(3.238.173.209) 您好!臺灣時間:2021/05/16 04:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:邱紹隆
研究生(外文):Shao-Lung Chiu
論文名稱:綠色難燃性矽氧烷官能基化膨脹型石墨
論文名稱(外文):Preparation and properties of green flame retardant silane functionalized expandable graphite composites.
指導教授:江金龍江金龍引用關係
指導教授(外文):Chin-Lung Chiang
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:職業安全與防災研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:181
中文關鍵詞:難燃劑溶膠-凝膠高分子壓克力
外文關鍵詞:flamereatardsol-gelpolymerPMMA
相關次數:
  • 被引用被引用:1
  • 點閱點閱:347
  • 評分評分:
  • 下載下載:76
  • 收藏至我的研究室書目清單書目收藏:1
本研究旨在合成綠色環保型難燃劑,以膨脹型石墨為添加劑,利用含矽耦合劑之APTS改質膨脹型石墨,使石墨官能基化。分別選擇膨脹型石墨及脫層石墨奈米片,為改質對象,並添入另外以聚甲基丙烯酸甲酯為基材,透過Maleic anhydride(MA)與3-Amino propyltrithoxailane(APTS)改質方式,使聚甲基丙烯酸甲酯具有矽氧烷官能基接枝形成側鏈,以水解縮合方式製備,形成二氧化矽網狀結構之有機/無機複合材料。此外,根據膨脹型石墨及脫層石墨奈米片分為兩部分:
第一部分為針對APTS改質聚甲基丙烯酸甲酯,使之官能基化,以FT-IR結構觀察鍵結結構,觀察存有可反應之矽氧烷及鍵結之C-N結構生成。而改質膨脹型石墨部分,觀察到APTS改質膨脹型石墨產生C-N官能基,由於石墨透光率不佳,因此利用XPS觀察鍵結生成,以全掃及細掃方式觀察元素生成以及鍵能變化,證實有效改質膨脹型石墨。熱性質方面以DSC、TGA分別觀察,透過添加改質膨脹型石墨可有效提升Tg點,然而TGA選擇環境為氮、空氣,也證實有效改善初步裂解速率、焦碳值及最大熱裂解速率皆有明顯提升。藉由LOI發現,難燃性也明顯與未改質之膨脹型石墨之難燃性藉由LOI發現。形態學採SEM圖譜,發現石墨膨脹化證實有效膨脹證實防護機制程序,焦碳的累積也透過拉曼光譜儀觀察焦碳生成變化,更細部分析焦碳變化,以XPS觀察,對照有改質與未改質之複合材料,明顯具有抗氧化性質的差別,對於改質膨脹型石墨方式更添防護之貢獻。
第二部分則以高溫衝擊方式,使膨脹型石墨產生撐層結構,浸入酒精中,以超音波衝擊方式,使已膨脹體石墨產生脫層,轉為奈米等級之石墨片。判定方式則以XRD觀察結構晶體變化、SEM顯示膨脹體轉變為零碎、不完整之石墨片散佈以及TEM證實奈米片具有較高穿透度有別於為脫層結構體。其後,延續第一部分改質方式,受到高溫氧化之奈米片,生成含COOH基,可與APTS鍵結,鑑定方式以XPS觀察元素生成,另外以細掃方式證實改質成功形成C-N及C-Si鍵。基材仍是選擇聚甲基丙烯酸甲酯,以官能基化方式製備,與改質完畢之石墨奈米片產生水解縮合方式,製備奈米級之複合材料。特別以TEM切片方式,觀察複合材料內之石墨片厚度低於100nm以下,此外,熱性質以TGA方式觀察,證實經由添加改質膨脹型石墨比照於未改膨脹型石墨,具有較佳熱性質提升,然而,透過體積膨脹表面增加,有效使石墨片構起電路達到抗靜電消散的效果。
In the study, preparation and properties of green flame retardant of silane functionalized expandable graphite composites were investigated. The coupling agent was used to improve the interface between the matrix and expandable graphite. Furthermore, the obtained expandable graphite was put into the high-temperature oven at 1000℃ for 15s. The expanded graphite was dispersed in a alcohol solution and then subjected to power in ultrasonic bath for 8hr. The obtained mixture was filtered and then dried to get nano-level graphite sheets then prepared nano-composites.
