(3.236.214.19) 您好!臺灣時間:2021/05/09 23:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:張朝宗
研究生(外文):Chao-Tsung Chang
論文名稱:太陽光電池之高效率獨立型電力轉換器
論文名稱(外文):High-Efficiency Power Conditioner for Stand-Alone Solar Photovoltaic System
指導教授:段柔勇
指導教授(外文):Rou-Yong Duan
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:職業安全與防災研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:115
中文關鍵詞:太陽光電池獨立供電型反流器電流源耦合電感柔性切換電壓箝制同步整流並聯組態單級反流器
外文關鍵詞:solar photovoltaicstand-alone typeinvertercurrent-sourcecoupled-inductorsoft switchingvoltage clampedsynchronous rectificationparallel typesingle stage inverter
相關次數:
  • 被引用被引用:5
  • 點閱點閱:329
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:111
  • 收藏至我的研究室書目清單書目收藏:1
本論文提出兩種應用於太陽光電系統之高效率獨立供電型電源反流器。習用脈波寬度調變之電壓源反流器採用LC濾波電路達成電源轉換功能,並廣泛應用於工業及商業用途。然而濾波電感造成輸出正弦電壓峰值區域內含高諧波成分,即使提高電感兩端電壓,改善效果仍然有限,因此,用於非線性負載種類以及瞬間負載變化之調節能力較差。電流源形式之電源反流器,直接對輸出電容充電並累積正弦波電壓,可有效降低高諧波失真與電磁干擾等問題。然而,此類型反流器為降低電感所產生之電流及電壓應力,需大幅提升濾波電感容量。
本論文第三章所提之正弦電壓反流器,運用耦合電感控制電流源,直接對濾波電容及負載高頻切換充電控制,以累積正弦波輸出電壓。輸入端以太陽光電池串聯產生一略高於交流峰值之直流電壓,再透過電源反流器轉為交流正弦波輸出。運用諧振電感並聯於輸出電容端,全橋反流器可省略四個串聯二極體。此外,耦合電感容量小且環流成份低,並具有低切換損失及電壓箝制效能,最高轉換效率超過97%以上。
習用反流器主要運用太陽光電池陣列串聯組態,產生一直流匯流排電壓,再將其降壓轉為交流正弦電壓輸出。然而,太陽光電池串聯組態易受到單一模組遮陰影響(例如鄰近建築物、電線桿及樹)而造成系統整體電量減少或陷入停擺。若將全部太陽光電池以全並聯組態方式實施,可解決上述因串聯模組延伸之問題。然而,其電壓為低電壓準位不易運用。因此本論文第四章所提高效率單級隔離型正弦電壓反流器,克服低電壓特性問題,此架構僅採用六個開關及一隔離型變壓器,實現高昇壓比例以及轉換成純交流正弦電壓輸出之性能。運用柔性切換、同步整流及電壓箝制等技術,有效降低開關的耐壓規格,並可選用較低導通損失 之開關,減少轉換裝置整體損失。依據額定250W之實驗驗證各項柔性切換性能,其最高轉換效率超過92%,於各類型負載測試條件下,總諧波失真率均在2.5%以下。
The purpose of this thesis is to develop two type high-efficiency stand-alone type inverters for the solar photovoltaic (PV) system. A conventional PWM voltage-source inverter with LC filter circuit is probably the most important power converter topology, and is used in many particular industrial and commercial applications. However, the output waveform tends to distort around the peak turning point and generates high-frequency harmonics. The output inductor also cumbers the adjustable ability of the voltage-source inverter while the situation of suddenly loading or supporting nonlinear loads occurs. The current-source inverting methodology has mainly been used to charge the output capacitor to accumulate pure sine waveform so that it can lower the high-frequency harmonics and solve the problem of EMI. However, the inductor current and switch voltage stress are difficult to handle due to the utilization of a large inductor in this circuit.
The first inverter in chapter 3 adopted a controllable current source supplies the filter capacitors and loads with high frequency switching to integrate the output sine wave voltage. The PV modules are connected in series to obtain sufficient dc input voltage for the inverter to generate ac line voltage. Since the resonant inductor and the filter capacitor are connected in parallel, the series diodes of the full-bridge switches can be omitted. Furthermore, a coupled-inductor with a low volume is utilized to reduce the circulating energy, switching loss and clamped the voltage stress of the devices so that the maximum power inverter efficiency exceeds 97%.
