CM (2005) Early (in uterus and infant) exposure to mercury and lead. Clin Nutr 25:369-376.
Eklund G, Grawe KP and Oskarsson (2001) Bioavailability of cadmium from infant diets in newborn rats. Arch Toxicol 75:522-530.
Eklund G, Tallkvist J and Oskarsson A (2004) A piglet model for studies of gastrointestinal uptake of cadmium in neonates. Toxicol Lett 146:237-247.
El-Demerdash FM (2004) Antioxidant effect of vitamin E and selenium on lipid peroxidation, enzyme activities and biochemical parameters in rats exposed to aluminium. J Trace Elem Med Biol 18:113-121.
Elinder CG, Friberg L, Kjellstrom T, Nordberg G and Oberdoerster G (1994) Biological monitoring of metals. WHO.
Ermis B, Yildirim A, Ors A, Tastekin A, Ozkan B and Akcay F (2005) Influence of smoking on serum and milk malondialdehyde peroxidase, and antioxidant potential levels in mothers at the postpartum seventh day. Biol Trace Elem Res 105:27-36.
Fang GC, Chang CN, Chu CC, Wu YS, Fu PPC, Y IL and Chen MH (2003) Characterization of particulate, metallic elements of TSP, PM2.5 and PM2.5-10 aerosols at a farm sampling site in Taiwan, Taichung. Sci Total Environ 308:157-166.
Fernandez LJR, Cocho JA, Rey-Goldar ML, Couce M and Fraga JM (1999) Aluminum contents of human milk, cow's milk, and infant formulas. J Pediatr Gastroenterol Nutr 28:270-275.
Fernandez-Checa JC, Kaplowitz N, Garcia-Ruiz C, Colell A, Miranda M, Mari M, Ardite E and Morales A (1997) GSH transport in mitochondria: defense against TNF-induced oxidative stress and alcohol-induced defect. Am J Physiol Gastrointest Liver Physiol 273: G7-G17.
Frkovic A, Kras M and Alebic-Juretic A (1997) Lead and cadmium content in human milk from the Northern Adriatic area of Croatia. Bull Environ Contam Toxicol 58:16-21.
Fox SI (2006) Human physiology. McGraw-Hill Higher. pp491.
Gaetke LM and Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147-163.
Granot E and Kohen R (2004) Oxidative stress in childhood--in health and disease states. Clin Nutr. 23:3-11.
Grawe KP and Oskarsson A (2000) Cadmium in milk and mammary gland in rats and mice. Arch Toxicol 73:519-527.
Gulson BL, Jameson CW, Mahaffey KR, Mizon KJ, Patison N, Law AJ, Korsch MJ and Salter MA (1998) Relationships of lead in breast milk to lead in blood, urine, and diet of the infant and mother. Environ Health Perspect 106:667–674.
Gundacker C, Pietschnig B, Wittmann KJ, Lischka A, Salzer H, Hohenauer L and Schuster E (2002) Lead and mercury in breast milk. Pediatrics 110:
873-878.
Gupta P, Narang M, Banerjee BD and Basu S (2004) Oxidative stress in term small for gestational age neonates born to undernourished mothers: a case control study. BMC Pediatr 20:14.
Hallen IP, Jorhemb L, Lagerkvist BJ and Oskarssona A (1995) Lead and cadmium levels in human milk and blood. Sci Total Environ 166:149-155.
Hambidge KM and Krebs NF (1989) Upper limits of zinc, copper and manganes in infants formulas. J Nutr 119:1861-1864.
Hammad TA, Sexton M and Langenberg P (1996) Relationship between blood lead and dietary iron intake in preschool children : A cross-sectional study. Ann Epidemiol 6:30-33.
Haug A, Hostmark AT and Harstad OM (2007) Bovine milk in human nutrition-a review. Lipids Health Dis 6:25.
Honda R and Nogawa K (1987) Cadmium, zinc and copper relationships in kidney and liver of humans exposed to environmental cadmium. Arch Toxicol 59:437–442.
Honda R, Tawara K, Nishijo M, Nakagawa H, Tanebe K and Saito S (2003) Cadmium exposure and trace elements in human breast milk. Toxicology 186:255-259.
Hopenhayn C, Ferreccio C, Browning S R., Huang B, Peralta C, Gibb H, Hertz-Picciotto I (2003) Arsenic Exposure from Drinking Water and Birth Weight. Epidemiology 14:593-502.
Hopenhayn RC, Browning SR, Hertz-Picciotto I, Ferreccio C, Peralta C and Gibb H (2000) Chronic arsenic exposure and risk of infant mortality in two areas of chile claudia. Environ Health Perspect 108:667-673.
