(3.230.154.160) 您好!臺灣時間:2021/05/07 18:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉柏青
研究生(外文):Po-Ching Liu
論文名稱:鑄造廠勞工金屬暴露與氧化性傷害評估
論文名稱(外文):Assessment of metals exposure and oxidative damage in foundry workers
指導教授:陳秀玲陳秀玲引用關係
指導教授(外文):Hsiu-Ling Chen
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:職業安全與防災研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:118
中文關鍵詞:金屬暴露氧化性傷害鑄造廠脂質過氧化反應
外文關鍵詞:Metals exposureOxidative damageFoundryMDA8-OH-dG
相關次數:
  • 被引用被引用:3
  • 點閱點閱:235
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
矽微粒與空氣重金屬是鑄造廠勞工極為重要的職業危害,暴露的結果會導致DNA傷害、脂質過氧化反應(MDA),與產生氧化性壓力。

本研究主要目標為比較暴露組(41名勞工)與控制組(某鎮公所員工28人)勞工血液MDA、DNA傷害(tail moment)及尿中8-OH-dG濃度。另外進行鑄造廠之作業環境總粉塵與可呼吸粉塵空氣採樣,並評估鑄造廠勞工潛在的健康風險。本研究亦評估不同工作型態勞工之空氣金屬暴露濃度與勞工血液中金屬濃度之關係性。

本研究發現製造部門之總粉塵濃度(3.17 mg/m3)顯著高於行政部門(0.58 mg/m3);製造部門之可呼吸粉塵濃度(0.99 mg/m3)顯著高於行政部門0.34 mg/m3。本研究空氣中金屬濃度符合我國容許濃度規定及ACHIH訂定之標準值,空氣中鎘、鉻及鎳等金屬暴露的致癌風險評估高於可接受的風險1×10-6。

本研究勞工血中金屬濃度利用感應耦合電漿質譜儀測(ICP-MS)分析,鑄造廠勞工血中銀濃度為0.3 μg/L、血中砷濃度為16.4 μg/L、血中銅濃度為1119.6 μg/L、血中鎳濃度為26.2 μg/L、血中鉛濃度為70.2 μg/L顯著高於控制組(p <0.05),血中鈣濃度99.9 mg/L、血中錳濃度24.5 μg/L也有較高於控制組的現象。此外鑄造廠之製造部門勞工血中各個金屬濃度均高於行政部門。

於氧化傷害部分,暴露組勞工MDA(4.28與1.64 μM)、尿中8-OH-dG (5.00與1.84 μg/g creatinine)及DNA傷害(6.63與1.22)皆顯著高於控制組員工(p<0.05),且鑄造廠製造部門勞工之生物效應指標分析結果也顯著高於行政部門勞工。

金屬暴露之相關性分析指出,DNA傷害與空氣中銀、鋁、鎘、鉻、銅、錳、鎳、鉛等金屬及可呼吸粉塵濃度呈現正相關,MDA則與勞工血中鋁、鎘及鉛金屬呈現正相關,短期的空氣暴露結果反應於DNA傷害上,而長期的血中金屬累積則反應於脂質過氧化的影響。結合環境測定與生物偵測之結果可發現鑄造廠勞工之職業暴露危害應特別關注,以避免勞工之職業傷害。
Silica particles and metals are important occupational hazards in foundry workers, and exposure may result in DNA damage and lipid peroxidation through oxidative stress. This study aimed to compare oxidative damage by measuring the levels of plasma malondialdehyde (MDA), urinary 8-hydroxydeoxyguanosine (8-OH-dG) and DNA strand breakage in workers at 2 foundry plants (exposure group, N=41) and in town hall employees (control group, N=28) in central Taiwan. The metals analysis of air samples and blood sample in the workplace were also collected to assess the health risk to foundry workers. The correlation between metal exposure in air and in blood and oxidative damage in these workers was also evaluated based on their job categories.

Significantly higher MDA levels (4.28 versus 1.64 μM), DNA strand breakage (6.63 versus 1.22), and 8-OH-dG levels (5.00 versus 1.84 μg/g creatinine) were found in exposure group compared with the control group. Higher levels of these parameters were also found in workers involved in manufacturing than in workers involved in administration.

Higher air respirable dust concentrations were found in manufacturing departments (0.99 mg/m3) than in administrative departments (0.34 mg/m3), as well as the total dust levels (3.17 mg/m3 vs. 0.58 mg/m3) between the two groups. The health risk assessment on metals exposure showed that the cancer risk for Cd, Cr and Ni were all above 1×10-6.

The blood Ag (0.3μg/L), As (16.4μg/L), Cu (1119.6 μg/L), Ni (26.2μg/L), Pb (70.2μg/L) significantly higher than the control group (P<0.05), as well as the blood Ca (99.9 mg/L), Mn (24.5μg/L) were the same trend. Meanwhile, the blood metals concentrations in manufacturing workers were also higher than those of administrating workers.