A conventional system uses a PV array in which many PV modules are connected in series to obtain sufficient dc input voltage for generating ac utility line voltage from an inverter circuit. However, difficulty is encountered in avoiding shadows created by neighboring buildings, utility poles, trees, and other obstacles that may partially cover some of the PV modules in the array. As a result, the total output power generated from the PV array decreases. The parallel type operation provides a solution for the PV modules with various properties; however, its voltage still belongs to a low-voltage type. Therefore, a high-efficiency step-up inverter in chapter 4 with single stage inverter is required to overcome this defect. This mechanism with isolated transformers adopts only six switches to achieve the high step-up and pure sine-wave voltage properties. The techniques in this circuit involve the soft switching, synchronous rectification and voltage clamped to reduce the switching and conduction losses by the utilization of a low-voltage-rated device with a smaller RDS(on). According to the experimental measure with 250W power rating, the maximum power inverter efficiency is over 92% and the total harmonic distortions for various load conditions are all within 2.5%.
目錄
中文摘要 I
英文摘要 III
誌謝 V
目錄 VII
圖目錄 X
第一章 緒論 1
1.1 研究動機 1
1.2 文獻探討 3
1.3 研究目的 18
1.4 研究方法 18
1.5 論文大綱 19
第二章 太陽光電池及電源轉換裝置系統簡介 20
2.1 前言 20
2.2 太陽光電池簡介 20
2.3 太陽光電使用現況 23
2.4 太陽光電池發電原理 24
2.5 電池串並聯特性及等效電路分析 28
2.5.1 串聯組態特性及系統架構 28
2.5.2 並聯組態特性及系統架構 31
2.6 系統架構 32
第三章 太陽光電池串聯組態之正弦電壓反流器 34
3.1 前言 34
3.2 系統架構 34
3.3 電路工作模式與原理分析 36
3.4 電路設計 45
3.5 模擬分析結果 49
3.6 控制驅動信號及周邊硬體電路 52
3.6.1 PWM控制及驅動電路 53
3.6.2 正弦波命令產生電路 53
3.6.3 功率開關之隔離驅動電路 54
3.6.4 交流電壓迴授電路 55
3.7 實驗結果 56
第四章 太陽光電池並聯組態之單級隔離型正弦電壓反流器 65
4.1 前言 65
4.2 系統架構 66
4.3 電路工作模式與原理分析 68
4.4 電路設計 81
4.4.1 變壓器匝數比設計 82
4.4.2 輸出漣波電壓設計 83
4.4.3 變壓器容量設計 86
4.5 模擬分析結果 89
4.6 控制驅動信號及周邊硬體電路 94
4.6.1 PWM控制及驅動電路 95
4.6.2 正弦波命令產生電路 95
4.6.3 功率開關之隔離驅動電路 95
4.6.4 交流電壓迴授電路 95
4.7 實驗結果 96
第五章 結論與未來展望 102
5.1 結論 102
5.2 未來展望 106
參考文獻 110
[1] S. Rahman, “Green power: what is it and where can we find it?,” IEEE Power Energy Mag., vol. 1, no. 1, pp. 30-37, 2003.
[2] S. R. Bull, “Renewable energy today and tomorrow,” Proc. IEEE, vol. 89, no. 8, pp. 1216-1226, 2001.
[3] S. Duryea, S. Islam, and W. Lawrance, “A battery management system for stand-alone photovoltaic energy systems,” IEEE Ind. Appl. Mag., vol. 7, no. 3, pp. 67-72, 2001.
[4] F. Valenciaga and P. F. Puleston, “Supervisor control for a stand-alone hybrid generation system using wind and photovoltaic energy,” IEEE Trans. Energy Conversion, vol. 20, no. 2, pp. 398-405, 2005.
[5] C. Yang and K. M. Smedley, “A cost-effective single-stage inverter with maximum power point tracking,” IEEE Trans. Energy Conversion, vol. 19, no. 5, pp. 1289-1294, 2004.
[6] B. M. T. Ho and S. H. Chung, “An integrated inverter with maximum power tracking for grid-connected PV systems,” IEEE Trans. Energy Conversion, vol. 20, no. 4, pp. 953-962, 2005.
[7] T. J. Liang, Y. C. Kuo, and J. F. Chen, “Single-stage photovoltaic energy conversion system,” IEE Proc. Electr. Power Appl., vol. 148, no. 4, pp. 339-344, 2001.
