跳到主要內容

臺灣博碩士論文加值系統

(3.238.135.174) 您好!臺灣時間:2021/08/05 07:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王俞瑾
研究生(外文):Wang yu jin
論文名稱:利用RAW264.7細胞與BALB/c老齡鼠模式探討不同硒型式抗發炎之研究
論文名稱(外文):Study on the effects of organic and inorganic selenium on the anti-inflammation in RAW 264.7 cells and BALB/c aged mice.
指導教授:林士民林士民引用關係湯雅理
指導教授(外文):Shyh-Mirn LinYa-Li Tang
學位類別:碩士
校院名稱:中華醫事科技大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:149
中文關鍵詞:前發炎老化
外文關鍵詞:seleniumpro-inflammationaged
相關次數:
  • 被引用被引用:4
  • 點閱點閱:808
  • 評分評分:
  • 下載下載:275
  • 收藏至我的研究室書目清單書目收藏:1
台灣老年人口逐年增加,老年醫學及抗老化的研究相形重要。目前很多相關研究指出,硒 (Selenium, Se) 具有抗氧化及抗癌的化學預防功效。已證實硒的生物活性是經由硒半胱胺酸(selenocysteine) 催化合成硒蛋白 (selenoproteins)。硒為人類必需微量營養素。硒具有兩種不同型態:有機硒與無機硒,皆具有重要抗氧化功效。所以本研究希望利用兩種不同硒形式,以細胞模式與動物模式來探討是否可抑制老化所生成的發炎反應。第一部份:以LPS刺激RAW 264.7巨噬細胞,誘發NO生成量,探討添加不同濃度的硒之抗發炎作用。結果顯示,硒補充 (0 ~ 200 ng/ml) 與LPS (100 ng/mL) 添加,不會影響巨噬細胞RAW 264.7的生長,且可以抑制NO的生成,表示硒具有抗發炎的功效。第二部份:以動物模式來探討硒抗老化發炎的功效。採用64週BALB/c 雄鼠,依體重隨機分成三組,分別餵食不同實驗飼料:(1) 老齡控制組 (OC)、(2) 無機硒組 (SE)、(3) 有機硒組 (SY),另外再加一組6週大年輕控制組 (YC),共飼養7週,並收取糞便及尿液,犧牲取臟器。OC組腦部的MAO活性、TBARS含量及肝中TBARS含量明顯高於YC組。給予硒的補充可以抑制其量,而肝中MAO無差異。老化會改變血漿中ORAC含量與體內酵素性抗氧化活性 (包含GPx、SOD及catalase) 和非酵素性抗氧化物含量 (包含Vit. C及GSH)。給予硒的補充後可以改善老化所影響血漿中ORAC含量與體內酵素性抗氧化活性 (包含GPx、SOD及catalase) 和非酵素性抗氧化物含量 (包含Vit. C及GSH)。尿液檢測氧化指標8-iso PGF2 四組間無顯著性差異。給予硒補充可以改善體內抗氧化能力,抗老化及抗自由基生成。腹腔細胞給予LPS刺激後,收集上清部份測NO及PGE2生成量,細胞部份測COX-2表現量。並且尿中bicyclo PGE2含量,及測定血漿中前發炎細胞激素 (IFN、TNF、IL-2、IL-6及IL-10) 含量。OC組COX-2表現量及bicyclo PGE2含量明顯高於YC組,而SE組與SY組與OC組無顯著性差異。NO生成量部份OC組與YC組於顯著差異,而SE組明顯低於OC組。此模式類似於急性發炎模式。在前發炎細胞激素含量的部份,OC組IFN 含量明顯低於YC組。而OC組TNF 及IL-6含量明顯高於YC組,給予硒的補充可以降低含量。IL-1、IL-2及IL-10四組間無顯著性差異。此模式類似於慢性發炎模式。所以結果顯示,硒的補充可以降低老化所引起的氧化壓力及老化發炎的功效,改善老化所引發發炎反應及免疫功能。
Recently studies have advanced the notion of chronic inflammation as a major risk factor underlying aging and age-related diseases. Selenium is a dietary essential trace element for humans. It has been recognized as an antioxidant and chemopreventive agent in cancer. Selenium is known to develop its biological activity via selenocysteine residue in the catalytically active centre of selenoproteins. Selenium exists naturally in inorganic and organic forms and is considered to play a key role in antioxidation functioning. The objective of the present study was to investigate the two chemical forms of Se compounds for their inhibition effect on aged-related inflammation. It includes two studies in our research. Firstly the LPS-treated RAW 264.7 cell (Mouse BALB/c macrophage cell line) was used for nitric oxide (NO) production. The result indicated that Se (0 ~ 200 ng/ml) inhibited LPS-induced (100 ng/mL) NO production. Next study, the 71 weeks old male BALB/c mice were used as animal model. Mice were divided into 3 groups: (1) old control group (OC) (0.1mg Se equivalent/kg diet), (2) inorganic selenium group (SE) (0.5mg Se equivalent/kg diet), (3) organic selenium group (SY) (0.5mg Se equivalent/kg diet). In addition, 12 weeks young male