(3.235.139.152) 您好!臺灣時間:2021/05/11 06:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:張家瑜
研究生(外文):Cheng chia-yu
論文名稱:汞在藻體的生物累積性及動物毒性效應研究
論文名稱(外文):Mercury bioaccumulation in algal cell and toxic effects in animal
指導教授:黃文鑑黃文鑑引用關係
指導教授(外文):Huang winn-jung
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:113
中文關鍵詞:優養化藻類甲基汞生物累積作用
外文關鍵詞:EutrophicationAlgaeMercuryMethylmercuryBioaccumulation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:580
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:105
  • 收藏至我的研究室書目清單書目收藏:0
近年重金屬累積在水體生物的相關研究逐漸受到重視,包括遭污染的水源中重金屬可能吸附或吸收在藻類或藍綠細菌,其中微量汞金屬的生物累積現象特別受到重視。汞在環境中屬於持久性的毒性化學物質,經過食物鏈的生物累積作用可能使毒性濃縮至數百萬倍,並藉由微生物作用轉化成毒性更強之有機汞,其中以甲基汞最具代表性。本研究針對水體中汞的生物累積作用,利用水庫繁殖的藻類及實驗室培養的純藻,以微量汞及甲基汞添加至含藻類之人工原水中,探討藻體對汞或甲基汞的吸附/吸收效應,希望對目前優養化水體及表面水遭受重金屬污染有生物指標性意義。藻體對汞/甲基汞之吸附實驗結果發現,微囊藻對汞吸附/收能力高於鯉魚潭藻體(主要藻相為矽藻及綠球藻)。在甲基汞方面,兩種藻體對甲基汞累積情況明顯較汞高出許多。再者,本研究進行汞及甲基汞之動物毒性試驗,利用大鼠(Sprague-Dawley rats)為試體,依汞餵食劑量分為高低劑量實驗組(Hg-5 & Algae、Hg-50 & Algae)、汞實驗組(Hg-50)、甲基汞實驗組(MeHg-25、MeHg-250)、純藻實驗組(Algae)及空白組(Blank),並依據汞LD50為2.86 mg/kg(口服)、甲基汞LD50為30.0 mg/kg(口服),依體重調整餵食劑量,連續每週以胃管餵食大鼠,固定時間抽取大鼠血液進行血液中殘存微量汞濃度分析,實驗結果顯示,吸附汞之藻體及甲基汞皆會隨著餵食劑量累積於鼠體血液中,尤其又以甲基汞累積量最為明顯。鼠體血液及肝臟、腎臟之總汞量分析結果發現,汞、藻體吸附汞及甲基汞在血液中累積總汞量較低,大部分都累積於肝臟、腎臟,尤其又以腎臟的總汞累積量為最高。DNA氧化傷害結果顯示,無論汞或甲基汞在血液中DNA傷害皆大於肝、腎組織器官,其中Hg-50 & Algae試驗組受到的傷害遠大於Hg-50,推測汞經由藻體吸附後,可能因鼠體對藻體代謝作用使汞對鼠體造成更大的傷害。在脂質過氧化反應結果顯示甲基汞對於鼠體造成傷害明顯較汞嚴重。
Recently, it has been known for some time that heavy metal ions accumulated by aquatic organism, such as algal, bacteria and fungi. Many studies on heavy metals polluted coaters have revealed that metal could be adsorption or absorption by algal and cyanobacteria (blue-green algae). Mercury (Hg) is one of the most toxic metals commonly found in the environmental. The distribution of mercury species amount different ecosystem compartments critically influences Hg fate and bioaccumulation (could be accumulated to million times of origin concentration) in the food web. On the other hard, the Hg could be transfer by microorganism become to organic mercury, one of the toxic substances is methylmercury (MeHg). The purpose of this study is to examine the Hg bioaccumulation by measurements of Hg and MeHg distribution patterns in algae that were separted from eurtrophic reservoir. The other aims of this study is to evaluate the potential of Hg/MeHg bioaccumulated in food web, the representative selection of an indicator species for a specified eutrophic reservoir. The results showed that Microcystis aeruginosa for mercury adsorption/absorption ability is higher than Li-Yu Lake (the main algae species of diatom and chlorella). In regard to methylmercury, two types of algae on the accumulation of Hg are much higher than MeHg. Furthermore, the study for mercury and methylmercury toxicity test in animals, use of rats (Sprague-Dawley rats) to test body, dose of mercury in accordance with feeding the experimental group divided into high and low dose experimental group (Hg-5 & algae、Hg-50 & algae), experimental group of Mercury (Hg-50), experimental group of methylmercury (MeHg-25、MeHg-250), experimental group of pure algae (algae) and the blank group (blank), according to the LD50 for mercury 2.86 mg/kg (oral) and LD50 for methylmercury 30.0 mg/kg (oral), in accordance with the weight adjusted dose feeding, rats fed for a week of periods, blood taken from rats in the residual blood concentration of trace mercury at a fixed time analysis. The results showed that adsorption of mercury in the algae and methylmercury were accumulated on the blood of rats with the dose feeding, in particular, the accumulated amount of methyl mercury obvious. The results of the analysis of total mercury in the rat blood, liver, and kidney, mercury, algae of mercury the adsorption and methylmercury accumulation in the blood lower the total amount of mercury, most of the Hg was accumulated in the liver and kidney, in particular, the kidney accumulated the highest amount of total mercury. The results also showed that DNA oxidative damage in the blood DNA damage is higher than liver and kidney tissues, which the Hg-50 & Algae harm is greater than Hg-50, that the mercury adsorption by the algae after, rats may be due to metabolism of the algae on the mouse so that the mercury caused greater harm. In lipid peroxidation showed that methylmercury to rats caused a injury is higher than the mercury.
目 錄

