(3.80.6.131) 您好!臺灣時間:2021/05/14 02:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴典政
研究生(外文):Dian-Jheng Lai
論文名稱:大肚山土壤對三價砷的吸附行為及不同萃取方法對五氯酚的回收效率之研究
論文名稱(外文):Adsorption Behaviors of As(III) on the Soil of DaDu Mountain and Extraction Efficiency of PCP by Different Extraction Methods
指導教授:王建明
指導教授(外文):Jiann-Ming Wang
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:136
中文關鍵詞:三價砷五氯酚吸附動力等溫吸附離子效應索氏萃取微波輔助萃取超臨界流體萃取大肚山土壤
外文關鍵詞:arsenicpentachlorophenoladsorption kineticsadsorption isothermionic effectsSoxhlet extractionmicrowave-assisted extractionsupercritical fluid extractionDaDu Mountain soil
相關次數:
  • 被引用被引用:1
  • 點閱點閱:264
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
砷對人體有諸多不良的影響,其中包括它被懷疑是造成台灣西南沿海地區烏腳病流行的主因。砷化物對生物的毒性和作用機制,則依其種類而定。砷一旦進入土壤系統中,吸附作用便成為決定砷化物物種在地下水中移動程度的一項重要參考依據。今若欲尋找一適當的整治復育方式,勢必先瞭解此類污染物質在土壤中的吸/脫附特性。有機氯酚類化合物為含氯的芳香族化合物,具有穩定之化學特性,能持久的存在於環境中。通常卻定性或定量存於水相或土相等環境樣品中之污染物時,往往需要針對樣品做一些前處理的程序,萃取是其中常用的一種方式。
本研究主要包含兩大部份:(一)探討大肚山土壤對As(III)的吸附行為,實驗內容包括:(A) 藉由吸附動力曲線及等溫吸附曲線,瞭解As(III)在大肚山土壤中的吸附特性;(B) 探討不同pH值及不同離子效應,對As(III)吸附行為的影響。(二)探討土壤中PCP之萃取效率,實驗內容有:(A)評估不同萃取方法對土壤中PCP之萃取效率;(B)評估不同萃取溶劑對土壤中PCP之萃取效率。
研究結果顯示,三價砷的吸附行為會隨pH值而異。在鹼性環境下,土壤對三價砷有較佳的吸附效果;pH=10時,有最大的吸附容量。在酸性環境下,土壤對三價砷的吸附效果較不顯著;若延長平衡時間,反而會造成砷吸附量減少。在pH為2、8.9及10的動力吸附實驗中,三價砷皆在0-1 hr間,呈現快速吸附的現象。不論pH值為何,三者皆可於8-hrs時,達到最大吸附量。在添加不同離子的效應方面,結果顯示,FeCl3的存在,不利於土壤吸附As(III);Al2(SO4)3的加入,對於As(III)吸附亦有影響;而Mn(NO3)2•6H2O和KH2PO4的添加,對於As(III)的吸附影響較小。
根據等溫吸附的結果,在不同pH效應下,初始pH= 2時吸附呈現C 型吸附;初始pH= 8.9及初始pH= 10時的吸附較屬於S型等溫吸附。在不同離子效應下,額外添加Al2(SO4)3的吸附屬於L型等溫吸附;其餘離子化合物的吸附屬於S型吸附行為。經由吸附模式判斷標準,pH效應及離子效應的吸附行為皆符合Freundlich 方程式。土壤XRD分析方面,目前實驗所得之波峰皆為SiO2,未得到三價砷之波峰。
索氏萃取土壤五氯酚方面,最適溶劑為甲醇,最佳回收率為36.28%;微波輔助萃取土壤五氯酚中,最適溶劑為丙酮+正己烷(1:1),最適溫度為90℃,最佳回收率為22.5%;超臨界流體萃取,回收效果依序為丙酮+正己烷(1:1)>甲醇>丙酮>二氯甲烷>正己烷。結果顯示,在改變溫度條件方面與微波輔助萃取有相同結果產生,當萃取溫度愈高時,回收率亦跟隨提高;在萃取壓方面,亦有相同現象。
關鍵字:三價砷、五氯酚、吸附動力、等溫吸附、離子效應、索氏萃取、微波輔助萃取、超臨界流體萃取、大肚山土壤
Arsenic is one of the most important toxic chemicals in the world. It has many bad effects on human health which include Blackfoot Disease and cancers. Blackfoot Disease has broken out in the South-West coast area of Taiwan on 1970s. The toxicity and its mechanisms of arsenic are dependent upon its species. Once arsenic gets into the subsurface environment, sorption becomes an important determining factor for the movement of arsenic in the groundwater. Therefore, a suitable remediation technology relies on the characteristics of adsorption/desorption of arsenic in the soil. Chlorophenols which have very stable chemical properties, can exist in the environment persistently. Before chlorophenols can be quantitated, there are some pre-treatment procedures for the samples, which have to be done. Extraction is one of the major pre-treatment procedures.