BALB/c mice was added as the young: control group (YC) (0.1mg Se equivalent/kg diet). The mice were fed the test diets for 7 weeks. These results suggested that MAO activity and thiobarbituric acid reactive substances (TBARS) levels in brain showed significantly increase in OC group compared with YC group, and TBARS levels in liver showed significantly increase in OC group compared with YC group. TBARS levels significantly decreased in SE and SY group compared with OC group in brain and liver. Age-related change of total antioxidant capacity (ORAC) in plasma and the antioxidant enzymes (superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) activity) or non-enzymatic antioxidants (vitamin C (Vit. C) and glutamic acid (GSH) concentrations) in brain and liver were also observed. However, 8-iso PGF2a concentrations were no significantly different in 4 groups. Selenium can prevent age-related change of total antioxidant capacity (ORAC) in plasma and antioxidant systems in brain and liver. Selenium antioxidant properties would be beneficial in ameliorating the age-associated oxidative state. The effects of different selenium compounds for their pro-inflammation cytokines on LPS-treated peritoneal cells were also inves. The cell NO production, prostaglandin E2 (PGE2) production, bicycle PGE2 concentrations, COX-2 protein expression and cytokine (IFN, TNF, IL-1, IL-2, IL-6 and IL-10) concentrations were detected. The COX-2 expression and bicycle PGE2 concentrations showed significantly increase in OC group compared with YC group. The NO production showed significantly decreased in SE group compared with OC group. These charactenztics were similar as the human acute inflammation response. In addition, IFN concentrations showed significantly decreased in OC group compared with YC group. TNF and IL-6 concentrations showed significantly increase in OC group compared with YC group, and showed significantly decreased in SE and SY group compared with OC group. These charactenztics were similar as the human chronic inflammation response. Aging is accompanied by oxidative stress and pro-inflammation, which lead to a marked impairment of immune function and therefore increased mortality. In conclusion, the inhibition capacity of organic and inorganic selenium compounds in oxidative stress and pro-inflammation has been established by these results of cell culture and animal models. These studies above can provide for the bases of food selections for ageing prevention.
目錄 i
圖目錄 vi
表目錄 ix
致謝 x
縮寫對照表 xii
中文摘要 xiii
Abstract xv
第一章 緒論 1
第一節 前言 1
第二節 文獻回顧 3
一、 老化對生理狀況之影響 3
1. 老化指標 3
2. 老化對生物體免疫系統之影響 3
3. 人體抗氧化系統之介紹 6
4. 老化對生物體抗氧化之影響 8
5. 老化對生物體發炎之影響 9
二、 硒之介紹 13
1. 硒之介紹 13
2. 硒之攝取量、缺乏症與硒中毒 14
3. 硒之化學形式 16
4. 硒在生物中之代謝: 18
5. 硒之功效 20
6. 硒之抗發炎作用 22
第三節 研究目的與設計 23
一、 研究目的 23
二、 研究設計 24
三、 實驗設計說明 25
第二章 以LPS誘發一氧化氮生成量探討硒的抗發炎作用 26
第一節 前言 26
第二節 材料與方法 27
一、 細胞株來源及培養條件 27
二、 硒來源 27
三、 細胞存活率分析 27
四、 一氧化氮生成量之分析 29
五、 統計分析 30
第三節 結果 30
