(3.80.6.131) 您好!臺灣時間:2021/05/14 01:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:楊伊霖
研究生(外文):I-Lin Yang
論文名稱:台灣沙鹿地區汞粒狀污染物之研究
論文名稱(外文):he study of particulate bound Mercury Hg(p) at Sha-Lu, Taiwan.
指導教授:方國權方國權引用關係
指導教授(外文):Guor-Cheng Fang
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:72
中文關鍵詞:顆粒態汞收集媒介乾沉降速度
外文關鍵詞:Hg(p)collection mediumdeposition velocities
相關次數:
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要中台灣沙鹿地區之大氣粒狀物進行研究,研究內容包含總懸浮微粒、粗微粒細微粒和顆粒態汞之濃度與乾沉降通量及速度特性,研究期間為 2008年12月9日到 2009年5月22日。
在乾沉降特性方面,本研究比較了兩種不同採樣媒介之特性,包含了投影片與石英濾紙兩種。使用投影片當收集媒介,分別在本研究中一天及兩天所收集的平均乾沉降通量是65.99 和87.88 µg/min*m2。使用石英濾紙當收集媒介的相應平均乾沉降通量是67.31 和52.53 µg/min*m2。 以前有關汞的乾沉降研究通常已經使用石英濾紙作為一種收集媒介, 在這報告的工作裡, 由於投影片它的低成本被選擇為收集媒介之一,獲得的結果是,可以當石英濾紙得替代收集媒介。
使用投影片當收集媒介,分別在本研究中一天及兩天所收集的平均乾沉降速度是 2.02 和 2.70 cm/sec。 使用石英濾紙當收集媒介的相應平均速度是 1.85 和 1.41 cm/sec。
使用投影片當收集媒介,分別在本研究中一天及兩天所收集的平均顆粒態汞乾沉降通量是0.16 和0.09 ng/min*m2。使用石英濾紙當收集媒介的相應平均顆粒態汞乾沉降通量是0.21 和0.11 ng/min*m2。
使用投影片當收集媒介,分別在本研究中一天及兩天所收集的平均乾沉降速度是 6.79 和 3.32 cm/sec。 使用石英濾紙當收集媒介的相應平均速度是 8.94 和 4.41 cm/sec。
研究結果表示平均PM2.5,PM2.5-10 和PM10 是15.92±6.50 μg m−3, 10.35±5.93 μg/m3 和 26.27±11.20 μg/m3,。 另外,顆粒態汞範圍對PM2.5來說從0.0016 to 0.0557 ng/m3 對於PM2.5-PM10來說 從0.0006 to 0.0305 ng/m3。PM10 顆粒態汞的範圍濃度從0.0022 to 0.862 ng/m3。
最後,最高的顆粒態汞在PM2.5裡的濃度是16.85 ng/g和最低的顆粒態汞在PM2.5裡的濃度是0.55ng/g。 以及最高的顆粒態汞在PM2.5~10裡的濃度是9.58 ng/g和最低的顆粒態汞在PM2.5~10裡的濃度是0.22 ng / g。
Ambient air particulate pollutants, coarse, fine particulate and mercury bound mercury (Hg(p)) were collected and analyzed between Dec 9, 2008 and May 22, 2009 at a highway traffic site located in Sha-Lu, central Taiwan.
The results obtained using overhead projection film as collection medium indicated that the average dry deposition fluxes for the one and two days periods were 65.99 and 87.88 µg/min*m2, respectively. The corresponding fluxes using quartz filter collection medium were 67.31 and 52.53 µg/min*m2, respectively. Previous Hg related depositional studies have commonly used quartz filter as a collection medium however, in the work reported here, due to its low cost overhead projection film was chosen as one of the collection medium and the results obtained have been compared with the those estimated using quartz. Using the overhead projection collection medium, the average dry deposition velocities for one and two days periods were 2.02 and 2.70 cm/sec, respectively. The corresponding velocities with quartz film collection medium were 1.85 and 1.41 cm/sec, respectively. The overhead projection film collection medium results indicated that the average Hg(p) dry deposition fluxes for the one and two-day periods were 0.16 and 0.09 ng/min*m2, respectively. The corresponding fluxes estimated using the quartz filter collection medium were 0.21 and 0.11 ng/min*m2, respectively. The average Hg(p) concentrations ranged from 0.05 to 0.86 ng/m3. The average Hg(p) dry deposition velocities using the overhead projection collection medium for the one and two days periods were 6.79 and 3.32 cm/sec, respectively. The corresponding velocities using quartz film collection medium were 8.94 and 4.41 cm/sec, respectively.