[8] Y. C. Kuo, T. J. Liang, and J. F. Chen, “Novel maximum- power-point-tracking controller for photovoltaic energy conversion system,” IEEE Trans. Energy Conversion, vol. 48, no. 3, pp. 594-601, 2001.
[9] Y. K. Chen, C. H. Yang, and Y. C. Wu, “Robust fuzzy controlled photovoltaic power inverter with Taguchi method,” IEEE Trans. Energy Conversion, vol. 38, no. 3, pp. 940-954, 2002.
[10] L.T. J. Liang, Y. C. Kuo, and J. F Chen, “Single-stage photovoltaic energy conversion system,” IEE Proc. Electr. Power Appl., vol. 148, no. 4, pp. 339-344, 2001.
[11] T. F. Wu, C. H. Chang, and Y. H. Chen, “A fuzzy-logic-controlled single-stage converter for PV-powered lighting system applications,” IEEE Trans. Ind. Electron., vol. 47, no. 2, pp. 287-296, 2000
[12] 洪國強,「住宅用市電並聯型太陽能電力轉換器」,國立台灣大學博士論文,民國九十一年。
[13] 李思賢,「數位式單相低功率太陽光電能轉換系統」,國立中山大學碩士論文,民國九十二年。
[14] D. C. Lu, D. K. W. Cheng, and Y. S. Lee, “A single-switch continuous-conduction-mode boost converter with reduced reverse-recovery and switching losses,” IEEE Trans. Ind. Electron., vol. 50, pp. 767-776, 2003.
[15] C. M. C. Duarte and I. Barbi, “An improved family of ZVS-PWM active-clamping DC-to-DC converters,” IEEE Trans. Power Electron., vol. 17, pp. 1-7, 2002.
[16] E. S. da Silva, L. dos Reis Barbosa, J. B. Vieira, Jr., L. C. de Freitas, and V. J. Farias, “An improved boost PWM soft-single-switched converter with low voltage and current stresses,” IEEE Trans. Ind. Electron., vol. 48, pp. 1174-1179, 2001.
[17] Q. Zhao and F. C. Lee, “High-efficiency, high step-up DC-DC converters,” IEEE Trans. Power Electron., vol. 18, pp. 65-73, 2003.
[18] K. C. Tseng and T. J. Liang, “Novel high-efficiency step-up converter,” IEE Proc. Electr. Power Appl., vol. 151, pp. 182-190, 2004.
[19] R. J. Wai and R. Y. Duan, “High step-up converter with coupled-inductor,” IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1025-1035, 2005.
[20] R. Sharma and H. Gao, “Low cost high efficiency DC–DC converter for fuel cell powered auxiliary power unit of a heavy vehicle,” IEEE Trans. Power Electron., vol. 21, no. 3, pp. 587-591, 2006.
[21] X. Kong and A. M. Khambadkone, “Analysis and implementation of a high efficiency, interleaved current-fed full bridge converter for fuel cell system,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 543-550, 2007.
[22] Y. Jang and M. M. Jovanovic, “Isolated boost converters,” IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1514-1521, 2007.
[23] F. J. Lin, R. Y. Duan, and J. C. Yu, “An ultrasonic motor drive using a current-source parallel-resonant inverter with energy feedback,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 31-42, 1999.
[24] F. J. Lin, R. Y. Duan, R. J. Wai and C. M. Hong, “LLCC resonant inverter for piezo-electric ultrasonic motor drive,” IEE Proc. Electric Power Appl., vol. 146, no. 5, pp. 479-487, 1999.
[25] L. Malesani, P. Tenti, P. Tomasin, and V. Toigo, “High efficiency quasiresonant DC link three-phase power inverter for full-range PWM,” IEEE Trans. Ind. Appl., vol. 31, pp. 141-147, 1995.
[26] V. V. Deshpande, and S. R. Doradla, “A new topology for parallel resonant DC link with reduced peak voltage,” IEEE Trans. Ind. Appl., vol. 32, pp. 310-307, 1996.
[27] S. Chen, and T. A. Lipo, “A novel soft-switched PWM inverter for AC motor drivers,” IEEE Trans. Power Electron., vol. 11, pp. 653-659, 1996.