一、 不同硒型式補充對RAW 264.7細胞生長之影響 30
二、 不同硒型式補充對NO生成量之影響 30
第四節 討論 36
一、 硒添加對RAW 264.7細胞生長之影響 36
二、 硒添加抑制NO生成量之影響 36
第三章 硒補充對老化發炎作用之影響 38
第一節 前言 38
第二節 材料與方法 39
一、 動物飼養 39
二、 飼料之製備 39
三、 動物犧牲 41
四、 腹腔細胞收集 41
五、 血樣收集 42
六、 一氧化氮生成量之分析 43
七、 PGE2生成量之分析 43
八、 蛋白質測定 45
九、 免疫轉印法 46
1. SDS膠體電泳 46
2. 蛋白質免疫轉印法 51
3. 酵素免疫染色法 53
4. 膠體染色 54
5. 膠體乾片製作 55
十、 組織均質 56
十一、 TBARS測定 56
十二、 ORAC總抗氧化能力測定 58
十三、 組織中單胺氧化酶活性之測定 59
十四、 組織中Catalase活性之測定 60
十五、 組織中GPx活性之測定 61
十六、 組織中SOD活性之測定 62
十七、 組織中維生素C含量之測定 64
十八、 組織中GSH含量之測定 65
十九、 血漿中IFN 活性之測定 66
二十、 血漿中TNF 活性之測定 68
二十一、血漿中IL-6 活性之測定 68
二十二、血漿中IL-1 活性之測定 68
二十三、血漿中IL-2活性之測定 70
二十四、血漿中IL-10活性之測定 70
二十五、尿液中Creatinine含量之測定 70
二十六、尿液中8-iso PGF2活性之測定 71
二十七、尿液中Bicyclo PGE2活性之測定 73
第三節 結果 76
一、 動物生長及攝食情形 76
二、 組織重量 76
三、 硒的補充對小鼠發炎指標之影響 76
四、 硒的補充對小鼠腦部及肝中單胺氧化酶活性之影響 77
五、 硒的補充對小鼠血漿中總抗氧化能力之影響 78
六、 硒的補充對小鼠脂質過氧化指標之影響 78
七、 硒的補充對小鼠抗氧化能力之影響 78
八、 硒的補充對老化小鼠血漿中細胞激素之影響 80
第四節 討論 104
一、 硒補充延緩了老化指標 104
1. 硒補充對動物生長及組織重之影響 104
2. 硒補充對腦部老化及體內氧化壓力改善之影響 105
3. 老化所造成抗氧化系統之改變 107
二、 老化對發炎反應之變化 110
三、 硒減少老化所致之發炎指標 112
四、 有機與無機硒對老齡鼠發炎作用影響之比較 113
第四章 總結及未來展望 116
參考文獻 117
吳其真,1998。甘藷澱粉磷解酶之生化及免疫學研究。國立台灣大學農業化學研究所碩士論文。
湯雅理,2000。飲食炸油與腎臟前列腺素E2合成。國立臺灣大學農業化學研究所博士論文。
湯雅理, 林忠亮, 柯采伶, 王俞瑾, 林士民 (2009) 含微量元素包裝水對LPS處理RAW264.7巨噬細胞抗發炎機制之探討. 台灣農業化學與食品科學 47, 9-16.
Abou-Agag, L.H., Khoo, N.K., Binsack, R., White, C.R., Darley-Usmar, V., Grenett, H.E., Booyse, F.M., Digerness, S.B., Zhou, F., and Parks, D.A. (2005). Evidence of cardiovascular protection by moderate alcohol: role of nitric oxide. Free Radic Biol Med 39, 540-548.
Adachi, T., Wang, J., and Wang, X.L. (2000). Age-related change of plasma extracellular-superoxide dismutase. Clin Chim Acta 290, 169-178.
Alfthan, G., Aro, A., Arvilommi, H., and Huttunen, J.K. (1991). Selenium metabolism and platelet glutathione peroxidase activity in healthy Finnish men: effects of selenium yeast, selenite, and selenate. Am J Clin Nutr 53, 120-125.
Alleva, D.G., Burger, C.J., and Elgert, K.D. (1994). Tumor-induced regulation of suppressor macrophage nitric oxide and TNF-alpha production. Role of tumor-derived IL-10, TGF-beta, and prostaglandin E2. J Immunol 153, 1674-1686.
Alvarado, C., Alvarez, P., Jimenez, L., and De la Fuente, M. (2006a). Oxidative stress in leukocytes from young prematurely aging mice is reversed by supplementation with biscuits rich in antioxidants. Dev Comp Immunol 30, 1168-1180.
Alvarado, C., Alvarez, P., Puerto, M., Gausseres, N., Jimenez, L., and De la Fuente, M. (2006b). Dietary supplementation with antioxidants improves functions and decreases oxidative stress of leukocytes from prematurely aging mice. Nutrition 22, 767-777.
Andriamanalijaona, R., Kypriotou, M., Bauge, C., Renard, E., Legendre, F., Raoudi, M., Boumediene, K., Gatto, H., Monginoux, P., and Pujol, J.P. (2005). Comparative effects of 2 antioxidants, selenomethionine and epigallocatechin-gallate, on catabolic and anabolic gene expression of articular chondrocytes. J Rheumatol 32, 1958-1967.