摘 要 Ⅰ
Abstract Ⅲ
目 錄 Ⅵ
表 目 錄 Ⅹ
圖 目 錄 ⅩⅡ

第一章 前 言 1
1-1 研究緣起 1
1-2 研究目的 3

第二章 文獻回顧 4
2-1 表面水優養化與污染物生物累積性關係 4
2-1-1 優養化成因及對環境之衝擊 4
2-1-2 優養化原水藻種及其物化特性 7
2-1-3 藻類在水中生物放大作用扮演角色 12
2-1-4淨水程序中使用之除藻技術 15
2-2 藻類攝取及代謝重金屬之機制 17
2-2-1 藻類攝取重金屬之途徑 17
2-2-2 重金屬對動物攝取之毒性試驗 19
2-3 汞在水相環境之分佈及毒性 21
2-3-1 汞在水中之宿命 21
2-3-2 汞之毒性試驗 24

第三章 實驗材料與方法 25
3-1 實驗設計架構 25
3-2 實驗設備與藥品 28
3-2-1 動力/恆溫吸附實驗設備與藥品 28
3-2-2 大鼠(Sprague-Dawley Rat)毒性試驗之設備與藥品 30
3-3 實驗分析方法 35
3-3-1 水中藻體對汞之動力/恆溫吸附實驗 35
3-3-1-1 水相汞含量分析方法 38
3-3-1-2 溶解性有機碳(DOC)分析 40
3-3-1-3 場發掃描式電子顯微鏡(FE-SEM) 41
3-3-2 動物毒性試驗 42
3-3-2-1 動物試驗之大鼠飼養及管餵方法 42
3-3-2-2 血液及肝、腎臟中汞含量分析 44
3-3-2-3 脂質過氧化代謝產物-丙二醛分析 50
3-3-2-4 DNA strand breakage分析 52

第四章 結果與討論 55
4-1 水中藻體對汞之動力與恆溫吸附/吸收結果 55
4-1-1 藻體對汞及甲基汞之動力吸附結果 55
4-1-2 藻體對汞及甲基汞之恆溫吸附結果 71
4-2 汞及甲基汞在鼠體內累積量之分析 85
4-2-1 汞在鼠體血液及臟器累積量之比較 85
4-2-2 甲基汞在鼠體血液及臟器之累積量分析 92
4-3 汞及甲基汞之動物毒性試驗結果 101
4-3-1 DNA strand breakage 101
4-3-2 脂質過氧化反應傷害之影響 104