The positive correlation between DNA tail moment by comet assay and the concentrations of air Ag, Al, Cd, Cr, Cu, Mn, Ni, Pb and respirable dust. It can be interpreted to that the DNA damage reflected the short-term exposure, such as the air sampling. Meanwhile, the significantly positive correlation were also found between MDA and blood Al, Cd and Pb. Together with the evidence from environmental and biological sampling, a long working history and work in the foundries should be given seriously consideration in occupational disease prevention.
中文摘要 I
Abstract III
目錄 V
圖目錄 VII
表目錄 IX
第一章前言 1
1-1 研究背景 1
1-2 研究目的 3
第二章 文獻回顧 4
2-1 鑄造廠簡介 4
2-2 鑄造廠粒狀污染物 6
2-3 重金屬毒性 7
2-4 金屬暴露與氧化性傷害 10
第三章 研究材料與方法 12
3-1 鑄造廠簡介 12
3-2 研究對象 13
3-3 空氣樣品採集與分析 13
3-3-1 樣品收集 13
3-3-2 樣品分析:粉塵重量 15
3-3-2 樣品分析:粉塵重量 15
3-3-3 樣品分析:金屬濃度 15
3-3-4 品保品管 17
3-4 生物樣品採集與分析 19
3-4-1 血液樣品採集 19
3-4-2 尿液樣品採集 19
3-4-3 血液樣品前處理 19
3-4-4 血液樣品分析 20
3-4-5 品保品管 21
3-4-6 氧化性傷害分析 22
3-5 勞工健康問卷調查 23
3-6 統計方法 24
第四章 結果 25
4-1 受訪者基本資料 25
4-2 鑄造廠空氣中粉塵與金屬濃度分佈26
4-3 控制組與暴露組勞工血中金屬濃度分佈 30
4-4 鑄造廠不同製程勞工血中金屬濃度之分佈 33
4-5 不同年齡及工作年資勞工血中金屬濃度之差異 34
4-6 不同生活習慣的勞工血中金屬濃度之差異 35
4-7 鑄造廠氧化性傷害分佈 37
4-8 鑄造廠勞工金屬暴露與氧化性傷害之關係性 38
第五章 討論 41
5-1 空氣粉塵與金屬濃度 41
5-2 金屬暴露與氧化性傷害 42
第六章 結論與建議 47
6-1 結論 47
6-2 建議 48
參考文獻 49
附件一 106
附件二 109

圖目錄
圖2-1 鑄造廠製造流程 4
圖3-1 鑄造廠A平面圖 62
圖3-2 鑄造廠B平面圖 63
圖3-3 低週波熔爐 64
圖3-4 鑄造廠震動打砂作業 64
圖3-5 鑄造廠塗模作業 65
圖3-6 鑄造廠澆鑄作業 65
圖3-7 鑄造廠研磨作業 66
圖3-8 鑄造廠浸漆作業 66
圖3-9 研究架構圖 67
圖3-10 空氣中金屬銀之檢量線 68
圖3-11 空氣中金屬鋁之檢量線 68
圖3-12 空氣中金屬鎘之檢量線 68
圖3-13 空氣中金屬鈷之檢量線 68
圖3-14 空氣中金屬鉻之檢量線 68
圖3-15 空氣中金屬銅之檢量線 68
圖3-16 空氣中金屬鐵之檢量線 69
圖3-17 空氣中金屬鎂之檢量線 69
圖3-18 空氣中金屬錳之檢量線 69
圖3-19 空氣中金屬鎳之檢量線 69
圖3-20 空氣中金屬鉛之檢量線 69
圖3-21 空氣中金屬鋅之檢量線 69
圖3-22 血液中金屬銀之檢量線 70
圖3-23 血液中金屬鋁之檢量線 70
圖3-24 血液中金屬砷之檢量線 70
圖3-25 血液中金屬鈣之檢量線 70
圖3-26 血液中金屬鎘之檢量線 70
圖3-27 血液中金屬鈷之檢量線 70
圖3-28 血液中金屬鉻之檢量線 71
圖3-29 血液中金屬銅之檢量線 71
圖3-30 血液中金屬鐵之檢量線 71
圖3-31 血液中金屬鎂之檢量線 71
圖3-32 血液中金屬錳之檢量線 71
圖3-33 血液中金屬鎳之檢量線 71
圖3-34 血液中金屬鉛之檢量線 72
圖3-35 血液中金屬鋅之檢量線 72
圖4-1 鑄造廠總粉塵濃度分佈 73
圖4-2 鑄造廠可呼吸粉塵濃度分佈 74
圖4-3 鑄造廠空氣中總粉塵之金屬濃度分佈 75
圖4-4 鑄造廠可呼吸粉塵之金屬濃度分佈 76
圖4-5 鑄造廠A與B空氣中總粉塵之金屬濃度分佈 77
圖4-6 鑄造廠A與B空氣中可呼吸粉塵之金屬濃度分佈 78
圖4-7 控制組與暴露組勞工血中金屬分佈 79
圖4-8 控制組與暴露組勞工血中金屬分佈 80
圖4-9 鑄造廠製造與行政部門勞工血中金屬濃度分佈 81
圖4-10 鑄造廠製造與行政部門勞工血中金屬濃度分佈 82
圖4-11 鑄造廠不同製程(前、中及後端)勞工血中金屬濃度分佈 83
圖4-12 鑄造廠不同製程(前、中及後端)勞工血中金屬濃度分佈 84

表目錄
表3-1 空氣樣品採集數量 85
表3-2 空氣中金屬之波長、偵測下線及回收率 86
表3-3 血液中金屬之同位數、偵測下線及回收率 87
表4-1 受訪者基本資料 88
表4-2 鑄造廠製造部門勞工金屬暴露之健康風險評估 89
表4-3 不同年齡勞工血中金屬濃度(μg/L)之差異 90