The purposes of this research are (1) to examine the adsorption behaviors of arsenite (As(III)) in DaDu Mountain soil; (2) to examine the extraction efficiency of pentachlorophenol (PCP). In the first part of work, kinetic adsorption curves and adsorption isotherms are used to evaluate the adsorption behaviors of As(III). Ionic effects and pH effects are also examined in this study. In the second part of work, three extraction techniques, Soxhlet extraction, microwave-assisted extraction (MAE), and supercritical fluid extraction (SFE), are used to compare the extraction efficiency of PCP from soil. The effects of extraction solvents, time, and pressure are included in this evaluation.
The results showed the adsorption behavior of As(III) varies with pH. For basic condition, As(III) has the better adsorption effect. While pH is equal to 10, the adsorption capacity reaches to the maximum. For acidic condition, the adsorption of As(III) is not so obvious. However, if the equilibrium time is increasing, the adsorption amount of As(III) reduces. In the kinetic adsorption experiments of pH 2, 8.9, and 10, there is a rapid adsorption phenomenon between 0~1 hour. No matter the pH values, the adsorption capacity reaches to the maximum in 8 hours. For the effects of ions addition, the results showed that the presence of FeCl3 is unfavorable to the adsorption of As(III). The addition of Al2(SO4)3 has also effected the adsorption of As(III). However, the presence of Mn(NO3)26H2O and KH2PO4 only has very slight influence on the adsorption of As(III).
In the experiments of sorption isotherm, no matter the equilibrium time, the As(III) sorption isotherms of initial pH 2 exhibit C-type curve. The As(III) sorption isotherms of initial pH 8.9 and pH 10 exhibit S-type curve. For the addition of Al2(SO4)3, the As(III) sorption isotherm showed L-type curve. However, the As(III) sorption isotherms display S-type curves for the other ions added to the soil. Freundlich model can fit the adsorption behavior of As(III) better than other models for DaDu Mountain soil.
For the extraction efficiency of PCP from DaDu Mountain soil with Soxhlet extraction method, the optimum extraction solvent is methanol and the best recovery percentage of PCP is 36.28%. For the microwave-assisted extraction (MAE), the optimum recovery percentage of PCP is 22.5%, which is obtained with the mixture of acetone and hexane (1:1) and 90oC extraction temperature. For the supercritical fluid extraction (SFE), the order of PCP recovery percentage by different extraction solvents is the mixture of acetone and hexane (1:1) > methanol > acetone > dichloromethane > hexane. Both MAE and SFE showed that the recovery percentage of PCP increases with the extraction temperature and the extraction pressure.
Keywords: arsenite, pentachlorophenol, adsorption kinetics, adsorption isotherm, ionic effects, Soxhlet extraction, microwave-assisted extraction, supercritical fluid extraction, DaDu Mountain soil
摘要................. I Abstract...................... III
目 錄........................ V
表 目 錄........................ X 圖 目 錄............. XII