The results indicated that the average PM2.5, PM2.5–10 and PM10 were 15.92±6.50 μg m−3, 10.35±5.93 μg/m3 and 26.27±11.20 μg/m3, respectively. In addition, the ranges of Hg(p) for PM2.5 particulates were from 0.0016 to 0.0557 ng/m3 while the ranges of Hg(p) for PM2.5–PM10 Hg(p) were from 0.0006 to 0.0305 ng/m3. The ranges for PM10 Hg(p) concentrations were from 0.0022 to 0.862 ng/m3. Finally, the highest Hg(p) compositions in PM2.5 were 16.85 ng/g and the lowest Hg(p) compositions in PM2.5 were 0.55 ng/g. And the highest Hg(p) compositions in PM2.5~10 were 9.58 ng/g and the lowest Hg(p) compositions in PM2.5~10 were 0.22 ng/g.
CONTENTS
Acknowledgements
Abstract
Abbreviation
Chapter 1 Introduction ........................1
Chapter 2 Literature Review.....................6
2.1 Particle Matter.............................6
2.2 Mercury.....................................8
2.3 Objectives of this study...................11
2.3.1 Run I....................................11
2.3.2 Run II...................................12
Chapter 3 Experimental Methods.................13
3.1 Sampling site..............................13
3.2 Sampling Apparatus.........................15
3.2.1 PS-1 sampler.............................15
3.2.2 Dry deposition plate.....................16
3.2.3 Versatile air pollutant sampler..........18
3.2.4 Analytical balance.......................20
3.3 Formula and calculation....................21
3.4 Chemical analysis..........................22
3.5 Quality control............................23
Chapter 4 Results and discussion...............24
4.1 Run I......................................24
4.1.1Meteorological data.......................24
4.1.2 Dry deposition, concentrations and dry deposition velocities.....................................26
4.1.3 Hg(p) dry deposition, concentrations and Hg(p) dry deposition velocities..........................30
4.1.4 Comparison of statistical t-test of mean value of ambient air particulates and Hg(p) dry deposition, dry deposition velocities..........................36
4.1.5 Summary of atmospheric mercury particulate during 2001–2009......................................38
4.2 Run II......................................40
4.2.1Meteorological data........................40
4.2.2 Ambient air concentration particle mass...43
4.2.3 Concentrations variations for particle bound mercury Hg(p) concentrations in PM2.5, PM2.5~10, PM10...47
4.2.4 Average compositions for Hg(p) in PM2.5, PM2.5~10...48
4.2.5. Comparison of coarse, fine particulates and Hg(p) to the other sampling areas to this study..........50
Chapter 5 Conclusions...........................53
References......................................56
References
Almeida, S. M., Pio, C. A., Freitas, M. C., Reis, M. A., & Trancoso, M. A. , 2005. Source apportionment of fine andcoarse particulate matter in a sub, urban area at the Western European coast. Atmospheric Environment, 39, 3127– 3238.
Ames, M., Gullu, G., Olmez, I., 1998. Atmospheric mercury in the vapor phase, and in fine and coarse particulate matter at Perch River, New York. Atmospheric Environment, 32, 865–872.
Ashbaugh, L.L., Malm, W.C., Sadeh, W.D., 1985. A residence time probability analysis of sulfur concentrations at Grand Canyon National Park. Atmospheric Environment, 19, 1263–1270.