表4-4 不同工作年資勞工血中金屬濃度(μg/L)之差異 91
表4-5 抽菸習慣勞工血中金屬濃度(μg/L)之差異 92
表4-6 喝酒習慣勞工血中金屬濃度(μg/L)之差異 93
表4-7 運動習慣勞工血中金屬濃度(μg/L)之差異 94
表4-8 暴露組與控制組勞工氧化性傷害之差異 95
表4-9 暴露組鑄造廠A與鑄造廠B勞工氧化性傷害之差異 96
表4-10 鑄造廠勞工血中金屬濃度與空氣中可呼吸粉塵中金屬濃度
相關性分析(N=41) 97
表4-11 鑄造廠勞工氧化性傷害(MDA, 8-OH-dG, tail moment)與空氣中
可呼吸粉塵中金屬濃度相關性分析(N=41) 98
表4-12 鑄造廠勞工血中金屬與MDA, 8-OH-dG, tail moment之
相關性分析(N=41) 99
表4-13 血中金屬因子負荷量分析(N=69) 100
表4-14 血中金屬與MDA, 8-OH-dG, tail moment因子負荷量之
相關性分析(N=69) 101
表5-1 環境控制系統增設前與增設後粉塵濃度之改善情形 102
表5-2 作業環境空氣中有害物容許濃度(μg/m3) 103
表5-3 空氣中金屬濃度(μg/m3)與其他相關研究之比較 104
表5-4 血液金屬濃度(μg/L)與其他相關研究之比較 105
ACGIH, 1991. Threshold limit values and biological exposure indices for 1991–1992. American Conference of Governmental Industrial Hygienists.
Akagi, S., Nagake, Y., Kasahara, J., Sarai, A., Kihara, T. and Morimoto, H., 2003. Significance of 8-hydroxy-2´-deoxyguanosine levels in patients with chronic renal failure. Nephrology 8, 192–195.
Åkesson, A., Bjellerup, P., Lundh, T., Lidfeldt, J., Nerbrand, C. and Samsioe, G., 2006. Cadmium-induced effects on bone in a population-based study of women. Environ. Health Perspect. 114, 830–834.
Altmann P, Hammon C, Blair J, Dhnesha U, Cunningham J, Marsh F.,1989. Disturbance of cerebral function by aluminum in haemodialysis patients without overt aluminum toxicity. Lancet II, 7–11.
Aschner, M. and Aschner, J. L., 1991. Manganese neurotoxicity: cellular effects and blood-brain barrier transport. Neurosci Biobehav Rev. 15, 333-340.
Bagchi, D., Stohs, S. J., Downs, B. W., Bagchi, M. and Preuss, H. G., 2002. Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicol. 180, 5-22.
Barbeau, A., 1984. Manganese and extrapyramidal disorders. Neurotoxicology 5, 13-36.
Bast-Pettersen, R., Ellingsen, D. G., Hetland, S. M. and Thomassen, Y., 2004. Neuropsychological function in manganese alloy plant workers. It. Arch. Occup. Environ. Health 77, 277-287.
Beckman, K. B. and Ames, B. N., 1998. The free radical theory of aging matures. Physiol. Rev. 78, 547–581.
Brown, J. S., Zeman, K. L. and Bennett, W. D., 2002. Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am. J. Resp. Crit. Care Med. 166, 1240–1247.
Buchet, J., Lauwerys, R., Roels, H., Bernard, A., Bruaux, P. and Claeys, F., 1990. Renal effects of cadmium body burden of the general population. Lancet 336, 699–702.
Calne, D. B., Chu, N. S., Huang, C. C., Lu, C. S. and Olanow, W., 1994. Manganism and idiopathic parkinsonism: similarities and differences. Neurology 44, 1583-1586.