第 一 章 前 言.......... 1

1-1 研 究 動 機................ 1

1-2 研 究 目 的.................... 3

第 二 章 文 獻 回 顧................ 4

2-1 污 染 物 基 本 性 質 介 紹............... 4

2-1-1 砷的來源及流佈................ 4

2-1-2 砷 的 化 學 特 性 及 種 類............ 7

2-1-3 砷 的 毒 性 及 對人 體 健 康 的 影 響...... 11

2-1-4 環 境 中 砷 污 染 之 情 形............ 14

2-1-5 不同 吸 附 劑 對於 砷 的 吸 附 能 力......... 16

2-1-6 砷 污 染 處 理 技 術.............. 20

2-1-6-1 薄 膜 分 離.................... 20

2-1-6-2 離 子 交 換.................... 21

2-1-8 五 氯 酚 的 性 質 與 危 害.............. 29

2-1-8-1 PCP 的 危 害 及 暴 露 途 徑....... 30

2-2 吸 附 理 論..................... 32

2-2-1 表 面 吸 附 作用.................. 33

2-2-2 等 溫 吸 附 模 式................. 36

2-2-3 等 溫 吸 附 型 態................ 39

2-3 萃 取 方 法 介 紹................ 42

2-3-1 索 氏 萃 取 法.............. 42

2-3-2 微 波 輔 助 萃 取 法.............. 42

2-3-3 超 臨 界 流 體 萃 取 法............ 43

第 三 章 材 料 與 方 法................... 45

3-1 研 究 內 容.................... 45

3-2 實驗藥品與材料................ 48

3-2-1 目標污染物................ 48

3-2-2 實驗藥品.................. 50

3-3 土 壤 的 採 集、處 理 及 基 本 性 質 分 析...... 52

3-3-1 土 壤 採 集 及 前 處 理............ 52

3-3-2 土壤水份含量測定 52

3-3-3 土 壤 中 酸 鹼 值 測 定 方 法........... 53

3-3-4 有 機 碳 含 量 - Walkley-Black 濕 式 氧 化 法 53
3-3-5 土 壤 比 表 面 積 分 析...... 55

3-3-6 土 壤 粒 徑 大 小分 析 - 比 重 計 法....... 56

3-3-7 土 壤 中 陽 離 子 交 換 容 量 ─醋 酸 鈉 法.... 57

3-3-8 土 壤 中 金 屬元 素 分 析............. 59

3-3-9 土 壤 晶 相 分 析................. 63

3-4 pH 對 As(III)吸 附 之 影 響.......... 65

3-4-1 pH 效 應.................. 65

3-4-1-1 As(III)吸附動力實驗........... 65
3-4-1-2 As(III)等溫吸附實驗........... 66

3-5 離 子 效 應............... 67

3-5-1 As(III)吸 附 動 力 實 驗........... 67

3-5-2 As(III)等溫吸 附 實 驗......... 67

3-6 不同 萃 取 方 法 對土 壤 中 五 氯 酚 萃 取 效 果... 69

3-6-1 含 PCP 土壤之製備.................. 69

3-6-2 索 氏 萃 取 法 實 驗 流 程......... 69

3-6-3 微 波 輔 助 萃 取 法 實 驗 流 程........ 70

3-7 以 高 效 能 液 相 層析 儀 分 析 目 標 污 染 物 之 濃度...72

3-8 數 據 分 析 之 品 質 保 證 及 品 質 控 制 (QA/QC) . 74

3-8-1 檢 量 線 製 作.................... 74

3-8-2 重 覆 樣 品 分 析.................. 74

3-8-3 再 現 性 分 析.................... 74

3-8-4 方 法 偵 測 極 限.................. 74

第 四 章 結 果 與 討 論.................... 76

4-1 土 壤 基 本 性 質.................. 76

4-2 pH 對土壤吸附 As(III)之影響....... 78

4-3 pH效 應 對土 壤 吸 附As(III) 的 吸 附 動 力 實驗... 81

4-4離子效應對土壤吸附 As(III)的動力吸附實驗.... 89

4-5 As(III)於 土 壤 中 之 等 溫 吸 附 實 驗...90

4-6 等 溫 吸 附 模 擬 結 果..... 100

4-7 土 壤 XRPD 分 析 結 果..... 111

4-8 不同 萃 取 方 法 回 收 土 壤 中 五 氯 酚 之 效 率112
4-8-1 索氏萃取法萃取土壤中之五氯酚 112
4-8-2 超臨界流體
4-8-3 微波輔助萃取法萃取土壤中之五氯酚....116