Baker, J.E., Poster, D.L., Clark, C.A., Church, T.M., Scudlark, J.R., Ondov, J.M., Dickhut, R.M., Cutter, G., 1997. Loading of atmospheric trace elements and organic contaminants to the Chesapeake Bay. In: Baker, J.E. (Ed.), Atmospheric Deposition of Contaminants to the Great Lakes and Coastal Waters. SETAC Press, Pensacola, Florida, 171–194.
Basu, N., Scheuhammer, A. M., Sonne, C., Letcher, R. J., Born, E. W., and Dietz, R., 2009. Is dietary mercury of neurotoxicological concern to wild polar bears. Environmental Toxicology and Chemistry, 28, 133-140.
Berico, M., Luciani, A., & Formignani, M., 1997. Atmospheric aerosol in an urban area – Measurements of TSP and PM10 standards and pulmonary deposition assessments. Atmospheric Environment, 31, 3659–3665.
Bergan, T., Gallardo, L., Rodhe, H., 1999. Mercury in the global troposphere: a three dimensional model study. Atmospheric Environment, 33, 1575–1585.
Calvert, J.G., Lidberg, S.E., 2005. Mechanisms of mercury removal by O3 and OH in the atmosphere. Atmospheric Environment, 39, 3355–3367.
Chester, R., Bradshaw, G.F., Corcoran, P.A., 1994. Trace metal chemistry of the North Sea particulate aerosol: concentrations, sources and sea water fates. Atmospheric Environment, 28 (17), 2873–2883.
Chen, M.L., Mao, I.F., Lin, I.K., 1999. The PM2.5 and PM10 particles in urban areas of Taiwan. Science of the Total Environment, 226, 227-235.
Cheng, T., Lu D., Wang, G., Xu, Y., 2005. Chemical characteristics of Asian dust aerosol from Hunshan Dake Sandland in Northern China. Atmospheric Environment, 39, 2903–2911.
Chu, C.C., Fang, G.C., Chen, J.C., Yang, I.L., 2008. Dry deposition study by using dry deposition plate and water surface sampler in Shalu, central Taiwan. Environmental Monitoring Assessment 146, 1441-451.(SCI)
Dockery, D. W.,1998. An association between air pollution and mortality in six US cities. New England Journal of Medicine, 329, 1753–1759.
Diociaiuti, M., Balduzzi, M., Berardis, B.D., Cattani, G., Stacchini, G., Ziemacki, G., Marconi A., Paoletti, L., 2001.The two PM2.5 (fine) and PM2.5-10 (coarse) fractions: evidence of different biological activity. Environmental Research Section A, 86, 254-262.
Eisenreich, S.J., Hornbuckle, K.C., Achman, D.R., 1997. Air–water exchange of semivolatile organic chemicals in the Great Lakes. In: Baker, J.E. (Ed.), Atmospheric Deposition of Contaminants to the Great Lakes and CoastalWaters. SETAC Press, Pensacola, Florida, 109–136.
Fang, G.C., Chang, C.N., Chang, S.Y., 1997. Dry Deposition of Metal Elements on Surrogate Surface in The Ambient Air of Central Taiwan. Toxicological and Environmental Chemistry, 62, 111-123.
Fang, G.C., Wu, Y.S., Lee, W.J., Chou, T.Y., Lin, I.C., 2007. Ambient air particulates, metallic elements, dry deposition and concentrations at Taichung Airport, Taiwan. Atmospheric Research, 84, 280–289.
Fang, G.C., Wu, Y.S., Chang, S.Y., Huang, S.H., Rau, J.Y., 2006. Size distributions of ambient air particles and enrichment factor analyses of metallic elements at Taichung Harbor near the Taiwan Strait. Atmospheric Research 81, 320– 333.
Fang, F., Wanga, Q., Li, J., 2001. Atmospheric particulate mercury concentration and its dry deposition flux in Changchun City, China. The Science of the Total Environment, 281,229–236.
Fang, G. C., Chang, C. N., Wu, Y. S., Fu, P. P. C., Yang, C. J., Chen, C. D., 2002. Ambient suspended particulate matters and related chemical species study in central Taiwan, Taichung during 1998–2001. Atmospheric Environment, 36, 1921–1928.