Candan, N. and Tuzmen, N., 2008. Very rapid quantification of malondialdehyde (MDA) in rat brain exposed to lead, aluminium and phenolic antioxidants by high-performance liquid chromatography-fluorescence detection. NeuroToxicology 29, 708–713.
Carlisle, D. L., Pritchard, D. E., Singh, J., B.M.Owens, Blankenship, L. J., Orenstein, J. M. and Patierno, S. R., 2000. Apoptosis and p53 induction in human lung fibroblasts exposed to chromium (VI): effect of ascorbate and tocopherol. Toxicol. Sci. 55, 60–68.
Casado, M. F., Cecchini, A. L., Simão, A. N. C., Oliveira, R. D. and Cecchini, R., 2007. Free radical-mediated pre-hemolytic injury in human red blood cells subjected to lead acetate as evaluated by chemiluminescence. Food Chem. Toxicol. 45, 945-952.
Caylak, E., Aytekin, M. and Halifeoglu, I., 2008. Antioxidant effects of methionine, alpha-lipoic acid, N-acetylcysteine and homocysteine on lead-induced oxidative stress to erythrocytes in rats. Exp. Toxicol. Pathol. 60, 289-294.
Caylak, E. and Halifeoglu, I., 2007. Effects of Sulfur-Containing antioxidants on malondialdehyde and catalase Levels of Liver, Kidney and Brain in Lead-Exposed Rats. Turkiye Klinikleri J Med. Sci. 27, 1-8.
Caylak, E., Halifeoglu, I., Aydin, S., Telo, S., Bulmus, O. and Celik, H., 2007. The effects of sulfur-containing compounds on total antioxidant capacity levels of liver, kidney and brain in lead-exposed rats. Turkiye Klinikleri J Med Sci. 27, 823-828.
Cerutti, P., 1994. Oxy-radicals and cancer. Lancet 344, 862–863.
Chang, M. C. O., Chow, J. C., Watson, J. G., Glowacki, C., Sheya, S. A. and Prabhu, A., 2005. Characterization of fine particulate emissions from casting processes. Aerosol Sci. Technol. 947–959.
Chen, H. L., Hsu, C. Y., Hung, D. Z. and Hu, M. L., 2006. Lipid peroxidation and antioxidant status in workers exposed to PCDD/Fs of metal recovery plants. Sci. Total Envir. 372, 12-19.
Chen, W. and Chen, J., 2002. Nested case-control study of lung cancer in four Chinese tin mines. Occup. Environ. Med. 59, 113–118.
Cheng, K., Cahill, D., Kasai, H., Nishimura, S. and Loeb, L., 1992. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G–T and A–C substitutions. J. Biol. Chem. 267, 166–172.
Cheng, Y. H., Chao, Y. C., Wu, C. H., Tsai, C. J., Uang, S. N. and Shih, T. S., 2008. Measurements of ultrafine particle concentrations and size distribution in an iron foundry. Journal of Hazardous Materials 158, 124–130.
Christen, Y., 2000. Oxidative stress and Alzheimer disease. Am. J.Clin. Nutr. 71, 621–629.
Christopher, D. P., Miles, E. L. J., Ciaran, M. G., Fernando, B. J. and Patrick, J. P., 2006. Determination of lead, cadmium and mercury in blood for assessment of environmental exposure: A comparison between inductively coupled plasma–mass spectrometry and atomic absorption spectrometry. Spectrochimica Acta Part B 61, 980–990.
Chuang, C. H., Hu, M. L., 2004. Use of whole blood directly for single-cell gel electrophoresis (comet) assay in vivo and white blood cells for in vitro assay. Mutation Research 564, 75-82.
Dally, H. and Hartwig, A., 1997. Induction and repair inhibition of oxidative DNA damage by nickel(II) and cadmium(II) in mammalian cells. Carcinogenesis 18, 1021–1026.
Dastur, D. K., Manghani, D. K. and Raghavendran, K. V., 1971. Distribution and fate of 54Mn in the monkey: studies of different parts of the central nervous system and other organs. J. Clin. Invest. 50, 9-20.
Davis, J., Svendsgaard, D., 1987. Lead and child development. Nature 329, 297-300.
Ding, M., Chen, F., Shi, X., Yucesory, B., Mossman, B. and Vallyathan, V., 2002. Diseases caused by silica: mechanisms of injury and disease development. Int. Immunopharmacol 2, 173–182.
Donaldson, K., Brown, D., Clouter, A., Duffin, R., MacNee, W., Renwick, L., Tran, L. and Stone, V., 2002. The pulmonary toxicology of ultrafine particles. J. Aerosol Med. 15, 213–220.
Droste, J. H., Weyler, J. J., Meerbeeck, J. P. V., Vermeire, P. A. and Sprundel, M. P. v., 1999. Occupational risk factors of lung cancer: a hospital based case-control study. Occup. Environ. Med. 56, 322–327.