第 五 章 結 論 與 建 議........... 118

5-1 結 論................ 118

5-2 建 議.................. 120
參 考 文 獻...................... 122 自 述.......................... 135
Abrahams, P., 1983, ”Distribution, dispersion and agricultural significance of metals in soils on the mining regions of southwest England.” Ph.D. thesis, University of London.
Anderson, R.K., Thompson, M. and Culbard, E., 1986, “ Selective reduction of arsenic species by continuous hydride generation.” Analyst, Vol.111, pp.1143- 1158.
Ball, W.P. and Roberts, P.V., 1991, “Long-term sorption of halogenated organic chemicals by aquifer material. 2. Interparticle diffusion,” Environmental Science & Technology, Vol.25, pp.1237-1249.
Bauchinger, M., Dresp, J., Schmid, E. and Hauf, R., 1982, “Chromosome changes in lymphocytes after occupational exposure to pentachlorophenol.” Mutation Research, Vol.102, pp.83-88.
Belzile, N. and Tessier, A., 1990, “Interaction between arsenic and iron oxyhydroxides in lacustrine sediments.” Geochimica et Cosmochimica Acta, Vol.54, pp. 03-109.
Bhymer, C., Sutton, K.L. and Caruso, J.A., 1998, “Comparison of four nebulizer–spray chamber interfaces for the high-performance liquid chromatographic separation of arsenic compounds using inductively coupled plasma mass spectrometric detection.” Jourmal of Analytical Atomic Spectrometry, Vol.13, pp.855-858.
Bissen, M., Gremm, T., Köklü, Ü. and Frimmel, F. H., 2000, “Use of the anion-exchange resin amberlite IRA-93 for the separation of arsenite and arsenate in aqueous samples.” Acta Hydrochim. Hydrobiol, Vol.28, pp.41-46.
Bose, P. and Sharma, A., 2002, “Role of iron in controlling speciation and mobilization of arsenic in subsurface environment.” Water Research, Vol.36, pp. 4916-4926.
Brewstar, M.D., 1994, ”Removing arsenic from contaminated water.” Water and Environmental Technology, Vol.4, pp.54-57.
Buschmann, J., Kappeler, A., Lindaure, U., Kistler, D., Berg, M. and Sigg, I., 2006, “ Arsenite and arsenate binding to dissolved humic acids Influence of pH, type of humic acid, and aluminum.” Environment Science & Technology, Vol.40, pp.6015-6020.
Chatterjee, A., 1994,”Ground Water Arsenic Contamination in Residential Area and Surroundings of P.N.Mitra Lane, Behala, Culcutta, due to Industrial Effuent Discharge.” Ph.D. thesis, Jadavpur University, Calcutta,India.
Chen, Z., Cai, Y., Solo-Gabriele, H., Snyder, G.H. and Cisar, J.I., “ Interactions of arsenic and the dissolved substances derived from turf soils.” Environment Science & Technology, Vol.40, pp.4659-4665.
Das, D., 1995, ”Arsenic species along with other metal/metalloid present and responsible for arsenic episode in ground water of West Bengal and a cheap technique to remove arsenic, thus making the ground water suitable for drinking and cooking.” Ph.D. thesis, Jadavpur University, Calcutta, India.
Ding, W.H. and Fann, C. H., 2000, “Determination of linear alkylbenzenesulfonates in sediments using pressurized liquid extraction and ion-pair derivatization gas chromatography-mass spectrometry.” Analytica Chimica Acta, Vol.408, pp.291–297
Do, B., Robinet, S., Pradeau, D. and Guyon, F., 2001, ”Speciation of arsenic and selenium compounds by ion-pair reversed-phase chromatography with electrothermic atomic absorption spectrometry: Application of experimental design for chromatographic optimization.” Journal of Chromatography A, Vol.918, pp. 87-98.