Fang, G.C., Wu, Y.S., Huang, S.H., Rau, J.Y., 2004. Dry deposition (downward, upward) concentration study of particulates and heavy metals during daytime, nighttime period at the traffic sampling site of Sha-Lu, Taiwan. Chemosphere, 56, 509–518.
Facchini, M.C., Mircea, M., Fuzzi, S., Charlson, R.J., 1999. Cloud albedo enhancement by surface-active organic solutes in growing droplets. Nature 401, 257–259.
Fitzgerald, W.F., 1995. Is mercury increasing in the atmosphere? The need for an atmospheric mercury network (AMNET). Water,Air and Soil Pollution 80,245–254.
Friedli, H.R., Radke, L.F., Prescott, R., Li, P., Woo, J-H., Carmichael, G.R., 2004. Mercury in the atmosphere around Japan, Korea, and China as observed during the 2001 ACE Asia field campaign: measurements, distributions, sources, and implications. Journal of Geophysical Research 109, D19S25.
Gabriel, M.C., Williamson, D.G., Brooks, S., Lindberg, S., 2005. Atmospheric speciation of mercury in two contrasting Southeastern US airsheds. Atmospheric Environment 39, 4947–4958.
Gao, Y., Nelson, E.D., Field, M.P., Ding, Q., Li, H., Sherrell R.M., Gigliotti, C.L., Van Ry, D.A., Glenn, T.R., Eisenreich S.J., 2002. Characterization of atmospheric trace elements on PM2.5 particulate matter over the New York, New Jersey harbor estuary. Atmospheric Environment 36, 1077–1086.
Gauchard, P.A., Ferrari, C.P., Dommergue, A., Poissant, L., Pilote, M.,Guehenneux, G., Boutron, C.F., Baussand, P. Atmospheric particle evolution during a nighttime atmospheric mercury depletion event in sub-Arctic at Kuujjuarapik / Whapmagoostui, Que ′bec,Canada . Science of the Total Environment,in press.
Gray, H.A., Gass, G.R., Huntzicker, J.J., Heyerdahl, E.K., Rau, J.A., 1986. Characteristics of atmospheric organic and elemental carbon particle concentrations in Los Angeles. Environmental Science and Technology 20, 580–589.
Han, Y.J., Holsen, T.M., Hopke, P.K.,2007. Estimation of source locations of total gaseous mercury measured in New York State using trajectory-based models. Atmospheric Environment 41, 6033–6047.
Hedgecock, I.M., Pirrone, N., 2004. Chasing quicksilver: modeling the atmospheric lifetime of Hg0 (g) in the marine boundary layer at various latitudes. Environmental Science and Technology 38, 69–76.
Hien, P.D., Binh, N.T., Truong, Y., Ngo, N.T., Sieu, L.N., 2001. Comparative receptor modeling study of TSP, PM2 and PM2-10 in Ho Chi Minh City. Atmospheric Environment. 35, 2669–2678.
Holsen, T.M., Zhu, X., Khalili, N.R., Lin, J.J., Lestari, P., Lu C.-S., Noll, K.E., 1997. Atmospheric particle size distribu tions and dry deposition measured around Lake Michigan In: Baker, J.E. (Ed.), Atmospheric Deposition of Contaminants to the Great Lakes and Coastal Waters. SETAC Press Pensacola, FL, pp. 35–50.
Holsen T.M., Noll K.E., Fang G.C., Lee W.J., Lin J.M., 1993. Dry deposition and particle size distributions measured during the Lake Michigan urban air toxic study. Environ Sci Technol 27,1327 –1333.
Horvath, H., 1996. Black smoke as a surrogate for PM10 in health studies. Atmospheric Environment, 30, 2649–2650.
Jaffe, D., Prestbo, E., Swartzendruber, P., Weiss-Penzias, P., Kato, S., Takami, A., Hatakeyama, S., Yoshizumi, K., 2005. Export of atmospheric mercury from Asia. Atmospheric Environment 38, 3029–3038.