Dungan, R. S. and Dees, N. H., 2009. The characterization of total and leachable metals in foundry molding sands. J. Environ. Manage. 90, 539–548.
Englert, N., 2004. Fine particles and human health–a review of epidemiological studies. Toxicol. Lett. 149, 235–242.
Enterline, P. E. and Marsh, G. M., 1982. Mortality among workers in a nickel refinery and alloy manufacturing plant in West Virginia. J. Natl. Cancer Inst. 68, 925-933.
EPA, 1984. Health Effects Assessment for Hexavalent Chromium. US Environmental Protection Agency 540, 1-86-019.
Farahat, T., Abdel-Rasoul, G., El-Assy, A., Kandil, S. and Kabil, M., 1997. Hearing thresholds of workers in a printing facility. Environ. Res. 73, 189-192.
Fox, N. and Rossor, M., 1999. Diagnosis of early Alzheimer’s disease. Rev. Neurol. Paris 155, 33-37.
Fracasso, M. E., Doria, D., Franceschetti, P., Perbellini, L. and Romeo, L., 2006. DNA damage and repair capacity by comet assay in lymphocytes of white-collar active smokers and passive smokers (non- and ex-smokers) at workplace. Toxicol. Lett. 167, 131-141.
Fubini, B. and Hubbard, A., 2003. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic. Biol. Med. 34, 1507–1516.
Gilmour, P. S., Ziesenis, A., Morrison, E. R., Vickers, M. A., Drost, E. M., Ford, I., Karg, E., Mossa, C., Schroeppel, A., Ferron, G. A., Heyder, J., Greaves, M., MacNee, W. and Donaldson, K., 2004. Pulmonary and systemic effects of short-term inhalation exposure to ultrafine carbon black particles. Toxicol. Appl. Pharmacol 195, 35–44.
Goodarzi, F. and Huggins, F. E., 2001. Monitoring the species of arsenic, chromium and nickel in milled coal, bottom ash and fly ash from a pulverized coal-fired power plant in western Canada. J. Environ. Monit. 3, 1-6.
Grimsrud, T. K., Berge, S. R., Haldorsen, T. and Andersen, A., 2002. Exposure to different forms of nickel and risk of lung cancer. Am. J. Epidemiol. 156, 1123–1132.
Grimsrud, T. K., Berge, S. R., Haldorsen, T. and Andersen, A., 2005. Can lung cancer risk among nickel refinery workers be explained by occupational exposures other than nickel. Epidemiol. 16, 146-154.
Grisham, M. B., 1994. Oxidants and free radicals in inflammatory bowel disease. Lancet 344, 859–861.
Gurer-Orhan, H., Sabir, H. U. and Ozgunes, H., 2004. Correlation between clinical indicators of lead poisoning and oxidative stress parameters in controls and lead-exposed workers. Toxicology 195, 147–154.
Hong, Y. L., Yeh, S. L., Chang, C. Y., Hu, M. L., 2000. Total plasma malondialdehyde levels in 16 Taiwanese college students determined by various thiobarbituric acid tests and an improved high-performance liquid chromatography-based method, Clin. Biochem. 33, 619–625.
Hu, S. W., Chang-Chien, G. P. and Chan, C. C., 2004. PCDD/Fs levels in indoor environments and blood of workers of three municipal waste incinerators in Taiwan. Chemosphere 55, 611-620.
Huang, C., Lu, C., Chu, N., Hochberg, F., Lilienfeld, D., Olanow, W. and Calne, D. B., 1993. Progression after chronic manganese intoxication. Neurology 43, 1479-1483.
IARC, 1993. Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 58.
Liou, S. H., Gu, T. L., Hsu, S. W., Wu, D. M., Chen, L. M., 1993. A review of occupational and environmental lead poisoning in Taiwan. J Occup Safety Health, 112-26.
IPCS, 1997. Environmental health criteria for aluminium. Effects on humans 194, 138–156.
Iregren, A., Sĵögren, B., Gustafsson, K., Hagman, M., Nylėn, L., Frech, W., Andersson, M., Ljunggren, K. G. and Wennberg, A., 2001. Effects on the nervous system in different groups of workers exposed to aluminium. Occup. Environ. Med. 58, 453-460.
Jaques, P. A. and Chong, S. K., 2000. Measurement of total lung deposition of inhaled ultrafine particles in healthy men and women. Inhal. Toxicol. 12, 715–731.
Jarup, L. and Alfven, T., 2004. Low level cadmium exposure, renal and bone effects—the OSCAR study. Biometals 17, 505–509.
Jenner, P., 1994. Oxidative damage in neurodegenerative disease. Lancet 344, 796–798.