Barton, B.E. (1997). IL-6: insights into novel biological activities. Clin Immunol Immunopathol 85, 16-20.
Birkmayer, W., Riederer, P., Youdim, M.B., and Linauer, W. (1975). The potentiation of the anti akinetic effect after L-dopa treatment by an inhibitor of MAO-B, Deprenil. J Neural Transm 36, 303-326.
Block, E., Glass, R.S., Jacobsen, N.E., Johnson, S., Kahakachchi, C., Kaminski, R., Skowronska, A., Boakye, H.T., Tyson, J.F., and Uden, P.C. (2004). Identification and synthesis of a novel selenium-sulfur amino acid found in selenized yeast: Rapid indirect detection NMR methods for characterizing low-level organoselenium compounds in complex matrices. J Agric Food Chem 52, 3761-3771.
Brouard, C., and Pascaud, M. (1990). Effects of moderate dietary supplementations with n-3 fatty acids on macrophage and lymphocyte phospholipids and macrophage eicosanoid synthesis in the rat. Biochim Biophys Acta 1047, 19-28.
Bruunsgaard, H., Pedersen, M., and Pedersen, B.K. (2001). Aging and proinflammatory cytokines. Curr Opin Hematol 8, 131-136.
Chi, D.S., Qui, M., Krishnaswamy, G., Li, C., and Stone, W. (2003). Regulation of nitric oxide production from macrophages by lipopolysaccharide and catecholamines. Nitric Oxide 8, 127-132.
Choi, D.G., Yoo, N.H., Yu, C.Y., de Los Reyes, B., and Yun, S.J. (2004). The activities of antioxidant enzymes in response to oxidative stresses and hormones in paraquat-tolerant Rehmannia glutinosa plants. J Biochem Mol Biol 37, 618-624.
Chung, H.Y., Cesari, M., Anton, S., Marzetti, E., Giovannini, S., Seo, A.Y., Carter, C., Yu, B.P., and Leeuwenburgh, C. (2009). Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev 8, 18-30.
Chung, H.Y., Kim, H.J., Kim, K.W., Choi, J.S., and Yu, B.P. (2002). Molecular inflammation hypothesis of aging based on the anti-aging mechanism of calorie restriction. Microsc Res Tech 59, 264-272.
Chung, H.Y., Sung, B., Jung, K.J., Zou, Y., and Yu, B.P. (2006). The molecular inflammatory process in aging. Antioxid Redox Signal 8, 572-581.
Combs, G.F., Jr., and Gray, W.P. (1998). Chemopreventive agents: selenium. Pharmacol Ther 79, 179-192.
Cruz, M.J., Sanchez-Vidaurre, S., Romero, P.V., Morell, F., and Munoz, X. (2009). Impact of age on pH, 8-isoprostane, and nitrogen oxides in exhaled breath condensate. Chest 135, 462-467.
De la Fuente, M. (2002). Effects of antioxidants on immune system ageing, Vol 56 Suppl 3, 2002/07/27 edn.
De la Fuente, M., and Victor, V.M. (2000). Anti-oxidants as modulators of immune function. Immunol Cell Biol 78, 49-54.
Dringen, R. (2000). Metabolism and functions of glutathione in brain. Prog Neurobiol 62, 649-671.
Ducros, V., Ferry, M., Faure, P., Belin, N., Renversez, J.C., Ruffieux, D., and Favier, A. (2000). Distribution of selenium in plasma of French women: relation to age and selenium status. Clin Chem 46, 731-733.
Ershler, W.B., and Keller, E.T. (2000). Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu Rev Med 51, 245-270.
Esworthy, R.S., Swiderek, K.M., Ho, Y.S., and Chu, F.F. (1998). Selenium-dependent glutathione peroxidase-GI is a major glutathione peroxidase activity in the mucosal epithelium of rodent intestine. Biochim Biophys Acta 1381, 213-226.
Foex, B.A., and Shelly, M.P. (1996). The cytokine response to critical illness. J Accid Emerg Med 13, 154-162.
Fowler, C.J., Oreland, L., Marcusson, J., and Winblad, B. (1980). Titration of human brain monoamine oxidase -A and -B by clorgyline and L-deprenil. Naunyn Schmiedebergs Arch Pharmacol 311, 263-272.
Franceschi, C., Monti, D., Sansoni, P., and Cossarizza, A. (1995). The immunology of exceptional individuals: the lesson of centenarians. Immunol Today 16, 12-16.
Godbout, J.P., and Johnson, R.W. (2004). Interleukin-6 in the aging brain. J Neuroimmunol 147, 141-144.