Huang CH, Chang HC, Yin YP, Lin CS, Wu LJ and Hsu CC (2001) The study of immunoglobulin A, G and cellular growth factor contained in human breast milk. Nutr Sci J 26:240-247.
Huyck KL, Kile ML, Mahiuddin G, Quamruzzaman Q, Rahman M, Breton CV, Dobson CB, Frelich J, Hoffman E, Yousuf J, Afroz S, Islam S and Christiani DC (2007) Maternal arsenic exposure associated with low birth weight in Bangladesh. J Occup Environ Med 49:1097-1104.
Jaffery FN, Misra V and Viswanathan PN (2002) Convergence of clinical toxicology and epidemiology in relation to health effects of chemicals. Environ Toxicol Pharmacol 12:169-179.
Kadiiska MB, Hanna PM, Jordan SJ and Mason RP (1993) Electron spin resonance evidence for free radical generation in copper-treated vitamin E and selenium-deficient rats: in vivo spin-trapping investigation. Mol Pharmacol 44:222-227.
Kakkar P and Jaffery FN (2005) Biological markers for metal toxicity. Environ Toxicol Pharmacol 19: 335-349.
Kantola M, Purkunen R, Kroger P, Tooming A, Juravskaja J, Pasanen M, Saarikoski S and Vartiainen T (2000) Accumulation of cadmium, zinc, and copper in maternal blood and developmental placental tissue: differences between Finland, Estonia, and St. Petersburg. Environ Res 83:54-66.
Kantola M and Vartiainen T (2001) Changes in selenium, zinc, copper and cadmium contents in human milk during the time when selenium has been supplemented to fertilizers in Finland. J Trace Elem Med Biol 15:11-17.
Keen CL, Hanna LA, Lanoue L, Uriu-Adams JY, Rucker RB and Clegg MS (2003) Developmental Consequences of Trace Mineral Deficiencies in Rodents : Acute and Long-Term Effects. J Nutr 133:1477S-1480S.
Keen CL, Uriu-Hare JY, Hawk SN, Jankowski MA, Daston GP, Kwik-Uribe CL and Rucker RB (1998) Effect of copper deficiency on prenatal development and pregnancy outcome. Am J Clin Nutr 67: 1003S-1011S.
Kelleher SL and Lonnerdal B (2005) Molecular regulation of milk trace mineral homeostasis. Mol Aspects Med 26:328-339.
Khansari FE, Ghazi-Khansari M and Abdollahi M (2005) Heavy metals content of canned tuna fish. Food Chem 93: 293-296.
Klish WJ, Baker SS, Flores CA, Georgieff MK, Lake AM, Leibel RL and Udall JN (1996) Aluminum toxicity in infants and children. Pediatrics 97:413-416.
Krebs NF (1998) Zinc supplementation during lactation. Am J Clin Nutr 68:509S-512S.
Krebs NF (2000) Dietary zinc and iron sources, physical growth and cognitive development of breastfed infants. J Nutr 130:358-360.
Krewski D, Yokel R, Nieboer E, Borchelt D, Cohen J, Harry J, Kacew S, Lindsay J, Mahfouz A and Rondeau V (2007) Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J Environ Sci Health B 10:1-269.
L'Abbe MR and Friel JK (2000) Superoxide dismutase and glutathione peroxidase content of human milk from mother of premature and full-term infants during the frist 3 months of lactation. J Pediatr Gastroenterol Nutr 31:270-274.
Leazer TM, Liu Y and Klaassen CD (2002) Cadmium absorption and its relationship to divalent metal transporter-1 in the rregnant rat. Toxicol Appl Pharmacol 185:18-24.
Leotsinidis M, Alexopoulos A amd Kostopoulou-Farri E (2005) Toxic and essential trace elements in human milk from Greek lactating women: Association with dietary habits and other factors. Chemosphere 61: 238-247.
Leung AKC and Sauve RS (2005) Breast is best for babies. J Natl Med Assoc 97:1009-1010.
Liu J, Liu Y, Goyer RA, Achanzar W and Waalkes MP (2003) Metallothionein-I/II null mice are more sensitive than wild- type mice to the hepatotoxic and nephrotoxic effects of chronic oral or injected inorganic arsenicals. Toxicol Sic 55:460-467.
Liu X, Jin Y, Nordberg G, Sjostrom M and Zhou Y (1994) Influence of Zinc and copper administration on metal disposition in rats with cadmium-metallothionein-induced nephrotoxicity. Toxicol Appl Pharmacol 126:84-90.
Lonnerdal B (1996) Bioavailability of cooper. Am J Clin Nutr 63:821S-829S.
McLachlan SK, Thomson CD,Ferguson EL and McKenzie JE (2004) Dietary and biochemical selenium status of urban 6- to 24-month-old south island New Zealand children and their postpartum mothers. J Nutr 134:3290-3295.