FT-IR, XPS and 29Si-NMR were adopted to characterize the functionalized expandable graphite. FT-IR showed that absorption peaks at around 1100-1000cm-1, corresponding to –OEt functional group. In addition, the silica network was characterized by 29Si-NMR. Results revealed that T3 are the SiO2 network structures. XPS presented that APTS molecules reacted with the carboxyl acid functional group of expandable graphite. It was affirmed that APTS has been grafted on expandable graphite.
Thermal properties showed significant difference between the conventional composites and nanocomposite. The modified expandable graphite composites exhibited promising thermal properties. TGA and TG△ were employed to calculate the thermal sTableility. The modified expandable graphite composites improved thermal property, corresponding to functionalized expandable graphite. The 10% weight loss temperature increased from 278℃ to 340℃. The L.O.I of the composites can reach 28. Hence, the materials possess excellent flame-retardant properties.
SEM was used to study the morphology property of the modified expandable graphite composites. It showed that flake graphite existed in the matrix. EDX indicated that Si atoms appeared due to APTS was grafted on expandable graphite. The expanded structures of graphite were formed after burned. The foamed layer demonstrated to the mechanism of protection of expandable graphite. Furthermore, XPS was used to prove that the graphite can improve the anti-oxidant ability of material.
Functionalized nano-sheet graphite contributes to improve the heat-conduction and reduce the surface resistance of composites. TEM, XRD and SEM were used to study the structure of composites. The antistatic properties of GNs composites can reach the conductive level.
目 錄
第一章 前 言 1
第二章 理論及文獻回顧 5
2-1、高分子燃燒機制 5
2-1-1、燃燒四要素 5
2-1-2、高分子燃燒過程 6
2-1-3、高分子裂解反應 8
2-1-4、燃燒因素 9
2-1-5、靜電危害 11
2-2、難燃劑性質與種類 14
2-2-1、難燃劑源起 14
2-2-2、難燃劑性質 14
2-2-3、難燃劑種類 16
2-2-4、鹵素難燃劑衍生危害 17
2-2-5、國際近年來趨勢 18
2-3、環保型無鹵型難燃劑 20
2-3-1、金屬難燃劑 20
2-3-2、磷系難燃劑 23
2-3-3、矽系難燃劑 24
2-3-4、氮系難燃劑 25
2-3-5、硼系難燃劑 26
2-3-6、膨脹型難燃劑 27
2-3-7、膨脹型石墨 29
2-4、溶膠-凝膠法 34
2-4-1、水解反應機制 35
2-4-2、縮合反應機制 36
2-4-3、溶膠-凝膠法之優點 37
2-4-3、聚甲基丙烯酸甲酯(PMMA) 399
2-5、相關文獻介紹 42
2-5-1、膨脹型石墨 42
2-5-2、奈米石墨片之研究文獻 54
第三章 研究目的與內容 66
3-1. 研究目的 66
3-2. 含矽官能基化聚甲基丙烯酸甲酯複合材料 70
3-2-1. 矽氧烷官能基化聚甲基丙烯酸甲酯 70
3-2-2.改質含矽氧烷官能基之膨脹型石墨(SEG) 71
3-2-3.製備聚甲基丙烯酸甲酯與膨脹型石墨複合材料(S-MMA/SEG) 72
3-3. 石墨奈米片複合材料 73
3-3-1. 製備已膨脹石墨之奈米片 73
3-3-2. 奈米級石墨片之官能基化(SGNS) 74
3-3-3. 製備S-MMA/SGNS之複合材料 75
第四章 實驗步驟與流程介紹 77
4-1 實驗藥品 77
4-2 實驗儀器設備及測試方法 79
4-3 實驗步驟之流程圖 81
4-3-1 實驗步驟(S-MMA/SEG COMPOSITES) 81
4-3-2 實驗步驟(S-MMA/SGNS COMPOSITES) 82
4-4.含矽官能基化膨脹型石墨與聚甲基丙烯酸甲酯複合材料製備 83
4-4-1.矽氧烷官能基化聚甲基丙烯酸甲酯之製備(S-MMA) 83
4-4-2.矽氧烷官能基化膨脹型石墨(SEG) 84
4-4-3 製備S-MMA/SGNS之複合材料 85