Elkhatib, E.A., Bennett, O.L. and Wright, R.J., 1984, “Kinetics of arsenite sorption in soils.” Soil Science Society of America Journal, Vol.48, pp.758-762.
Farrell, J. and Reinhard, M., 1994, “Desorption of Halognated Organics from Model Solids, Sediments, and Soil under Unsaturated Conditions. I. Isotherm, “ Environmental Science & Technology, Vol.28, pp.53-62.
Ferguson, J.F. and Gavis, J., 1972, ”A review of the arseniccycle in natural water.” Water Research, Vol.6, pp.1259-1274.
Gallardp, M.V., Bohari, Y., Astruc, A., Potin-Gautier, M. and Astruc, M., 2001, “Speciation analysis of arsenic in environmental solids Reference Materials by high-performance liquid chromatography–hydride generation–atomic fluorescence spectrometry following orthophosphoric acid extraction.” Analytica Chimica Acta, Vol.441, pp.257-268.
Gecol, H., Ergical, E. and Fuchs, A., 2004, “Molecular level separation of arsenic(V) from water using cationic surfactant micelles and ultrafilation membrane.” Journal of membrane science, Vol.241, pp.105-119.
Gobas, F. A., McNeil, E.J., Lovett-Doust, L. and Haffner, G.D., 1991, “Bioconcentration of chlorinated aromatic hydrocarbons in aquatic macrophytes.” Environmental Science & Technology, Vol.25, pp.924-929.
Goldsmith, J.R., Deane, M., Thom, J. and Gentry, G., 1972, “Evaluation of health implications of elevated arsenic in well waters.” Water Research, Vol.6, pp.1133-1136.
Gong, Z., Lu, X., Ma, M., Watt, M.C. and Le, C., 2007, “Arsenic speciation analysis.” Talanta, Vol.58, pp.77-96.
Gu, Z., Deng, B. and Yang, J., 2007, “Synthesis and evaluation of iron-containing ordered mesoporous carbon(FeOMC) for arsenic adsorption.“ Microporous and Mesoporous Materials, Vol.102, pp.265-273.
Harrison, B.J. and Berkheiser, E.V., 1982, “Anion interactions with freshly prepared hydrous oxides.” Clays and Clay Minerals, Vol.30, pp.97-102.
Hartley, W., Edwards, R. and Lepp, N.W., 2004, “Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short- and long-term leaching tests.” Environmental Science and Pollution Research, Vol.131, pp.495-504.
Hohzon, K., Takashi, H., Yuhzoh, O., Tetsuro, K., Hideo, Y. and Noboru, T., 1992, ”Isolation of Pseudomonas pickettii strains that degrade 2,4,6-trichlorophenol and their dechlorination of chlorophenols.” Applied and Environmental Microbiology, Vol.58 pp.1276-1283.
Horng, L.L. and Clifford, D., 1997, “The behavior of polyprotic anions in ion-exchange resins.” Reactive and Functional Polymers, Vol.35, pp.41-54.
Huang, P.M., 1980, “Adsorption processes in soil.” In O. Hutzinger(ed.) Handbook of environmental chemistry. Springer-Verlag, Amsterdam. pp.47-59.
Jain, A., Raven, K.P. and Loeppert, R.H., 1999, “Arsenite and arsenate adsorption on ferrihydrite surface charge reduction and net OH- release stoichiometry.” Environmental Science & Technology, Vol.33, pp.1179-1184.
Jain, C.K. and Ali, I., 2000, ”Arsenic occurrence, toxicity and speciation techniques.” Water Resources, Vol.34, pp.4304-4312.
Ladeira, A.C.Q. and Ciminelli, V.S.T., 2004 “Adsorption and desorption of arsenic on an oxisol and its constituents.” Water Resources, Vol.38, pp.2087-2094.
Langmuir, I., 1918, “The adsorption of gases on plane surfaces of glass, mica and platinum,” Journal of the American Chemical Society, Vol.40, pp. 1361-1403.
Larsson, P., Okla, L. and Tranvik, L., 1988, “Microbial degradation of xenobiotic, aromatic pollutants in humic water.” Applied and Environmental Microbiology, Vol.54, pp.1864-1867.
Le, X.C. and Ma, M. and Wong, N.A., 1996, “Speciation of Arsenic Compounds Using High-Performance Liquid Chromatography at Elevated Temperature and Selective Hydride Generation Atomic Fluorescence Detection.” Analysis Chemical, Vol.68, pp.4501-4506.
Le, X.C. and Ma, M., 1997, “Speciation of arsenic compounds by using ion-pair chromatography with atomic spectrometry and mass spectrometry detection.” Journal Chromatography A, Vol.764, pp.55-64.
Le, X.C. and Ma, M., 1998, “Short-Column Liquid Chromatography with Hydride Generation Atomic Fluorescence Detection for the Speciation of Arsenic.” Analysis Chemical, Vol.70, pp.1926-1933.