Jurczuk, M., Brzoska, M. M., Moniuszko-Jakoniuk, J., yn-Sidorczuk, M. G. a. and Kulikowska-Karpinska, E., 2004. Antioxidant enzymes activity and lipid peroxidation in liver and kidney of rats exposed to cadmium and ethanol. Food and Chemical Toxicology 42, 429-438.
Kasprzak, K. S., 1991. The role of oxidative damage in metal carcinogenicity. Chem. Res. Toxicol. 4, 604–615.
Kasprzak, K. S., Jaruga, P., Zastawny, T. H., North, S. L., Riggs, C. W. and R, O., 1997. Oxidative DNA base damage and its repair in kidneys and livers of nickel(II)-treated male F344 rats. Carcinogenesis 18, 271–277.
Kessel, M., Liu, S., Xu, A., Santella, R. and Hei, T., 2002. Arsenic induces oxidative DNA damage in mammalian cells. Mol. Cell. Biochem. 234, 301–308.
Kim, K. H., Kim, Y. H., Seo, M. S., Lee, W. K., Kim, S. W., Kim, H., Lee, K. H., hin, I. C., Han, J. S., Kim, H. J. and Lim, Y., 2002. Mechanism of silica-induced ROS generation in rat2 fibroblast cells. Toxicol. Lett. 135, 185–191.
Kim, R., Rotnitsky, A., Sparrow, D., Weiss, S., Wager, C. and Hu, H., 1996. A longitudinal study of low-level lead exposure and impairment of renal function. The Normative Aging Study. JAMA 275, 1177–1181.
Kimbrough, D. E., Cohen, Y., Winer, A. M., Creelman, L. and Mabuni, C., 1999. Crit. Rev. Environ. Sci. Technol. 29,
Krieger, D., Krieger, S., Jansen, O., Gass, P., Theilman, L. and Lichtnecker, H., 1995. Manganese and chronic hepatic encephalopathy. Lancet 346, 270-273.
Krieg, E. F., Chrislip, D. W., Crespo, C. J., Brightwell, W. S., Ehrenberg, R. L., Otto, D. A., 2005. The relationship between blood lead levels and neurobehavioral test performance in NHANES III and related occupational studies. Public Hearth Reports 120(3), 240-251.
Krystek, P. and Ritsema, R., 2007. Monitoring of chromium species and 11 selected metals in emission and immission of airborne environment. Int. J. Mass Spectrom. 265, 23–29.
Kuo, H., Chang, S., Wu, K. and Wu, F., 2003. Chromium (VI) induced oxidative damage to DNA: increase of urinary 8-hydroxydeoxyguanosine concentrations (8-OHdG) among electroplating workers. Occup. Environ. Med. 60, 590–594.
Kuo, S.C., Hsiehb, L.Y., Tsaic, C.H., Tsai, Y.I., 2007. Characterization of PM2.5 fugitivemetal in the workplaces and the surrounding environment of a secondary aluminum smelter. Atmos. Environ. 41, 6884-6900.
Lander, F., Kristiansen, J. and Lauritsen, J. M., 1999. Manganese exposure in foundry furnacemen and scrap recycling workers. Int. Arch. Occup. Environ. Health 72, 546-550.
Liu, H. S., Shih, T. S., Chen, I. J. and Chen, H. L., 2008. Lipid peroxidation and oxidative status compared in workers at a bottom ash recovery plant and fly ash treatment plants. J. Occup. Health 50, 492-497.
Liu, H. H., Lin, M. H., Liu P. C., Chan C. I., Chen H. L., 2009. Health Risk Assessment by Measuring Plasma Malondialdehyde (MDA), Urinary 8-hydroxydeoxyguanosine (8-OH-dG) and DNA Strand Breakage Following Metal Exposure in Foundry Workers. Journal of Hazardous Materials
López, F. F., Cabrera, C., Lorenzo, M. L. and López, M. C., 2002. Aluminium content of drinking waters, fruit juices and soft drinks: contribution to dietary intake. The Science of the Total Environment 292, 205–213.
Lu, C. Y., Ma, Y. C., Lin, J. M., Chuang, C. Y. and Sung, F. C., 2007. Oxidative DNA damage estimated by urinary 8-hydroxyguanosine and indoor air pollution among non-smoking office employees. Environmental Research 103, 331-337.
Lu, J., Zheng, Y.L., Wu, D.M., Sun, D.X., Shan, Q., Fan, S.H., 2006. Trace amounts of copper induce neurotoxicity in the cholesterol-fed mice through apoptosis. FEBS Letters 580, 6730-6740.
Lyon, 1987. Overall evaluations of carcinogenicity, an updating of IARC monographs, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 1 to 42. International Agency for Research on Cancer
Mancuso, T. F., 1997. Chromium as an industrial carcinogen: Part 1. Am. J Ind. Med. 31, 129-139.
Marnett, L., 2000. Oxyradicals and DNA damage. Carcinogenesis 21, 361–370.