[28] P. C. Theron, and J. A. Ferreira, “The zero voltage switching partial series resonant converter,” IEEE Trans. Ind. Appl., vol. 31, pp. 879 –886, 1995.
[29] C. S. Moo, Y. C. Chuang, and C. R. Lee, “A new power-factor-correction circuit for electronic ballasts with series-load resonant inverter,” IEEE Trans. Power Electron., vol. 13, pp. 273-278, 1998.
[30] R. Itoh, K. Ishizaka, H. Oishi and H. Okada, “Soft-switched current-source inverter for single-phase utility interfaces,” Electron. Lett., vol. 37, pp. 1208-1209, 2001.
[31] H. Ishikawa, and Y. Murai, “A novel soft-switched PWM current source inverter with voltage clamped circuit,” IEEE Trans. Power Electron., vol. 15, no. 6, pp. 1081-1087, 2000.
[32] R. J. Wai, R. Y. Duan, J. D. Lee, and L. W. Liu, “High-efficiency fuel cell power inverter with soft-switching resonant technique,” IEEE Transactions on Energy Conversion, vol. 20, no. 2, pp. 485-492, 2005.
[33] R. J. Wai and R. Y. Duan, “High-efficiency power conversion for low power fuel cell generation system,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 847-856, 2005.
[34] R. J. Wai, R. Y. Duan, and L. W. Liu, “A current-source sine wave voltage driving circuit via voltage-clamping and soft-switching techniques,” R.O.C. Conference on Electrical Power Engineering, Part C-3, pp. 749-753, December 2003.
[35] C. M. Wang, C. H. Su, M. C. Jiang, and Y. C. Lin, “A ZVS-PWM single-phase inverter using a simple ZVS-PWM commutation cell,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 758-766, 2008.
[36] J. M. Kwon, K. H. Nam, and B. H. Kwon, “Photovoltaic power conditioning system with line connection,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1048-1054, 2006.
[37] Y. M. Chen, Y. C. Liu, S. C. Hung, and C. S. Cheng, “Multi-input inverter for grid-connected hybrid PV/Wind power system,” Trans. Ind. Power Electron., vol. 22, no. 3, pp. 1070-1077, 2007.
[38] R. Y. Duan, C. T. Chang, and T. L. Su, “A novel current-source sine wave voltage inverter with soft-switching and low-switching stress,” IEEE Power Electronics Specialists Conference (PESC), pp. 551-556, June 2006.
[39] 王文宏,「高效率太陽光電能源轉換系統」,元智大學碩士論文,民國九十四年
[40] R. J. Wai, and W. H. Wang, “Grid-connected photovoltaic generation system,” IEEE Trans. Circuits Syst. vol. 55, no. 3, pp. 953-964, 2008.
[41] R. J. Wai, W. H. Wang, and C. Y. Lin, “High-performance stand-alone photovoltaic generation system,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 240-250, 2008.
[42] R. J. Wai, C. Y. Lin, C. Y. Lin, R. Y. Duan, and Y. R. Chang, “High-efficiency power conversion system for kilowatt-level stand-alone generation unit with low input voltage,” IEEE Trans. Ind. Electron., vol. 55, no. 10, pp. 3702-3714, 2008.
[43] N. Kasa, T. Iida, and L. Chen, “Flyback inverter controlled by sensorless current MPPT for photovoltaic power system,” IEEE Trans. Ind. Electron., vol. 52, no. 4, pp. 1145-1152, 2005.
[44] S. Jung, Y. Bae, S. Choi, and H. Kim, “A low cost utility interactive inverter for residential fuel cell generation,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2293-2298, 2007.
[45] T. Shimizu, K. Wada and N. Nakamura, “Flyback-type single-phase utility interactive inverter with power pulsation decoupling on the DC Input for an AC photovoltaic module system ,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1264-1272, September 2006.
[46] 吳財福,張健軒,陳裕愷,「太陽能供電與照明系統綜論」,全華出版社,民國八十九年。
[47] 工業技術研究院工業材料研究所,「太陽光電資訊網-太陽電池及模板」,http://solarpv.itri.org.tw/aboutus/sense/battery.asp。
[48] 陳思潔,陳文輝,「全球太陽光電發展趨勢」。
[49] S. Kim and M. J. Youn, “Variable-structure observer for solar-array current estimation in a photovoltaic power-generation system,” IEE Proc. Electr. Power Appl., vol. 152, no. 4, pp. 953-959, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