Le, X.C., Ma, M., Lu, X., Cullen, W.R., Aposhain, H.V. and Zheng, B., 2000, “Determination of Monomethylarsonous Acid, a Key Arsenic Methylation Intermediate, in Human Urine.” Environmental Health Perspectives, Vol.108, pp.1015-1018.
Lin, S., Cullen, W.R. and Thomas, D.J., 1999, ”Methylarsenicals and Arsinothiols Are Potent Inhibitors of Mouse Liver Thioredoxin Reductase.” Chemical Research in Toxicology, Vol.12, pp.924-930.
Manning, B.A. and Suarez, D.L., 2000, “Modeling Arsenic(III) Adsorption and Heterogeneous Oxidation Kinetics in Soils.” Soil Science Society of America Journal, Vol.64, pp.128-137.
Maji, S.K., Pal, A. and Pal, T., 2008, ”Arsneic removal from real-life groundwater by adsorption on laterite soil.” Journal of Hazardous Materials. Vol.151, pp.811-820.
McCarthy, J.P. and Caruso, J.A., 1983, “Speciation of arsenic and selenium via anion-exchange HPLC with sequential plasma emission detection,” Journal of Chromatographic Science A, 21, 389-393.
McGeehan, S.L. and Naylor, D.V., 1994, “Sorption and redox transformation of arsenite and arsenate in two flooded soils.” Soil Science Society of America Journal, Vol.58, pp.337-342.
Mok, W.M. and Wai, C.M., 1989, ”Distribution and mobilization of arsenic species in the creeks around the Blackbird mining district, Idaho.” Water Resources, Vol.23, pp.7-13.
Mueller, J.G., Chapman, P.J. and Pritchard, P.H., 1989, ”Creosote-contaminated sites.” Environmental Science & Technology, Vol.23, pp.1197-1201.
Nickson, R.T., McArthur, J.M., Burgess, W.G., Ahmed, K.M., Ravenscroft, P. and Rahman, M., 1998, “Arsenic poisoning of Bangladesh groundwater.” Nature, Vol. 395, pp.338.
Oscarson, D.W., Huang, P.M., Defosse, C. and Herbillion, A., 1981, “Oxidative power of Mn(IV) and Fe(III) oxides with respect to As(III) in terrestrial and aquatic environments.” Nature, Vol.291, pp.450-451.
Oscarson, D.W., Huang, P.M., Liaw, W.K. and Hammer, U.T., 1983, “Kinerics of oxidation of arsenite by various manganese dioxides.” Soil Science Society of America Journal, Vol.47, pp.644-648.
Parfitt, R.L., 1978, “Anion adsorption by soil and soil materials.” Advances in Agronomy, Vol.30, pp.1-50.
Partey, F., Norman, D., Ndur, S. and Nartey, R., 2008, “Arsenic sorption onto laterite iron concretions Temperature effect.” Journal of Colloid and Interface Science, Vol.321, pp.493-500.
Petrick, J.S., Jagadish, B., Mash, E.A. and Aposhian, H.V., 2001,” Monomethylarsonous Acid (MMAIII) and Arsenite: LD50 in Hamsters and In Vitro Inhibition of Pyruvate Dehydrogenase.” Chemical Research in Toxicology, Vol.14, pp.651-656.
Peryer, F.J., 1991, “phosphate-induced release of arsenic form soils contaminated with lead arsenate.” Soil Science Society of America Journal, Vol.55, pp. 1301-1306.
Pierce, M.I., and Moore, C.B., 1982, “Adsorption of arsenite and arsenate on amorphous iron hydroxide.” Water Resources, Vol.16, pp.1247-1253.
Piccinin, P., Pichat, P. and Guillsrd, C., 1998, “Phototransformation of Solid Pentachlorophenol,” Journal of Photochemistry and Photobiology A: Chemisitry, Vol.119, pp.137-142.
Redman, A.D., Macalady, D.L. and Ahmann, D., 2002, “Natural organic matter affects arsenic speciation and sorption onto hematite.” Environmental Science & Technology, Vol.36, pp.2889-2896.
Ribeiro, A., Neves, M.H., Almeida, M.F., Alves, A. and Santos, L., 2002, “Direct determination of chlorophenols in landfill leachates by solid-phase micro-extraction-gas chromatography-mass spectrometry.” Journal of Chromatography A, Vol.975, pp.267-274.
Sabine, G. and Johnston, C.T., 2001, ”Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements,vibrational spectroscopy,and surface complexation modeling,” Journal of Colloid and Interface Science, Vol.234, pp.204-216.
Sato, Y., Kang, M., Kamei, T.K. and Magara, Y., 2002, “Performance of nanofiltration for arsenic removal.” Water Research, Vol.36, pp.3371-3377.
Sarrion, M.N., Santos, F.J. and Galceran, M.T., 2002, “Determination of chlorophenols by solid-phase microextraction and liquid chromatography with electrochemical detection.” Journal of Chromatography A, Vol.947, pp.155-165.
Smedley, P.L. and Kinniburgh, D.G., 2002. “A review of the source, behavior and distribution of arsenic in natural waters.” Applied Geochemistry, Vol.17, pp. 517-568.