Golden, T.R., and Melov, S. (2001). Mitochondrial DNA mutations, oxidative stress, and aging. Mech Ageing Dev 122, 1577-1589.
Graziewicz, M., Wink, D.A., and Laval, F. (1996). Nitric oxide inhibits DNA ligase activity: potential mechanisms for NO-mediated DNA damage. Carcinogenesis 17, 2501-2505.
Green, L.C., Wagner, D.A., Glogowski, J., Skipper, P.L., Wishnok, J.S., and Tannenbaum, S.R. (1982). Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126, 131-138.
Guayerbas, N., Catalan, M., Victor, V.M., Miquel, J., and De la Fuente, M. (2002a). Relation of behaviour and macrophage function to life span in a murine model of premature immunosenescence. Behav Brain Res 134, 41-48.
Guayerbas, N., Puerto, M., Victor, V.M., Miquel, J., and De la Fuente, M. (2002b). Leukocyte function and life span in a murine model of premature immunosenescence. Exp Gerontol 37, 249-256.
Guha, M., and Mackman, N. (2001). LPS induction of gene expression in human monocytes. Cell Signal 13, 85-94.
Halliwell, B. (1991). Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 91, 14S-22S.
Hara, S., Shoji, Y., Sakurai, A., Yuasa, K., Himeno, S., and Imura, N. (2001). Effects of selenium deficiency on expression of selenoproteins in bovine arterial endothelial cells. Biol Pharm Bull 24, 754-759.
Harman, D. (1956). Aging: a theory based on free radical and radiation chemistry. J Gerontol 11, 298-300.
Hoozemans, J.J., Veerhuis, R., Rozemuller, A.J., Arendt, T., and Eikelenboom, P. (2004). Neuronal COX-2 expression and phosphorylation of pRb precede p38 MAPK activation and neurofibrillary changes in AD temporal cortex. Neurobiol Dis 15, 492-499.
Huang, Y., Henry, C.J., Dantzer, R., Johnson, R.W., and Godbout, J.P. (2008). Exaggerated sickness behavior and brain proinflammatory cytokine expression in aged mice in response to intracerebroventricular lipopolysaccharide. Neurobiol Aging 29, 1744-1753.
Humphries, K.M., Szweda, P.A., and Szweda, L.I. (2006). Aging: a shift from redox regulation to oxidative damage. Free Radic Res 40, 1239-1243.
Hwang, J.T., Kim, Y.M., Surh, Y.J., Baik, H.W., Lee, S.K., Ha, J., and Park, O.J. (2006). Selenium regulates cyclooxygenase-2 and extracellular signal-regulated kinase signaling pathways by activating AMP-activated protein kinase in colon cancer cells. Cancer Res 66, 10057-10063.
Ip, C., Birringer, M., Block, E., Kotrebai, M., Tyson, J.F., Uden, P.C., and Lisk, D.J. (2000). Chemical speciation influences comparative activity of selenium-enriched garlic and yeast in mammary cancer prevention. J Agric Food Chem 48, 2062-2070.
Jacobs, M., and Forst, C. (1981a). Toxicological effects of sodium selenite in Sprague-Dawley rats. J Toxicol Environ Health 8, 575-585.
Jacobs, M., and Forst, C. (1981b). Toxicological effects of sodium selenite in Swiss mice. J Toxicol Environ Health 8, 587-598.
Jankord, R., and Jemiolo, B. (2004). Influence of physical activity on serum IL-6 and IL-10 levels in healthy older men. Med Sci Sports Exerc 36, 960-964.
Jeong, D.W., Yoo, M.H., Kim, T.S., Kim, J.H., and Kim, I.Y. (2002). Protection of mice from allergen-induced asthma by selenite: prevention of eosinophil infiltration by inhibition of NF-kappa B activation. J Biol Chem 277, 17871-17876.
Johnson, T.E. (2006). Recent results: biomarkers of aging. Exp Gerontol 41, 1243-1246.
Karim, S., Habib, A., Levy-Toledano, S., and Maclouf, J. (1996). Cyclooxygenase-1 and -2 of endothelial cells utilize exogenous or endogenous arachidonic acid for transcellular production of thromboxane. J Biol Chem 271, 12042-12048.
Kaur, P., and Bansal, M.P. (2005). Effect of selenium-induced oxidative stress on the cell kinetics in testis and reproductive ability of male mice. Nutrition 21, 351-357.