Kim, K.H., Kim, M.Y., Hong, S.M., Youn, Y.H., Hwang, J.e., 2005. The effects of wind speed on the relative relationships between different sized-fractions of airborne particles. Chemosphere. 59, 929–937.
Kim K.H., Kim M.Y., Kim J., Lee G., 2002, The concentrations and fluxes of total gaseous mercury in a western coastal area of Korea during late March 2001, Atmos. Environ. 36 ,3413–3427.
Kim, K.H., Kim, M.Y., 2000. The effects of anthropogenic sources on temporal distribution characteristics of total gaseous mercury in Korea. Atmospheric Environment 34, 3337–3347.
Keeler, G.J., 1987. A hybrid approach for source apportionment of atmospheric pollutants in the Northeastern United States. Ph.D. Thesis, University of Michigan, Ann Arbor, MI.
Laden, F., Neas, L.M., Dockery, D.W., Schwartz, J., 2000. Association of fine particulate matter from different sources with daily mortality in six US cities. Environmental Health Perspectives 108 (10), 941–946.
Landis,M.S.,Stevens,R.K.,Schaedlich,F.,Prestbo,E.M., 2002. Development and characterization of an annular denuder methodology for the measurement of divalent inorganic reactive gaseous mercury in ambient air. Environmental Science and Technology 36,3000–3009.
Lau, O.W., Luk, S.F., 2001. Leaves of Bauhinia blakeana as indicators of atmospheric pollution in Hong Kong. Atmos. Environ. 35, 3113–3120.
Lee, J.H., Kim, Y.P., Moon, K.C., Kim, H.K., Lee, C.B., 2001. Fine particle measurements at two background sites in Korea between 1996 and 1997. Atmospheric Environment 35, 635–643.
Lindqvist, O., Rodhe, H., 1985. Atmospheric mercury—a review. Tellus 37B, 136–159.
Lindberg, S.E., Stratton, W.J., 1998. Atmospheric speciation concentrations and behavior of reactive gaseous mercury in ambient air. Environmental Science and Technology 32, 49–57.
Lindberg, S.E., Brooks, S., Lin, C.J., Scott, K., Meyers, T., Landis, M.S., Stevens, R.K., 2001. Formation of reactive gaseous mercury in the Arctic: evidence of oxidation of Hg0 to gas-phase Hg-II compounds after Arctic sunrise. Water, Air and Soil Pollution: Focus 1 (5–6), 295–302.
Lin, C., Cheng, M., Schroeder, W., 2001. Transport patterns and potential sources of total gaseous mercury measured in Canadian high Arctic in 1995. Atmospheric Environment 35, 1141–1154.
Lin, C.J., Pehkonen, S.O., 1999. The chemistry of atmospheric mercury: a review. Atmospheric Environment 33, 2067–2079.
Liu, B., Keeler, G.J., Dvonch, J.T., Barres, J.A., Lynam, M.M., Marsik, F.J., Morgan J.T., 2007. Temporal variability of mercury speciation in urban air. Atmospheric Environment 41 , 1911–1923.
Lonati, G., Ozgen, S., Giugliano, M., 2007. Primary and secondary carbonaceous species in PM2.5 samples in Milan (Italy). Atmos. Environ. 41, 4599–4610.
Lu, J.Y., Schroeder, W.H.,2004. Annual time-series of total filterable atmospheric mercury concentrations in the Arctic. Tellus 56B,213–222Laia, S.O., Holsena, T.M., Hopkeb, P.K., Liu, P., 2007. Wet deposition of mercury at a New York state rural site:Concentrations, fluxes, and source areas .Atmospheric Environment 41, 4337–4348.
Maenhaut, W., De Ridder, D.J.A., Fernandez-Jimenez, M.T., Hooper, M.A., Hooper, B., M, 2002. Nurhayati. Long-tern observations of regional aerosol composition at two sites in Indonesia. Nucl. Instrum. Meth. B. 189, 259–265.