Martin, D., Glass, T., Bandeen-Roche, K., Todd, A., Shi, W. and Schwartz, B., 2006. Association of blood lead and tibia lead with blood pressure and hypertension in a community sample of older adults. Am. J. Epidemiol. 163, 467–478.
Mena, I., Marin, O., Fuenzalida, S. and Cotzias, G. C., 1967. Chronic manganese poisoning. Neurology 17, 128–138.
Menke, A., Muntner, P., Batuman, V., Silbergeld, E. and Guallar, E., 2006. Blood lead below 0.48 μmol/L (10 μg/dL) and mortality among US adults. Circulation 114, 1388-1394.
Mukherjee, S., Palmer, L. J., Kim, J. Y., Aeschliman, D. B., Houk, R. S., Woodin, M. A., Christiani, D. C., 2004. Smoking Status and Occupational Exposure Affects Oxidative DNA Injury in Boilermakers Exposed to Metal Fume and Residual Oil Fly Ash. Cancer Epidemiology, Biomarkers & Prevention 13, 432-438.
Muntner, P., He, J., Vupputuri, S., Coresh, J. and Batuman, V., 2003. Blood lead and chronic kidney disease in the general United States population: results from NHANES III. Kidney Int. 63, 1044–1050.
Muntner, P., Menke, A., DeSalvo, K., Rabito, F. and Batuman, V., 2005. Continued decline in blood lead levels among adults in the United States. Arch. Intern. Med. 165, 2155-2161.
Myers, J.E., Thompson, M.L., Naik, I., Theodorou, P., Esswein, E., Tassell, H., Daya, A., Renton, K., Spies, A., Paicker, J., Young, T., Jeebhay, M., Ramushu, S., London, L., Rees, D.J., 2003. The utility of biological monitoring for manganese in ferroalloy smelter workers in South Africa. Neuro Toxicol. 24, 875-883.
Nair, U., Bartsch, H. and Nair, J., 2007. Lipid peroxidation-induced DNA damage in cancer-prone inflammatory diseases: A review of published adduct types and levels in humans. Free Radic. Biol. Med. 43, 1109-1120.
Nash, D., Magder, L., Lustberg, M., Sherwin, R., Rubin, R. and RB, K., 2003. Blood lead, blood pressure, and hypertension in perimenopausal and postmenopausal women. JAMA 289, 1523–1532.
Navas-Acien, A., Selvin, E., Sharrett, A., Calderon-Aranda, E., Silbergeld, E. and Guallar, E., 2004. Lead, cadmium, smoking, and increased risk of peripheral arterial disease. Circulation 109, 3196–3201.
O’Brien, T. J., Ceryak, S. and Patierno, S. R., 2003. Complexities of chromium carcinogenesis: role of cellular response, repair and recovery mechanisms. Mutat. Res. 533, 3–36.
Oberdörster, G., 2000. Toxicology of ultrafine particles: in vivo studies. Philos. Trans. Roy. Soc. Lond. A 358, 2719–2740.
Oberdörster, G., 2001. Pulmonary effects of inhaled ultrafine particles. Int. Arch. Occup. Environ. Health 74, 1–8.
Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W. and Cox, C., 2004. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 16, 437–445.
Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Lunts, A., Kreyling, W. and Cox, C., 2002. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J. Toxicol. Environ. Health A 65, 1531–1543.
Orman, A., Kahraman, A., Cakar, H., Ellidokuz, E. and Serteser, M., 2005. Plasma malondialdehyde and erythrocyte glutathione levels inworkers with cement dust-exposure silicosis. Toxicology 207, 15–20.
Parks, C. G., Conrad, K. and Cooper, G. S., 1999. Occupational exposure to crystalline silica and autoimmune disease. Environ. Health Perspect. 107, 793–802.
Pekkanen, J., Peters, A., Hoek, G., Tiittanen, P., Brunekreef, B., Hartog, J. d., Heinrich, J., Ibald-Mulli, A., Kreyling, W. G., Lanki, T., Timonen, K. L. and Vanninen, E., 2002. Particulate air pollution and risk of st-segment depression during repeated submaximal exercise tests among subjects with coronary heart disease. Circulation 106, 933–944.
Perl, D. and Good, P., 1987. Uptake’s of aluminum into central nervous system along nasal-olfactory pathways. Lancet 1, 1028.
Polizzi, S., Ferrara, M., Bugiani, M., Barbero, D. and Baccolo, T., 2007. Aluminium and iron air pollution near an iron casting and aluminium foundry in Turin district (Italy). J. Inorg. Biochem. 101, 1339–1343.
Polizzi, S., Pira, E., Ferrara, M., Bugiani, M., Papaleo, A., Albera, R. and Palmi, S., 2002. Neurotoxic Effects of Aluminium Among Foundry Workers and Alzheimer's Disease. Neuro. Toxicol. 23, 761-774.