Kim, S.H., Johnson, V.J., Shin, T.Y., and Sharma, R.P. (2004). Selenium attenuates lipopolysaccharide-induced oxidative stress responses through modulation of p38 MAPK and NF-kappaB signaling pathways. Exp Biol Med (Maywood) 229, 203-213.
Kim, S.J., Jeong, H.J., Lee, K.M., Myung, N.Y., An, N.H., Yang, W.M., Park, S.K., Lee, H.J., Hong, S.H., Kim, H.M., et al. (2007). Epigallocatechin-3-gallate suppresses NF-kappaB activation and phosphorylation of p38 MAPK and JNK in human astrocytoma U373MG cells. J Nutr Biochem 18, 587-596.
Koyama, H., Terada, A., Yoshida, M., Nakada, K., Abdulah, R., and Satoh, H. (2007). Cysteine supplementation reduces the bioavailability of selenomethionine in mice. In e-SPEN, the European e-Journal of Clinical Nutrition and Metabolism pp. 6.
Krabbe, K.S., Pedersen, M., and Bruunsgaard, H. (2004). Inflammatory mediators in the elderly. Exp Gerontol 39, 687-699.
Lee, B.S., Kang, H.S., Pyun, K.H., and Choi, I. (1997). Roles of tyrosine kinases in the regulation of nitric oxide synthesis in murine liver cells: modulation of NF-kappa B activity by tyrosine kinases. Hepatology 25, 913-919.
Letavayova, L., Vlckova, V., and Brozmanova, J. (2006). Selenium: from cancer prevention to DNA damage. Toxicology 227, 1-14.
Li, N., and Karin, M. (1999). Is NF-kappaB the sensor of oxidative stress? FASEB J 13, 1137-1143.
Libermann, T.A., and Baltimore, D. (1990). Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol 10, 2327-2334.
Liu, J.Z., and Milner, J.A. (1992). Age, dietary selenium and quantity of 7,12-dimethylbenz(a)anthracene influence the in vivo occurrence of rat mammary DNA adducts. J Nutr 122, 1361-1368.
Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265-275.
Lykkesfeldt, J., and Moos, T. (2005). Age-dependent change in Vitamin C status: a phenomenon of maturation rather than of ageing. Mech Ageing Dev 126, 892-898.
Mallikarjuna, K., Nishanth, K., Hou, C.W., Kuo, C.H., and Sathyavelu Reddy, K. (2009). Effect of exercise training on ethanol-induced oxidative damage in aged rats. Alcohol 43, 59-64.
Marklund, S.L. (1984). Extracellular superoxide dismutase in human tissues and human cell lines. J Clin Invest 74, 1398-1403.
Martin, I., and Grotewiel, M.S. (2006). Oxidative damage and age-related functional declines. Mech Ageing Dev 127, 411-423.
McCord, J.M., and Fridovich, I. (1968). The reduction of cytochrome c by milk xanthine oxidase. J Biol Chem 243, 5753-5760.
McKenzie, R.C., Rafferty, T.S., and Beckett, G.J. (1998). Selenium: an essential element for immune function. Immunol Today 19, 342-345.
Meuillet, E., Stratton, S., Prasad Cherukuri, D., Goulet, A.C., Kagey, J., Porterfield, B., and Nelson, M.A. (2004). Chemoprevention of prostate cancer with selenium: an update on current clinical trials and preclinical findings. J Cell Biochem 91, 443-458.
Miles, E.A., Rees, D., Banerjee, T., Cazzola, R., Lewis, S., Wood, R., Oates, R., Tallant, A., Cestaro, B., Yaqoob, P., et al. (2008). Age-related increases in circulating inflammatory markers in men are independent of BMI, blood pressure and blood lipid concentrations. Atherosclerosis 196, 298-305.
Navarro-Alarcon, M., and Cabrera-Vique, C. (2008). Selenium in food and the human body: a review. Sci Total Environ 400, 115-141.
Nishiya, T., Uehara, T., and Nomura, Y. (1995). Herbimycin A suppresses NF-kappa B activation and tyrosine phosphorylation of JAK2 and the subsequent induction of nitric oxide synthase in C6 glioma cells. FEBS Lett 371, 333-336.
Oldfield, J.E. (1987). The two faces of selenium. J Nutr 117, 2002-2008.
Opal, S.M., and DePalo, V.A. (2000). Anti-inflammatory cytokines. Chest 117, 1162-1172.
Ortega, E., Garcia, J.J., and De La Fuente, M. (2000). Ageing modulates some aspects of the non-specific immune response of murine macrophages and lymphocytes. Exp Physiol 85, 519-525.
Paglia, D.E., and Valentine, W.N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70, 158-169.