Sparks, D.L., 1996, ”Methods Of Soil Analysis Part 3 Chemical Methods,” Soil Science Society Of America, Madison, Wisconsin, USA, pp.995-996.
Stanic, M.H., Kalajdzic, B., Kules, M. And Velic, N., 2008, ”Arsenite and arsenate sorption by hydrous ferric oxide/polymeric material.” Desalination, Vol.229, pp.1-9.
Stumm, W., 1992, ”Chemistry of the Solid-Water Interface.” Wiley, New York.
Styblo, M., Sreves, S.V., Cullen, W.R. and Thomas, D.J., 1997, “Comparative Inhibition of Yeast Glutathione Reductase by Arsenicals and Arsenothiols.” Chemical Research in Toxicology, Vol.10, pp.27-33.
Tanjore, A. and Viraraghavan, T. 1994, “Pentachlorophenol – Water Pollution Impacts and Removal Technologies.” International Journal of Environmental Studies, Vol.45, pp.155-164.
Thoresby, P. and Thornton, I., 1979, “Heavy metals and arsenic in soil, pasture herbage and barley in some mineralised areas in Britain: significance to animal and human health.” In Trace Substance in Environmental Health, Vol. 13, ed. D.D. Hemphill.
Thomas, P. and Sniatecki, K., 1995, “Determination of trace amounts of arsenic species in natural waters by high-performance liquid chromatography–inductively coupled plasma mass spectrometry.” Journal of Analytical Atomic Spectrometry, Vol.10, pp.615-618.
Urasa, I.T. and Ferede, F. 1987, “Use of current plasma as element selective detector for simultaneous ion chromatographic determination of arsenic(Ⅲ)and arsenic(Ⅴ)in the presence of other common anions.” Analysis Chemical, Vol.59, pp.1563-1568.
Vilano, M., Padro, A., Rubio, R., 2000, “Coupled techniques based on liquid chromatography and atomic fluorescence detection for arsenic speciation.” Analytica Chimica Acta, Vol.411, pp.71-79.
Wamgkarn, S., Pergantis, S.A., 2000, “High-speed separation of arsenic compounds using narrow-bore high-performance liquid chromatography on-line with inductively coupled plasma mass spectrometry.” Journal of Analytical Atomic Spectrometry, Vol.15, pp.627-633.
WHO, 1981, “Arsenic (Environmental Health Criteria 18),Geneva,International Programme on Chemical Safety.”
Woolson, E.A., 1977, ”Fate of arsenicals in different environmenta substrates.” Environmental Health Perspectives, Vol.19. pp.73-81.
Weber, J.W., 1972, ”Adsorption in Physico-chemical Process-for Water Quality Control,” John Wiley, New York.
Frankenberare, W.T.Jr., 2002, “Environmental chemistry of arsenic.” Marcel Dekker, New York.
Wu, S.C. and Gschwend, P.M., 1986, “Sorption kinetic of Hydrophobic Organic Compounds of Natural Sediments and Soils,” Environmental Science & Technology, Vol.20, pp.717-725.