Masahiro, S., Kohji, M., 2002. Formation of atmospheric particulate mercury in the Tokyo metropolitan area. Atmospheric Environment 36, 239–246.
Marsik, F.J., Keeler, G.J., Landis, M.S., 2007. The dry-deposition of speciated mercury to the Florida Everglades: Measurements and modeling Atmospheric Environment 41, 136–149.
Mason, R.P., Fitzgerald, W.F., Morel, F.M.M., 1994. The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochimica Cosmochimica Acta 58, 3191–3198.
Morishita, M., Keeler, G.J., Wagner, J.G., Marsik, F.J., Timm, E.J., Harkema, J.R., 2006. Source identification of ambient PM2.5 during summer inhalation exposure studies in Detroit, MI. Atmospheric Environment 40, 3823–3834.
Ondov, J.M., Quinn, T.L., Battel, G.F., 1997. Influence of temporal changes in relative humidity on size and dry depositional fluxes of aerosol particles bearing trace elements. In: Baker, J.E. (Ed.), Atmospheric Deposition of Contaminants to the Great Lakes and Coastal Waters. SETAC Press, Pensacola, Florida, 17–34.
Pacyna, E.G., Pacyna, J.M., 2002. Global emission of mercury from anthropogenic sources in 1995. Water, Air and Soil Pollution 137, 149–165.
Pacyna, J.M., Pacyna, E.G., Steenhuisen, F., Wilson,S., 2003. Global mercury emissions. Presented at Long-Range Transport Workshop, Ann Arbor, MI, September 2003.
Pirrone, N., Costa, P., Pacyna, J.M., Ferrara, R., 2001. Mercury emissions to the atmosphere from natural and anthropogenic sources in the Mediterranean region. Atmospheric Environment 35, 2997–3006.
Pope III, C.A., 2000. Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who’s at risk? Environmental Health Perspectives 108 (Suppl. 4), 713–723.
Poissant,L., Pilote, M., Beauvais, C., Constant, C., Zhang, H., 2005. A year of continuous measurements of three atmospheric mercury species (GEM,RGM and Hgp) in southern Que′bec,Canada Atmospheric Environment 39, 1275–1287.
Poissant, L., 1999. Potential sources of atmospheric total gaseous mercury in the St. Lawrence River valley. Atmospheric Environment 33, 2537–2547.
Putaud, J. P., Raes, F., Van Dingenen, R., Brüggemann, E., Facchini,M. C., & Decesari, S., 2004. A European aerosol phenomenology 2: Chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmospheric Environment, 38, 2579–2595.
Quiterio, S.L., Da Silva, C.R.S., Arbilla, G., Escaleira, V., 2004. Metals in airborne particulate matter in the industrial district of Santa Cruz, Rio de Janeiro, in an annual period. Atmos Environ 38, 321-31.
ROC EPA., 2003. Environmental Protection Agency, Republic of China. http://www.epa.gov.tw/.
Sakata, M., Marumoto, K., 2002, Formation of atmospheric particulate mercury in the Tokyo metropolitan area, Atmos. Environ. 36 , 239–246.
Sakata, M., Asakura, K., 2007. Estimating contribution of precipitation scavenging of atmospheric particulate mercury to mercury wet deposition in Japan. Atmospheric Environment 41, 1669–1680.
Samet, M. J., 2000. Fine particulate air pollution and mortality in 20 US cities, 1978–1994. New England Journal of Medicine, 343, 1742–1749.
Scudlark, J.R., Conko, K.M., Church, T.M., 1994. Atmospheric wet deposition of trace elements to Chesapeake Bay. Atmospheric Environment 36 (2002) 1077–1086, 1085 CBAD study year 1 results. Atmospheric Environment 28(8), 1487–1498.
Schroeder, W.H., Munthe, J., 1998. Atmospheric mercury—an overview. Atmospheric Environment 32, 809–822.