Palmer, R.M., Rees, D.D., Ashton, D.S., and Moncada, S. (1988). L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophys Res Commun 153, 1251-1256.
Pan, M.-H., Yang, J.-R., Tsai, M.-L., Sang, S., and Ho, C.-T. (2009). Anti-inflammatory effect of Momordica grosvenori Swingle extract through suppressed LPS-induced upregulation of iNOS and COX-2 in murine macrophages. Journal of Functional Foods 1, 145-152.
Patrizio, M., Colucci, M., and Levi, G. (2000). Protein kinase C activation reduces microglial cyclic AMP response to prostaglandin E2 by interfering with EP2 receptors. J Neurochem 74, 400-405.
Pedrero, Z., and Madrid, Y. (2009). Novel approaches for selenium speciation in foodstuffs and biological specimens: a review. Anal Chim Acta 634, 135-152.
Prabhu, K.S., Zamamiri-Davis, F., Stewart, J.B., Thompson, J.T., Sordillo, L.M., and Reddy, C.C. (2002). Selenium deficiency increases the expression of inducible nitric oxide synthase in RAW 264.7 macrophages: role of nuclear factor-kappaB in up-regulation. Biochem J 366, 203-209.
Puerto, M., Guayerbas, N., Alvarez, P., and De la Fuente, M. (2005). Modulation of neuropeptide Y and norepinephrine on several leucocyte functions in adult, old and very old mice. J Neuroimmunol 165, 33-40.
Qin, S., Gao, J., and Huang, K. (2007). Effects of different selenium sources on tissue selenium concentrations, blood GSH-Px activities and plasma interleukin levels in finishing lambs. Biol Trace Elem Res 116, 91-102.
Qureshi, S.T., Gros, P., and Malo, D. (1999). The Lps locus: genetic regulation of host responses to bacterial lipopolysaccharide. Inflamm Res 48, 613-620.
Radomski, M.W., and Salas, E. (1995). Nitric oxide--biological mediator, modulator and factor of injury: its role in the pathogenesis of atherosclerosis. Atherosclerosis 118 Suppl, S69-80.
Rafferty, T.S., Walker, C., Hunter, J.A., Beckett, G.J., and McKenzie, R.C. (2002). Inhibition of ultraviolet B radiation-induced interleukin 10 expression in murine keratinocytes by selenium compounds. Br J Dermatol 146, 485-489.
Rayman, M.P. (2000). The importance of selenium to human health. Lancet 356, 233-241.
Reid, M.E., Stratton, M.S., Lillico, A.J., Fakih, M., Natarajan, R., Clark, L.C., and Marshall, J.R. (2004). A report of high-dose selenium supplementation: response and toxicities. Journal of Trace Elements in Medicine and Biology 18, 69-74.
Richwine, A.F., Godbout, J.P., Berg, B.M., Chen, J., Escobar, J., Millard, D.K., and Johnson, R.W. (2005). Improved psychomotor performance in aged mice fed diet high in antioxidants is associated with reduced ex vivo brain interleukin-6 production. Brain Behav Immun 19, 512-520.
Rietschel, E.T., Kirikae, T., Schade, F.U., Mamat, U., Schmidt, G., Loppnow, H., Ulmer, A.J., Zahringer, U., Seydel, U., Di Padova, F., et al. (1994). Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J 8, 217-225.
Rikans, L.E., and Hornbrook, K.R. (1997). Lipid peroxidation, antioxidant protection and aging. Biochim Biophys Acta 1362, 116-127.
Rotruck, J.T., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G., and Hoekstra, W.G. (1973). Selenium: biochemical role as a component of glutathione peroxidase. Science 179, 588-590.
Roy, A.K., Oh, T., Rivera, O., Mubiru, J., Song, C.S., and Chatterjee, B. (2002). Impacts of transcriptional regulation on aging and senescence. Ageing Res Rev 1, 367-380.
Saito, Y., Yoshida, Y., Akazawa, T., Takahashi, K., and Niki, E. (2003). Cell death caused by selenium deficiency and protective effect of antioxidants. J Biol Chem 278, 39428-39434.
Saura, J., Richards, J.G., and Mahy, N. (1994). Differential age-related changes of MAO-A and MAO-B in mouse brain and peripheral organs. Neurobiol Aging 15, 399-408.
Sautebin, L. (2000). Prostaglandins and nitric oxide as molecular targets for anti-inflammatory therapy. Fitoterapia 71 Suppl 1, S48-57.