第五章 結論與建議 106

參考文獻 108


表 目 錄
表2-1 卡爾森優養化指數之計算方式 6
表2-2 藻類的分類及特徵 8
表3-1 ICP/OES各項操作參數 39
表3-2 ICP-MS各項操作參數 46
表4-1 應用吸附動力模式推估之內部擴散速率 69
表4-2 汞於恆溫吸附模式估算吸附量(K)與鍵結強度(1/n)比較 84
表4-3 甲基汞於恆溫吸附模式估算吸附量(K)與鍵結強度(1/n)比較 84
表4-4 汞在鼠體血液中累積量與總餵食量比值 90
表4-5 甲基汞在鼠體血液中累積量與總餵食量比值 95
表4-6 鼠體內血液及肝臟、腎臟累積之總汞量(ng/g weight) 100
表4-7 血液及肝臟、腎臟累積汞量與餵食總汞量比例(%) 100
表4-8 大鼠白血球、肝細胞及腎細胞之DNA傷害指標 103
表4-9 大鼠血漿、肝臟及腎臟之脂質過氧化產物-MDA濃度 105


圖 目 錄
圖2-1 國內主要水庫近年優養化狀況 6
圖2-2 褐藻細胞壁構造圖 10
圖2-3 褐藻細胞組成 11
圖2-4 汞於空氣、水及沉澱物之轉換 14
圖2-5 全球汞循環示意圖 23
圖3-1 實驗架構 26
圖3-2 鯉魚潭原水藻種分佈FE-SEM圖 27
圖3-3 純化培養之微囊藻種FE-SEM圖 27
圖3-4 湯瑪氏血球計 37
圖3-5 眼窩採血 48
圖4-1 鯉魚潭藻體對汞的吸附/吸收量 58
圖4-2 微囊藻對汞的吸附/吸收量 58
圖4-3 鯉魚潭藻體對汞之吸附/吸收及殘留比例 59
圖4-4 微囊藻對汞之吸附/吸收及殘留比例 59
圖4-5 鯉魚潭藻體對汞的吸附/吸收量比較 60
圖4-6 微囊藻對汞的吸附/吸收量比較 60
圖4-7 鯉魚潭藻體及微囊藻吸附/吸收汞過程中液相之DOC變化趨勢 61
圖4-8 鯉魚潭藻體對甲基汞的吸附/吸收量 64
圖4-9 微囊藻對甲基汞的吸附/吸收量 64
圖4-10 鯉魚潭藻體對甲基汞之吸附/吸收及殘留比例 65
圖4-11 微囊藻對甲基汞之吸附/吸收及殘留比例 65
圖4-12 鯉魚潭藻體對甲基汞的吸附/吸收量比較 66
圖4-13 微囊藻對甲基汞的吸附/吸收量比較 66
圖4-14 鯉魚潭藻體及微囊藻吸附/吸收甲基汞過程中液相之DOC變化趨勢 67
圖4-15 藻體於動力吸附條件下對汞之吸附/吸收量比較 70
圖4-16 藻體於動力吸附條件下對甲基汞之吸附/吸收量比較 70
圖4-17 鯉魚潭藻體對汞的恆溫吸附/吸收量 73
圖4-18 微囊藻對汞的恆溫吸附/吸收量 73
圖4-19 鯉魚潭藻體對汞之吸附/吸收及水相殘留比例 74
圖4-20 微囊藻對汞之吸附/吸收及水相殘留比例 74
圖4-21 鯉魚潭藻體對汞的吸附/吸收量比較 75
圖4-22 微囊藻對汞的吸附/吸收量比較 75
圖4-23 鯉魚潭藻體及微囊藻吸附/吸收汞過程中液相之DOC變化趨勢 76
圖4-24 鯉魚潭藻體對甲基汞的吸附/吸收量 78
圖4-25 微囊藻對甲基汞的吸附/吸收量 78
圖4-26 鯉魚潭藻體對甲基汞之吸附/吸收及殘留比例 79
圖4-27 微囊藻對甲基汞之吸附/吸收及殘留比例 79
圖4-28 鯉魚潭藻體對甲基汞的吸附及吸收量比較 80
圖4-29 微囊藻對甲基汞的吸附及吸收量比較 80
圖4-30 鯉魚潭藻體及微囊藻吸附/吸收甲基汞過程中液相之DOC變化趨勢 81
圖4-31 藻體於恆溫條件下對汞之吸附/吸收量比較 83
圖4-32 藻體於恆溫條件下對甲基汞之吸附/吸收量比較 83
圖4-33 實驗大鼠試驗期間之體重變化 87
圖4-34 餵汞組鼠體血液之總汞累積量 87
圖4-35 Hg-50餵食組於鼠體血液中汞累積量與餵食量比較 89
圖4-36 Hg-5 & Algae餵食組於鼠體血液中汞累積量與餵食量比較 89
圖4-37 Hg-50 & Algae餵食組於鼠體血液中汞累積量與餵食量比較 90
圖4-38 餵汞組於鼠體血液中及肝臟、腎臟汞累積量比較 91
圖4-39 餵食甲基汞組於鼠體血液之總汞累積量 93
圖4-40 MeHg-25餵食組於鼠體血液中汞累積量與餵食量比較 96
圖4-41 MeHg-250餵食組於鼠體血液中汞累積量與餵食量比較 96
圖4-42 甲基汞餵食組於鼠體血液中及肝臟、腎臟汞累積量比較 98
圖4-43 鼠體餵食MeHg-250之腎臟Comet assay分析影像 102
圖4-44 鼠體控制組(Blank)之腎臟Comet assay分析影像 102
參考文獻