Meneghini R (1997) Iron Homeostasis, Oxidative Stress, and DNA Damage. Free Radic Biol Med 23:783-792.
Minotti G and Aust SD (1992) Redox cycling of iron and lipid peroxidation. Lipids 27:219-226.
Nedeljkovic ZS, Gokce N and Loscalzo J (2003) Mechanisms of oxidative stress and vascular dysfunction. Postgrad Med J 79:195-200.
Niki Y, Matsumoto H, Suda Y, Otani T, Fujikawa K, Toyama Y, Hisamori N and Nozue A (2003) Metal ions induce bone-resorbing cytokine production through the redox pathway in synoviocytes and bone marrow macrophages. Biomaterials 24:1447-1457.
Ohtake M and Tamura T (1993) Changes in zinc and copper concentrations in breast milk and blood of Japanese women during lactation. J Nutr Sci Vitaminol 39:189-220.
Oskarsson A, Hallen IP, Sundberg J and Grawe KP (1998) Risk assessment in relation to neonatal metal exposure. Analyst 123:19-23.
Picciano MF (2001) Nutrient composition of human milk. Pediatr Clin North Am 48:53-67.
Powell SR (2000) The antioxidant properties of zinc. J Nutr 130:1447S-1454S.
Queirolo F, Stegen S, Restovic M, Paz M, Ostapczuk P, Schwugerb MJ and Munozc L (2000) Total arsenic, lead, and cadmium levels in vegetables cultivated at the Andean villages of northern Chile. Sci Total Environ 255:75-84.
Rao R and Georgieffa MK (2007) Iron in fetal and neonatal nutrition. Semin Fetal Neonatal Med 12:54-63.
Rashed MN (2001) Monitoring of environmental heavy metals in fish Nasser Lake. Environ Int 27:27-33.
Rothenberg SJ, Karchmer S, Schnaas L, Perroni E, Zea F and Alba JF (1994) Changes in serial blood lead levels during pregnancy. Environ Health Perspect 102: 876–880.
Salpietro CD, Gangemi S, Minciullo PL, Briuglia S, Merlino MV, Stelitano A, Cristani M, Trombetta D and Saija A (2002) Cadmium concentration in maternal and cord blood and infant birth weight: a study on healthy non-smoking women. J Perinat Med 30:395-399.
Sankaranarayanan S, Untoro J, Erhardt J, Gross R and Rosales FJ. (2004) Daily iron alone but not in combination with multimicronutrients increases plasma ferritin concentrations in Indonesian infants with inflamemation. J Nutr 134:1916–1922.
Santos EE, Lauria DC, Silveira CLP (2004) Assessment of daily intake of trace elements due to consumption of foodstuffs by adult inhabitants of Rio de Janeiro city. Sci Total Environ 327:69-79.
Sarkar S, Yadav P and Bhatnagar D (1997) Cadmium-induced lipid peroxidation and the antioxidant system in rat erythrocytes: the role of antioxidants. J Trace Elem Med Biol 11:8-13.
Satarug S and Moore MR (2004) Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environ Health Perspect 112:1099-1103.
Sato M and Nagai Y (1988) Effect of zinc deficiency on the accumulation of metallothionein and cadmium in the rat liver and kidney. Arch Environ Contam Toxicol 18: 587-593.
Sekhar KC, Chary NS, Kamala CT, Rao JV, Balaram V and Anjaneyulu Y (2003) Risk assessment and pathway study of arsenic in industrially contaminated sites of Hyderabad: a case study. Environ Int 29:601–611.
Sharma P and Mishra KP (2006) Aluminum-induced maternal and developpmental toxicity and oxidative stress in rat brain: response to combined administration of Tiron and glutathione. Reprod Toxicol 21:313-321.
Silvestre MD, Lagarda MJ, Farre R, Martínez-Costa C, Brines J, Molina A and Clemente G (2007) A study of factors that may influence the determination of copper, iron, and zinc in human milk during sampling and in sample individuals. Biol Trace Elem Res 76:217-227.
Simmer K, Ahmed S, Carlsson L and Thompson RP (1990) Breast milk zinc and copper concentrations in Bangladesh. Br J Nutr 63:91-96.
Souad C, Farida Z, Nadra L, Francois B, Bougle D and Azeddine S (2006) Trace element level in infant hair and diet, and in the local environment of Moroccan city of Marrakech. Sci Total Environ 370:337-342.
Sternowsky HJ, Moser B and Szadkowsky D (2002) Arsenic in breast milk during the first 3 months of lactation. Int J Hyg Environ Health 205:405-409.
Thompson J (2005) Breastfeeding benefits and implications: Part two. Community Practitoner 78:218-219.