Schuster, P.F., Krabbenhoft, D.P., Naftz, D.L., Cecil, L.D., Olson, M.L., Dewild, J.F., Susong, D.D., Green, J.R., Abbott, M.L., 2002. Atmospheric mercury deposition during the last 270 years: a glacial ice core record of natural and anthropogenic sources. Environmental Science and Technology 36, 2303–2310.
Schroeder, W.H., Anlauf, K.G., Barrie, L.A., Lu, J.Y., Steffen, A., Schneeberger, D.R., Berg, T., 1998. Artic springtime depletion of mercury. Nature 394, 331–332.
Seigneur, C., Vijayaraghavan, K., Lohman, K., Karamchandani, P., Scott, C., 2004. Global source attribution for mercury deposition in the United States. Environmental Science and Technology 38,555–569.
Slemr, F., Langer, E., 1992. Increase in global atmospheric concentrations of mercury inferred from measurements over the Atlantic Ocean. Nature 355,434–437.
Seibert, P., Kromp-Kolb, H., Baltensperger, U., Jost, D.T., Schwikowski, M., Kasper, A., Puxbaum, H., 1994. Trajectory analysis of aerosol measurements at high alpine sites. In: Borrell, P.M., Borell, P., Cvitas, T., Seiler, W. (Eds.), Transport and Transformation of Pollutants in the Troposphere. Academic Publishing, Den Haag, pp. 689–693.
Song, Y., Tang, X., Xie, S., Zhang, Y., Wei, Y., Zhang, M., Zeng, L., Lu, S., 2007. Source apportionment of PM2.5 in Beijing in 2004. J. Hazard. Mater. 146, 124–130.
Stohl, A., 1996. Trajectory statistics—a new method to establish source–receptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe. Atmospheric Environment 30, 579–587.
Stieb, M.D., Stan, J., Burnett, R.T., 2002. Meta-analysis of time series studies of air pollution and mortality: effects of gases and particles and the influence of cause of death, age and season. Journal of the Air and Waste Management Association 52, 470–484.
Tan, H., He, J.L., Liang, L., Lazoff, S., Sommer, J., Xiao, Z.F., Lindqvist, O., 2000. Atmospheric mercury deposition in Guizhou,China. Science of the Total Environment 259, 223–230.
Tsai, Y.I., Kuo, S.C., Lin, Y.H., 2003, Temporal characteristics of inhalable mercury and arsenic aerosols in the urban atmosphere in southern Taiwan, Atmos. Environ. 37 ,3401–3411.
Tuch, Th., Mirme, A., Tamm, E., Heinrich, J., Hyder, J., Brand, P., Roth, Ch., Wichmann, H.E., Pekkanen, J., Kreuling, W.G., 2000. Comparison of two particle-size spectrometers for ambient aerosol measurements. Atmospheric Environment 34, 139-149.
US EPA Mercury Study Report to Congress, 1997. vol. III: Fate and Transport of Mercury in the Environment. Report number EPA-452/R-97-005 available on the World Wide Web at /http://www.epa.gov/ttn/uatw/112nmerc/mercury.htmlS.
US EPA, 1997. Mercury Study Report to Congress,EPA-452-R-97-004.
Valigura, R. A., Winston, T. L., Artz, R. S., & Hicks, B. B., 1996. Atmospheric nutrient input to coastal areasreducing the uncertainties. NOAA Coastal Ocean Program Decision Analysis Series No. 9. NOAA Coastal Ocean Office, Silver Spring, MD, 24pp.+4 Appendices.
Wen, G.C., Fang. G.C., 2007. Characterization of size-differentiated particle composition of ionic species between Taichung Harbor (TH) and WuChi Traffic (WT) near Taiwan Strait during 2004–2005g. Atmospheric Environment 41, 3853–3861.
Yatavelli, R.L.N., Fahrni, J.K., Kim M., Crist, K.C., Vickers, C.D., Winte,r S.E., Connell, D.P. ,2006. Mercury, PM2.5 and gaseous co-pollutants in the Ohio River Valley region: Preliminary results from the Athens supersite. Atmospheric Environment 40, 6650–6665.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