Awasthi, M. and Rai, L. C., 2004, “Adsorption of nickel, zinc and cadmium by immobilized green algae and cyanobacteria: a comparative study,” Annals of microbiology, vol. 54, No. 3, pp.257-267.

Belly, R. T., Tansey, M. R. and Brock, T. D., 1973, “Algal excretion of 14C-labeled compounds and microbial interactions in Cyanidium caldarium mats,” Journal of Phycology, Vol. 9, pp. 123-127.

Biester, H., Schuhmacher, P., Müller, G., 2000, “Effectiveness of mossy tin filters to remove mercury from aqueous solution by Hg(II) reduction and Hg(0) amalgamation,” Water Research, Vol. 34, Iss. 7, pp. 2031-2036.

Block, G., Dietrich, M., Norkus, E. P., Morrow, J. D., Hudes, M., Caan, B. and Packer, L., “Factors associated with oxidative stress in human populations,” American Journal of Epidemiology, Vol. 156, No. 3, pp. 274-285.

Bold, H.C., and Wynne, M.J., 1985, “Introduction to the algae: structure and reproduction,” Prentice-Hall, Inc., Englewood Cliffs, New Jersey. USA.

Brierley, C. L., 1990, “Bioremediation of metal-contaminated surface and groundwaters,” Geomicrobiology Journal, Vol. 8, Iss. 3-4, pp. 201-223.

Cerutti P. A., 1994, “Oxy-radicals and cancer,” The Lancet, Vol. 344, Iss. 8926, pp. 862-863.

Csonto, J., Kadukova, J. and Polak, M., 2001, “Artificial life simulation of living alga cells and its sorption mechanisms,” Journal of Medical Systems, Vol. 25, Iss. 3, pp. 221-231.

Cyr, P. J., Suri, R. P. S. and Helmig E. D., 2002, “A pilot scale evaluation of removal of mercury from pharmaceutical wastewater using granular activated carbon,” Water Research, Vol. 36, Iss. 19, pp. 4725-4734.