4-5 含矽官能基化石墨奈米片與聚甲基丙烯酸甲酯製備奈米複合材料 86
4-5-1 製備石墨奈米片 86
4-5-2. 改質奈米石墨片 87
4-5-3. 製備奈米石墨片與聚甲基丙烯酸甲酯之奈米複合材料 88
第五章 結果與討論 89
5-1. S-MMA/SEG複合材料 89
5-1-1. S-MMA/SEG複合材料之FT-IR、XPS、NMR鑑定 89
5-1-1-1.製備矽氧烷官能基化聚甲基丙烯酸甲酯 (S-MMA ) 89
5-1-1-2.官能基化膨脹型石墨(SEG) 90
5-1-1-3. 膨脹型石墨官能基化之XPS鑑定 92
5-1-1-4.製備S-MMA/SEG複合材料之FT-IR鑑定 97
5-1-1-5. 超核導固態核磁共振儀 99
5-1-1-6. 接枝率測試(GRAFTING REACTION WT, %) 101
5-1-2. S-MMA/SEG難燃性、熱性質分析 102
5-1-2-1.微差掃描量熱儀(DSC) 102
5-1-2-2. 熱重量分析 (TGA) 103
5-1-2-3. TG△ 107
5-1-2-4. 積分程序分解溫度 110
5-1-2-5. LOI難燃測試 113
5-1-3. S-MMA/SEG形態學分析、焦碳鑑定 116
5-1-3-1. SEM形態學分析 116
5-1-3-2. 燃燒形態學分析 118
5-1-3-3. 拉曼光譜儀焦碳測試 120
5-1-3-4. XPS光譜儀焦碳測試 122
5-2. 製備奈米石墨片結構鑑定 128
5-2-1.型態學SEM、XRD、TEM分析 128
5-2-1-1. SEM之型態學分析 128
5-2-1-2. TEM之型態學分析 131
5-2-1-3. X光繞射(X-RAY) 133
5-2-2. 鑑定奈米石墨片官能基化 134
5-2-2-1. PRISTINE GNS改質之FT-IR鑑定 134
5-2-2-2. PRISTINE GNS改質之XPS鑑定 136
5-2-2-3. S-MMA/SGNS複合材料之FT-IR鑑定 141
5-2-2-4. 接枝率測試 143
5-2-3. S-MMA/SGNS熱性質分析 144
5-2-3-1. TG△ 144
5-2-3-2. TGA分析 146
5-2-4.電性分析 149
5-2-4-1. 表面電性分析 149
第六章 結 論 151
參 考 文 獻
第一章:
1. 內政部消防署全球資訊網,http://www.nfa.gov.tw/index.aspx
第二章:
2. 沈永清、張信貞、莊學平、張榮樹,高分子難燃機構及原理,第二期,第15-32頁(1995)
3. B. MA, Jurs JL, Tour JM. Synthesis. flame-retardancy testing, and preliminary mechanism studises of nonhalogenated aromatic boronic acid:a new class of condensed phase polymer flame retardant additives for acrylonitrile butadiene styrene and polycarbonate. J Appl Polym Sci 1999;76:1257-1268.
4. 陽順旭,高分子之燃燒機構與阻燃原理,塑膠資訊,第22期,第26-31頁(1998)
5. 國立中山大學通訊工程研究所,碩士論文,詹奕倫。
6. 吳上慶、于樹偉、陳俊勳,因應歐盟環保指令無機阻燃劑特性研究,2005.
7. Draft Proposal for a European Parliament and Council Directive on Waste Electrical and Electronic Equipment, June,2000.
8. Liu YR, Huang YD, Liu L. Thermal sTableility of POSS/methylsilicone nanocomposites. Compos Sci Technol2007;67:2864-2876.
9. Liu YR, Huang YD, Liu L. Effects of trisilanolisobutyl-POSS on thermal sTableility of methylsilicone resin. Polym Degrad STable2006;91:2731-2738.
10. Lee YJ, Huang JM, Kuo SW, Lu JS, Chang FC. Polyimide and polyhedral oilgomeric silsesquioxane nanocomposites for low-dielectric applications. Polymer 2005;46:173:181
11. Kim KM, Adachi K, Chujo Y. Polymer Hybrid s of functionalized silsesquioxanes and organic polymers utilizing the sol-gel reaction of tetramethoxysilane. Polymer 2002;43:1171-1175
12. Martín C, Lligadas G, Ronda C, Galià M, Cádiz V. Synthesis of novel boron-containing epoxy-novolac resins and properties of cured products. J Polym Sci, Part A;Polym Chem2006;44:6332-6344
13. Martín C, Lligadas G, Ronda C, Galià M, Cádiz V. Synthesis of novel boron-containing epoxy-novolac resins and properties of cured products. J Polym Sci, Part A;Polym Chem2006;44:6332-6344.
14. Martín C, Ronda JC, Cádiz V.. Boron-containing novolac resins as flame retardant materials. Polym Degrad STable2006;91:747-754.