Ulman C, Gezer S, Anal O, Tore IR and Kirca U (1998) Arsenic in human and cow's milk: a reflection of environmental pollution. Water Air Soil Pollut 101:411-416.
Ustundag B, Yilmaz E, Dogan Y Akarsu S, Canatan H, Halifeoglu I, Cikim G and Aygun AD (2005) Levels of cytokines (IL-1β, IL-2, IL-6, IL-8, TNF-α) and trace elements (Zn, Cu) in breast milk from mothers of preterm and term infants. Mediators Inflamm 6:311-336.
Valko M, Morris H, Cronin MT (2005) Metals, Toxicity and Oxidative Stress. Curr Med Chem 12:1161-1208.
Valko M, Rhodes CJ, Moncol J, Izakovic M and Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1-40.
Verstraeten SV, Aimo L and Oteiza PI (2008) Aluminium and lead: molecular mechanisms of brain toxicity. Arch Toxicol 82:789-802.
Wagner M, Klein CL, Kooten TG and Kirkpatrick CJ (1998) Mechanisms of cell activation by heavy metal ions. J Biomed Mater Res A 42:443-452.
Wardlaw GM, Hampl JS and Disilvestro RA (2004) Perspectives in nutrition. McGraw-Hill Higher. pp417-442, 590-593.
Wasantwisut E, Winichagoon P, Chitchumroonchokchai C, Yamborisut U, Boonpraderm A, Pongcharoen T, Sranacharoenpong K and Russameesopaphorn W (2006) Iron and zinc supplementation improved iron and zinc status, but not physical growth, of apparently healthy, breast-fed infants in rural communities of Northeast Thailand. J Nutr 136: 2405-2411.
Wasowicz W, Gromadzinska J, Szram K, Rydzynski K, Cieslak J and Pietrzak Z (2001) Selenium, zinc and copper concentrations in the blood and milk of lactoating women. Biol Trace Elem Res 79:221-233.
Wasserman GA, Liu X, Parvez F, Ahsan H, Litvak PF, Geen AV, Slavkovich V, Lolacono NJ, Cheng Z, Hussain I, Momotaj H and Graziano JH (2004) Water arsenic exposure and children’s intellectual function in araihazar, Bangladesh. Environ Health Perspect 112:1329-1333.
Wataha JC, Ratanasathien S, Hanks CT and Sun Z (1996) In vitro IL-1 beta and TNF-alpha release from THP-1 monocytes in response to metal ions. Dent Mater 12:322-327.
Wellinghausen N, Driessen C and Rink L (1996) Stimulation of human peripheral blood mononuclear cells by zinc and related cations. Cytokine 8:
767-771.
WHO (2004) Vitamin and mineral requirements in human nutrition, 2nd edition.
WHO and UNICEF (2003) Global strategy for infant and young child feeding. Geneva, Switzerland: WHO.
WHO/FAO (1998) Vitamin and mineral requirements in human nutration. pp94-211.
Wolf MB and Baynes JW (2007) Cadmium and mercury cause an oxidative stress-induced endothelial dysfunction. BioMetals 20:73-81.
Wu MM, Chiou HY, Ho IC, Chen CJ and Lee TC (2003) Gene expression of inflammatory molecules in circulating lmphocytes from arsenic-exposed human subjects. Environ Health Perspect 111:142-1438.
Yamawaki N, Yamada M, Kan-no T, Kojima T, Kaneko T and Yonekubo A (2005) Macronutrient, mineral and trace element composition of breast milk from Japanese women J Trace Elem Med Biol 19:171-181.
Yildirim Y, Gonulalan Z, Narin I and Soylak M (2009) Evaluation of trace heavy metal levels of some fish species sold at retail in Kayseri, Turkey. Environ Monit Assess 149:223-228.
Yoshino M, Ito M, Haneda M, Tsubouchi R and Murakami K (1999) Prooxidant action of aluminum Ion–Stimulation of iron-mediated lipid peroxidation by aluminum. Bio Metals 12:237-240.
Zaida F, Chadrame S, Sedki A, Lekouch N, Bureau F, Arhan P and Bougle D (2007) Lead and aluminium levels in infants' hair, diet, and the local environment in the Moroccan city of Marrakech. Sci Total Environ 377:
152-158.
Zelikoff JT, Bertin JE, Burbacher TM, Hunter ES, Miller RK, Silbergeld EK, Tabacova S, Rogers JM (1995) Health risks associated with prenatal metal exposure. Fundam Appl Toxicol 25:161-170.
Zhang WJ and Frei B (2003) Intracellular metal ion chelators inhibit TNFα-induced SP-1 activation and adhesion molecule expression in human aortic endothelial cells. Free Radic Biol Med 34:674-682.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