Damek-Poprawa, M. and Sawicka-Kapusta, K., 2003, “Damage to the liver, kidney, and testis with reference to burden of heavy metals in yellow-necked mice from areas around steelworks and zinc smelters in Poland,” Toxicology, Vol. 186, Iss. 1-2, pp. 1-10.

Davis, T. A., Volesky, B. and Mucci, A., 2003, “A review of the biochemistry of heavy metal biosorption by brown algae,” Water Research, Vol. 37, Iss. 18, pp. 4311-4330.

Deng, L., Fu, D. and Deng, N., 2009, “Photo-induced transformations of mercury(II) species in the presence of algae, Chlorella vulgaris,” Journal of Hazardous Materials, Vol. 164, Iss. 2-3, pp. 798-805.

Gómez, M., Sánchez, D. J., Llobet, J. M., Corbella, J. and Domingo, J., 1997, “The effect of age on aluminum retention in rats,” Toxicology, Vol. 116, Iss. 1-3, pp. 1-8.

He, T., Feng, X., Guo, Y., Qiu, G., Li, Z., Liang, L. and Lu, J., 2008, ” The impact of eutrophication on the biogeochemical cycling of mercury species in a reservoir: A case study from Hongfeng Reservoir, Guizhou, China,” Environmental Pollution, Vol. 154, Iss. 1, pp. 56-67.

Hsleh, T. C. Y., Williams, S. S., Vejaphan, W. and Meyers, S. P., 1989, “Characterization of volatile components of menhaden fish (brevoortia tyrannus) oil,” Journal of the American Oil Chemists' Society, Vol. 66, pp. 114-117.

Institóris, L., Siroki, O., Ündeger, Ü., Basaran, N. and Dési, I., 2002,” Immunotoxicological investigation in rats dosed repeatedly with combinations of cypermethrin, As(III), and Hg(II) ,” Toxicology, Vol. 172, Iss. 1, pp. 59-67.

Jűttner F., 1984, “Characterization of Microcystis strains by alkyl sulfides and β-cyclocitral,” Zeitschrift fur Naturforschung. Section C, Biosciences, Vol. 39, No. 9-10, pp. 867-871.

Kim, S. C. and Lee, D. K., 2005, “ Preparation of TiO2-coated hollow glass beads and their application to the control of algal growth in eutrophic water,” Microchemical Journal, Vol. 80, Iss 2, pp. 227- 232.

Martin, J. F., Izaguirre, G. and Waterstrat, P., 1991, “A planktonic Oscillatoria species from Mississippi catfish ponds that produces the off-flavor compound 2-methylisoborneol,” Water Research, Vol. 25, pp. 1447-1451.

Paraquetti, H. H. M., Ayres, G. A., Almeida, M. D. de , Molisani, M. M. and Lacerda, L. D. de, 2004, “Mercury distribution, speciation and flux in the Sepetiba Bay tributaries, SE Brazil,” Water Research, Vol. 38, Iss. 6, pp. 1439-1448.

Peterson, H. G., Hrudey, S. E., Cantin, I. A., Perley, T. R. and Kenefick S. L., 1995, “Physiological toxicity, cell membrane damage and the release of dissolved organic carbon and geosmin by Aphanizomenon flos-aquae after exposure to water treatment chemicals,” Water Research, Vol. 29, Iss. 6, pp. 1515-1523.

Rai, L. C., Gaur J. P. and Soeder C. J. (ed.), 1994, “Algae and Water Pollution,” E. Schweizerbart’sche Verlagsbuchhandlung science, Advances in Limnology, Germany, Vol. 42, pp. 1-29.

Roesijadi, G.., 1996, “Metallothionein and its role in toxic metal regulation,” Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, Vol. 113, Iss. 2, pp. 117-123.

Sabour, B., Loudiki, M., Oudra, B., Oubraim, S., Fawzi, B., Fadlaoui, S., Chlaida, M. and Vasconcelos, V., 2002, “First results on Microcystis ichthyoblabe Kütz. toxic bloom in the hypertrophic Oued Mellah reservoir (Morocco),” Annales de Limnologie - International Journal of Limnology, Vol. 38, No. 1, pp. 13-22.