Ribeiro, M. G., Filho, W. R. P., 2006. Risk assessment of chemicals in foundries: The International Chemical Toolkit pilot-project. J. Hazard. Mater. 136, 432–437.
Rita, B. P., Ellingsen, D. G., Hetland, S. M. and Thomassen, Y., 2004. Neuropsychological function in manganese alloy plant workers. Int. Arch. Occup. Environ. Health 77, 277–287.
Rodier, J., 1955. Manganese poisoning in Moroccan miners. Br. J. Ind. Med. 12, 21–35.
Rodrigues, J. L., Batista, B. L., Fillion, M., Passos, C. J. S., Mergler, D. and Jr, F. B., 2009. Trace element levels in whole blood of riparian villagers of the Brazilian Amazon. Science of the Total Environment 407, 4168–4173.
Roels, H. A., Ghyselen, P., Buchet, J. P., Ceulemans, E. and R.R., L., 1992. Assessment of the permissible exposure level to manganese in workers exposed to manganese dioxide dust. Br. J. Ind. Med. 49, 25-34.
Roméo, M., Bennani, N., Gnassia-Barelli, M., Lafaurie, M. and Girard, J. P., 2000. Cadmium and copper display different responses towards oxidative stress in the kidney of the sea bass Dicentrarchus labrax. Aquat. Toxicol. 48, 185-194.
Saito, S., Yamauchi, H., Hasui, Y., Kurashige, J., Ochi, H., Yoshida, K., 2000. Quantitative determination of urinary 8-hydroxydeoxyguanosine (8-OH-dg) by using ELISA. Research communications in molecular pathology and pharmacology 107, 39-44.
Salvatore, P., Enrico, P., Mauro, F., Massimiliano, B., Andrea, P., Roberto, A., Silvana, P., 2002. Neurotoxic Effects of Aluminium Among Foundry Workers and Alzheimer’s Disease. NeuroToxicology 23, 761–774
Shanklin, D. R. and Smalley, D. L., 1998. The immunopathology of siliconosis. History, clinical presentation, and relation to silicosis and the chemistry of silicon and silicone. Immunol. Res. 18, 125–173.
Shigenaga, M., Gimeno, C. and Ames, B., 1989. Urinary 8-hydroxy- 2´-deoxyguanosine as a biological marker of in vivo oxidative DNA damage. Proc. Natl. Acad. Sci. USA 86, 9697–9701.
Silicosis and Committee, S. D., 1988. Diseases associated with exposure to silica and nonfibrous silicate minerals. Arch. Pathol. Labor Med. 112, 673–720.
Sjögren, B. and Elinder, C. G., 1994. Aluminum and its compounds. Occupational medicine III, 458–465.
Staessen, J., Roels, H., Emelianov, D., Kuznetsova, T., Thijs, L. and Vangronsveld, J., 1999. Environmental exposure to cadmium, forearm bone density, and risk of fractures: prospective population study. Public Health and Environmental Exposure to Cadmium (PheeCad) Study Group. Lancet 353, 1140–1144.
Thun, M. J., Schnorr, T. M., Smith, A. B. and Halperin, W. E., 1985. Mortality among a cohort of U.S. cadmium production workers: An update. J. Natl. Cancer Inst. 74, 325-333.
Wang, Y.F., Tsai, Y.I., Mi, H.H., Yang, H.H., Chang, Y.F., 2006. PM10 metal distribution in an industrialized city. Bull. Environ. Contam. Toxicol. 77, 624-630.
WHO, 1981. Environmental health criteria for Manganese. Effects on humans 17.
Willet, W., 1990. Nutritional Epidemiology. New York: Oxford University Press.
Witztum, J., 1994. The oxidation hypothesis of atherosclerosis. Lancet 344, 793–795.
Xie, C. X, Yokel, R. A., 1996. Aluminum facilitation of iron-mediated lipid peroxidation is dependent on substrate, pH and aluminum and iron concentrations. Arch Biochem Biophys, 327(2), 22-26.
Yokel, R. A., 2000. The toxicology of aluminum in the brain: a review. NeuroToxicology 21, 813–828.
Yoshida, R., Ogawa, Y., Kasai, H., 2002. Urinary 8-Oxo-7,8-dihydro-2'-deoxyguanosine Values Measured by an ELISA Correlated Well with Measurements by High-Performance Liquid Chromatography with Electrochemical Detection. Cancer Epidemiology, Biomarkers & Prevention 11, 1076-1081.
Zimmer, A. T. and Maynard, A. D., 2002. Investigation of the aerosols produced by a high-speed, hand-held grinder using various substrates. Ann. Occup. Hyg. 46, 663–672.
主計處, 2006. http://www.dgbas.gov.tw
行政院環保署, 2004. http://www.epa.gov.tw.
張晉昌, 2002.鑄造學
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