15. Martín C, Hunt BJ, Ebdon JR, Ronda JC, Cádiz V. Synthesis, crosslinking and flame retardance of polymers of boron-containing difunctional styrenic monomers. React. Funct. Polym 2006;66:1047-1054.
16. Martín C, Junt BJ, Ebdon JR, Ronda JC, Cádiz V. Synthesis, polymerization, and effects on the flame retardancy of boron-containing styrenic monomers. J Polym Sci, Part A;Polym Chem2005;43:6419-6430.
17. Martín C, Ronda JC, Cádiz V. Development of novel flame-reatrdant thermosets based on boron-modified phenol-formaldehyde resins. J Polym Sci, Part A;Polym Chem2006;44:3503-3512.
18. 鐘松政,防火塗料的現況與發展趨勢,化工資訊與商情(2008),第五期。
19. 常德祥,鱗片石墨的深加工,陶業(1998),pp58-59.
20. Zongrong Y, Xuemei L, Yu Q, Jie L. Preparation and characterization of low-temperature expandable graphite. Mater. Ress. Bull 2007, doi:10.1016.
21. Li J. Li J, Li M. Preparation of expandable graphite with ultrasound irradiation. Mater. Lett. 2007;5070:5073
22. Li J, Li J, Li M. Ultrasound irradiation prepare sulfur-free and lower exfoliate-temperature expandable graphite. Mater. Lett. 2008;2047:2049
23. 洪世淇,壓克力塑膠的用途,產業評析,p90(2005)
24. 陳永志、陳姿秀、陳志源,溶膠-凝膠法之研究與技術發展近況(上),工業材料雜誌,p169(2004)
25. Zheng G, Wu J, Wang W, Pan C. Characterizations of expanded graphite/polymer composites prepared by in situ polymerization. Carbon 2004;42:2839-2847.
26. Shi L, Li ZM, Yang MB, Yin B. Expandable graphite for halogen-free flame-retardant of high-density rigid polyurethane foams. Polymer-plastics technolog and engineering 2005;44:1323-1337.
27. Javni I, Zhang W, Karajkov V, Petrovic ZS, Effect of nano- and microsilica fillers on polyurethane foam properties. J. Cell. Plas. 2002;38:229-239.
28. Yin B, Li ZM, Quan H, Zhou QM, Tian CR, Yang MB. Morphology and mechanical properties of nylon-1010 filled rigid polyurethane foams. J. Elastom. Plast. 2004;36:333-348.
29. Guoxin L, Guozheng L, Tingshu H, Qinli Y, Xuefeng S. Effects of EG and MoSi2 on thermal degradation of intumescent coating. Poly Degrad STable 2007;92:569-579.
30. Olcese T, Pagella C. Vitreous fillers in intumescent coatings. Prog Org Coat 1993;36(4):231-241.
31. Cai Y, Wei Q, Huang F, Gao W. Preparation and properties studies of halogen-free flame retardant form-sTablele phase change materials based on paraffin/high density polyethylene composites. Appl Ener 2008;85:765-775.
32. Wu OH, Qu BH, Xu YH, Wu Q. Surface photo-oxidation and photosTableilization of photocross-linked polyethlene. Polym Degrad STable 2000;68:97-102
33. Xie RC.Qu BJ, Hu KL. Polym Degrad STable 2001;72:313-321.
34. Inorganic IR Grating Spectra, Sadlter Research Laboratories Inc., 1972.
35. Vandersall HL. Intumescent coating systems, their development and chemistry. J Fire Flamm 1971;2:97-140.
36. Le Bras M, Bourbigot S. In:Le Bars M, M Camino G, Bourbigot S, Delobel R, editors, editors. Retardanc of polmers-the use of intumescence. Cambridge UK:The Royal Society of Chemistry;1998.
37. Kuan CF, Yen WH, Chen CH, Yuen SM, Kuan HC, Chiang CL. Synthesis, characterization, flame retardance and thermal properties of halogen-free expandable graphite/PMMA composites prepared from sol-gel method. Polym Degrad STable ;93:1357-1363.
38. Moon SC, Jo BW, Farris RJ. Flame resistance and foaming properties of NBR compounds with halogen-free flame retardants. Polymer composites;doi 10.1002/pc.20794.
39. Chen G, Weng W, Wu D, Wu C. PMMA/graphite nanosheets composite and its conducting proerties. Euro polym J 2003;2329:233.