Steynberg, M. C., Guglielmi, M. M., Geldenhuys, J. C. and Pieterse, A. J. H., 1996, “Chlorine and chlorine dioxide: Pre-oxidants used as algocide in potable water plants,” Journal of Water Supply: Research and Technology - Aqua - Oxford, Vol. 45, No. 4, pp. 162-170.

Struck, B. D., Pelzer, R., Ostapczuk P., Emons H. and Mohl C., 1997, “Statistical evaluation of ecosystem properties influencing the uptake of As, Cd, Co, Cu, Hg, Mn, Ni, Pb and Zn in seaweed (Fucus vesiculosus) and common mussel (Mytilus edulis),” Science of The Total Environment, Vol. 207, Iss. 1, pp. 29-42.

Su, L., Wang, M., Yin, S. T., Wang, H. L., Chen, L., Sun, L. G. and Ruan, D. Y., 2008, “The interaction of selenium and mercury in the accumulations and oxidative stress of rat tissues,” Ecotoxicology and Environmental Safety, Vol. 70, Iss. 3, pp. 483-489.

Takahashi, Y., Tsuruta, S., Hasegawa, J., Kameyama, Y. and Yoshida, M., 2001, “Release of mercury from dental amalgam fillings in pregnant rats and distribution of mercury in maternal and fetal tissues,” Toxicology, Vol. 163, Iss. 2-3, pp. 115-126.

Taylor, G. J. and Crowder, A. A., 1983, “Use of the DCB technique for extraction of hydrous ironoxides from roots of wetland plants,” American Journal of Botany, Vol. 70, No. 8, pp. 1254–1257.

USEPA (U.S. Environmental Protection Agency), 1997, ” Mercury Study Report to Congress,” Vol. 1, Executive Summary, EPA-452/R-97-003, (Washington: GPO).

Valavanidis, A., Vlahogianni, T., Dassenakis, M. and Scoullos, M., 2006, “Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants,” Ecotoxicology and Environmental Safety, Vol. 64, Iss 2, pp. 178-189.

Waynforth, H. B. and Flecknell, P. A. , 1992, “Experimental and surgical technique in the rat,” 2nd edition, Academic press.

Westerhoff, P., Rodriguez-Hernandez, M., Baker, L. and Sommerfeld, M., 2005, “Seasonal occurrence and degradation of 2-methylisoborneol in water supply reservoirs,” Water Research, Vol. 39, Iss. 20, pp. 4899-4912.

WHO (World Health Organization), 2008, “Mercury - Assessing the environmental burden of disease at national and local levels,” Environmental Disease Burden Series, No. 16.

Wiklund, S. J. and Agurell, E., 2003, “Aspects of design and statistical analysis in the Comet assay,” Mutagenesis, Vol. 18, No. 2, 167-175.

曾勇霖,2007,「非勻相催化臭氧分解藻類代謝物之研究」,碩士論文,弘光科技大學環境工程研究所。台中縣。

鄭百伶,2006,「光催化程序抑制藻類生長及分解代謝臭味物質之研究」,碩士論文,弘光科技大學環境工程研究所。台中縣。

李佩珊,2006,「探討鎳、砷對於腎細胞株之氧化性壓力、粒線體膜電位與細胞週期的影響」,碩士論文,輔英科技大學醫事技術系碩士班。高雄縣。

蔡福水,2006,「台灣水庫之優養化指標評析」,碩士論文,國立中山大學環境工程研究所。高雄。

陳是瑩、曾怡偵,1984,「澄清湖生態的研究I:澄清湖水質與藻類季節性變遷的研究」。中華民國自來水協會第一屆給水技術研討會論文集。

行政院環保署,2009,「90~96年度河川及水庫水質分析報告」。

黃淑芳,1989,「認識藻類」,國立臺灣博物館。台北市。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