Zhang, X., Cornelis, R., de Kimpe, J. and Mees, L., 1996, “Speciation of toxicologically important arsenic species in human serum by liquid chromatography–hydride generation atomic absorption spectrometry.” Journal of Analytical Atomic Spectrometry, Vol.11, pp.1075-1079.
Zhang, H., Selim, H.M., 2005, “Kinetics of arsenate adsorption-desorption in soils.” Environ Science & Technology, Vol.39, pp.6101-6108.
王一雄,1997,「土壤環境污染與農藥」,明文書局,臺北,第1-648頁。
王明光,2000,「環境土壤化學」,五南圖書出版公司,臺北,第127-139頁。
王大銘,2001,「薄膜分離技術於廢水處理之應用概述」,經濟部工業局工安環保報導。
王明光,2003,「土壤物理化學」,藝軒圖書出版社,臺北,第171-172頁。
王文成,2005,「以電聚浮除法處理半導體廢水中之砷」,台中,國立中興大學環境工程研究所碩士論文。
行政院環境保護署,1994,「土壤中陽離子交換容量─醋酸鈉法」,NIEA S202.60A,環署檢字第 00529 號。
行政院環境保護署,2002,「土壤水分含量測定方法-重量法」,NIEA S280.61C,環署檢字第 0910000872 號。
行政院環境保護署,2002,「索氏萃取法」,NIEA M165.00C,環署檢字第0910003755號。
行政院環境保護署,2002,「沈積物、污泥及油脂中金屬元素總量之檢測方法-微波消化原子光譜法」,NIEA R355.00C,環署檢字第0910014627號。
行政院環境保護署,2009,「土壤酸鹼值(pH 值)測定方法-電極法」,NIEA S410.62C,環署檢字第0970075579號。
行政院環境保護署毒理資料庫 http://flora2.epa.gov.tw/toxicweb/toxicuc4/database.asp
江謝令涵,2003,「以外加電場輔助掃流過濾處理水中砷及天然有機物」,台北,國立台灣大學環境工程研究所碩士論文。
江姿幸,2005,「滲透性反應牆對於砷污染土壤進行電動力法復育影響之研究」,高雄,國立中山大學環境工程研究所碩士論文。
李國欽,費雯綺,1980,「水稻田土壤含砷量與植物含砷量及生長情形相關關係之探討」,植保會刊,第22期,101-112頁。
邱瑞斌,2001,「受五氯酚污染土壤復育技術之研究」,屏東,國立屏東科技大學環境工程與科學系碩士論文。
邱誌忠,2004,「半導體產業高濃度含砷廢水之處理—化學沉降法與活性碳吸附法之評估」,台中,國立中興大學環境工程研究所碩士論文。
林財富,1999a,「供飲用地下水簡易除砷方法之發展」,行政院環保署88年度研究計畫。
林浩潭,1999b,「砷與有機物交互作用之探討」,台中,中興大學土壤環境科學研究所博士論文
林碧珍,2000,「利用高效能液相層析及流動注入氫化產生原子吸收光譜法進行尿液中砷物種之生物偵測研究」,高雄,高雄醫學大學醫學研究所碩士論文。
許澤善,1996,「土壤力學試驗」,高立圖書有限公司,臺北,第31-58 頁。
黃秋嫆,1993,「固定化氯酚分解菌處理廢水中含氯酚類有毒物質之研究」,台中,國立中興大學環境工程學研究所碩士論文。
黃弘斌,1997,「台灣數種農耕土壤之總量砷與固相砷型態及對砷之吸附」,台中,國立中興大學土壤環境科學研究所碩士論文。
黃嘉貞,2002,「五氯酚在紅壤中的腐植化及吸附」,屏東,國立屏東科技大學環境工程與科學系碩士論文。
黃互慶,2005,「氧化鐵覆膜濾砂吸附處理水中 As(V)、HA 之研究」,高雄,輔英科技大學環境工程研究所碩士論文。
黃大鵬、張耀斌、王釗,2006,「微波輔助空氣氧化水溶液中的PCP」,環境污染治理技術與設備,第7卷12期,第82-85頁。
曹惠玲,2005,「改質矽藻土對水中重金屬吸附特性之研究」,台南,國立成功大學環境工程研究所碩士論文。
張旭諒,2002,「利用加速型溶劑萃取法萃取土壤中五氯酚」,台南,國立成功大學化學研究所碩士論文。
張俊鴻,2005,「以EDTA、藻酸鈉對砷及鉻污染土壤萃取效率之研究」,桃園,國立中央大學環境工程研究所碩士論文。
張倉碩,2006,「台灣地區空氣污染物濃度長期趨勢推估之研究」,台中,弘光科技大學環境工程研究所碩士論文。
張皓翰,2007,「銦金屬螯合劑之合成及超臨界二氧化碳萃取去除光電產業製程蝕刻廢液中銦之研究」,台中,弘光科技大學職業安全與防災研究所碩士論文。
葉玉雯,1999,「比較索氏萃取法與超臨界萃取法對含萘及五氯酚土壤萃取之研究」,台中,國立中興大學環境工程研究所碩士論文。
詹昌龍,2006,「以索氏萃取及超音波萃取土壤中的萘與菲:土壤含水份與 pH 的效應」,台中,國立中興大學環境工程系碩士論文。
楊茱芳,2002,「五氯酚分解菌之分離與及其生理特性研究」,台中,國立中興大學環境工程學系碩士論文。
談駿嵩,2002,「超臨界流體的應用」,科學發展,第359期,第12-17頁。
劉鎮宗,1995,「砷與生態環境的關係」,科學月刊,第26卷,第一期,
第134-140頁。
劉雲翔,2007,「土壤有機質對四氯乙烯吸/脫附行為之影響」,台中,弘光科技大學環境工程研究所碩士論文。
鄭政峰,唐永安,顏慶堂,謝俊明(1994),“作業環境空氣中三價砷與五價砷同步分析方法之開發”,勞工安全衛生研究季刊,第二卷,第三期,71-82。
賴進興,1995 ,「氧化鐵覆膜濾砂吸附過濾水中銅離子之研究」,台北,國立台灣大學環境工程研究所博士論文。
潘秋金,2002,「以陽離子型界面活性劑合成有機黏土吸附有機化合物之研究」,台南,國立成功大學資源工程學系碩士論文。
蘇家潁。2001。「微生物對毒性物質PCP 生物分解性與膠凝沈降性之間的關係探討」。台中,東海大學化學工程研究所碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