40. Wang W P, Pan C Y. Synthesis and characterizations of poly(ethylene oxide) methyl ether grafter on the expanded graphite with isocyanate groups. Euro polym J 2004;40:543-548.
41. Mo Z, Sun Y, Chen H, Zhang P, Zuo D, Liu Y, Li H. Preparation and characterization of a PMMA/Ce(OH)3 PrO/graphite nanosheet composite. Polymer 2005;46;12670-12676.
42. Chen SC. Important inorganic chemistry reaction. Vol.2 .Shanghai :Shanghai Technology Press ;1963 p.864[see also p.703].
43. L.N. Song, M. Xiao, Y.Z. Meng,. Electrically conductive nanocomposites of aromatic polydisulfide/expanded graphito. J.compscitech2006;66:2156-5162.
44. Mcallister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Alonso MH, Millius DL, Car R, Prud’homme RK, Liu A, Chem. Mater 2007;19:4396-4404.
45. Zhao YF, Xiao M, Wang SJ, Ge XC Meng YZ. Preparation and properties of electrically conductive PPS/expand ed graphite nanocomposites. Comos Sci Technol 2007;2528:2534.
46. Zheng W, Wong SC. Electrical conductivity and dielectric properties of PMMA/expanded graphite composites .Compos Sci Technol 2003;63:225-235.
47. Panwar V, Mehra RM. Study of electrical and dielectric properties of styrene-acrylonitrile/graphite sheets composites. Euro polym J 2008;44:2367-2375.
48. Ganguli S, Roy AK, Anderson DP. Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 2008 ;46:806-817.
49. Debelak B, Lafdi K. Use of exfoliated graphite filler to enhance polymer physical properties. Carbon 2007;45;1727-1734.
第五章:
50. Kim JY, Han SI, Hong S. Effect of modified carbon nanotube on the properties of aromatic polyester nanocomposites. Polymer Doi 10.1016
51. Yuen SM, Ma CC, Chiang CL,Teng CC. Morphology and Properties of Aminosilane Grafted MWCNT/Polyimide Nanocomposites. Hindawi Publishing Corporation Journal of Nanomaterials doi:10.1155/2008/186405
52. Yuen SM, M CC, Chiang CL, Chang JA, Huang SW, Chen SC, Chuang CY, Yang CC, Wei MH. Silane-modified MWCNT/PMMA composites-Preparation, electrical resistivity, thermal conductivity and thermal sTableility. Composites: Part A;38;2527-2535
53. Ma Ma Peng Cheng, Kim Jang Kyo, Tang Ben Zhong. Functionalization of carbon nanotubes using a silane coupling agent. Carbon 2006;44:3232-3238
54. Journal of materials processing technology 2008;208:342-347.
55. Yuen SM, Ma M CC, Chiang CL, Teng CC. Morphology and Properties of Aminosilane Grafted MWCNT/Polyimide Nanocomposites. Hindawi Publishing Corporation Journal of Nanomaterials 2008; doi:10.1155/2008/186405.
56. Zhang T, Xu M, He L, Xi K, Gu M, Jiang Z. Synthesis, characterization and cytotoxicity of phosphoryl choling-grafted water-soluble carbon nanotubes. Carbon 2008;46:1782-1791.
57. Wang WP, Pan CY. Synthesis and characterizations of poly(ethylene oxide)methyl ether grafted on the expanded graphite with isocyanate groups. Euro polym J 2004;33:543-548.
58. Wu HL, Yang YT, Ma M CC, Kuan HC. Molecular mobility of free-radical-functionalized carbon-nanotube/siloxane/poly(urea urethane). J Polym Sci :Part A Polym Chem;43:6084-6094.
59. Wang H, Xu P, Zhong W, Shen L, Du Q. Transparent poly(methyl methacrlate)/silica/zirconia nanocomposites with excellent thermal sTableilities, Polym Degrad STable 2005;87:319-327.
60. Lu G, Huang Y, Yan Y, Zhao T, Yu, Y, J Polym Sci Part A: Polym Chem 2003;41:2599.
61. Hwang ST, Hahn YB, Nahm KS, Lee YS. Preparation and characterization of poly(MSMA-co-MMA)-TiO2/SiO2 nanocomposites using the colloidal TiO2/ SiO2. Colloids and surfaces A: Physicochem. Eng.2005;259:63-69.
62. Duquesne S, Bras ML, Bourbigot S, Kelobel R,Camino G, Eling B, Lindsay C, Roels T. Thermal degradation of polyurethane/expandable graphite coatings. Polym Degrad STable 2001;74:493-499.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top