Savaskan, N.E., Brauer, A.U., Kuhbacher, M., Eyupoglu, I.Y., Kyriakopoulos, A., Ninnemann, O., Behne, D., and Nitsch, R. (2003). Selenium deficiency increases susceptibility to glutamate-induced excitotoxicity. FASEB J 17, 112-114.
Schwarz, K., Bieri, J.G., Briggs, G.M., and Scott, M.L. (1957). Prevention of exudative diathesis in chicks by factor 3 and selenium. Proc Soc Exp Biol Med 95, 621-625.
Shamberger, R.J., and Frost, D.V. (1969). Possible protective effect of selenium against human cancer. Can Med Assoc J 100, 682.
Sherry, B., and Cerami, A. (1988). Cachectin/tumor necrosis factor exerts endocrine, paracrine, and autocrine control of inflammatory responses. J Cell Biol 107, 1269-1277.
Shimohashi, N., Nakamuta, M., Uchimura, K., Sugimoto, R., Iwamoto, H., Enjoji, M., and Nawata, H. (2000). Selenoorganic compound, ebselen, inhibits nitric oxide and tumor necrosis factor-alpha production by the modulation of jun-N-terminal kinase and the NF-kappab signaling pathway in rat Kupffer cells. J Cell Biochem 78, 595-606.
Skrzydlewska, E., Augustyniak, A., Michalak, K., and Farbiszewski, R. (2005). Green tea supplementation in rats of different ages mitigates ethanol-induced changes in brain antioxidant abilities. Alcohol 37, 89-98.
Smith, R.J., Justen, J.M., Ulrich, R.G., Lund, J.E., and Sam, L.M. (1992). Induction of neutral proteinase and prostanoid production in bovine nasal chondrocytes by interleukin-1 and tumor necrosis factor alpha: modulation of these cellular responses by interleukin-6 and platelet-derived growth factor. Clin Immunol Immunopathol 64, 135-144.
Smith, W.L. (1992). Prostanoid biosynthesis and mechanisms of action. Am J Physiol 263, F181-191.
Sobocanec, S., Balog, T., Kusic, B., Sverko, V., Saric, A., and Marotti, T. (2008). Differential response to lipid peroxidation in male and female mice with age: correlation of antioxidant enzymes matters. Biogerontology 9, 335-343.
Srividhya, R., Jyothilakshmi, V., Arulmathi, K., Senthilkumaran, V., and Kalaiselvi, P. (2008). Attenuation of senescence-induced oxidative exacerbations in aged rat brain by (-)-epigallocatechin-3-gallate. Int J Dev Neurosci 26, 217-223.
Suzuki, K.T. (2005). Metabolomics of Selenium: Se Metabolites Based on Speciation Studies. Journal of health Science 51, 8.
Sverko, V., Sobocanec, S., Balog, T., and Marotti, T. (2004). Age and gender differences in antioxidant enzyme activity: potential relationship to liver carcinogenesis in male mice. Biogerontology 5, 235-242.
Tang, Y.L., Wang, S.W., and Lin, S.M. (2008). Both inorganic and organic selenium supplements can decrease brain monoamine oxidase B enzyme activity in adult rats. Br J Nutr 100, 660-665.
Tinggi, U. (2003). Essentiality and toxicity of selenium and its status in Australia: a review. Toxicol Lett 137, 103-110.
Toborek, M., Magner-Wrobel, K., Drozdz, M., Danch, A., and Kopieczna-Grzebieniak, E. (1993). Modulation of procainamide toxicity by selenium-enriched yeast in rats. Arch Toxicol 67, 691-695.
Vacchiano, C.A., Osborne, G.R., and Tempel, G.E. (1998). 8-ISO-PGF2alpha production by alveolar macrophages exposed to hyperoxia. Shock 9, 266-273.
Vane, J.R., and Botting, R.M. (1998). Anti-inflammatory drugs and their mechanism of action. Inflamm Res 47 Suppl 2, S78-87.
Vendeland, S.C., Deagen, J.T., Butler, J.A., and Whanger, P.D. (1994). Uptake of selenite, selenomethionine and selenate by brush border membrane vesicles isolated from rat small intestine. Biometals 7, 305-312.
Vunta, H., Davis, F., Palempalli, U.D., Bhat, D., Arner, R.J., Thompson, J.T., Peterson, D.G., Reddy, C.C., and Prabhu, K.S. (2007). The anti-inflammatory effects of selenium are mediated through 15-deoxy-Delta12,14-prostaglandin J2 in macrophages. J Biol Chem 282, 17964-17973.
Wang, C., Wu, Y., Qin, J., Sun, H., and He, H. (2009). Induced susceptibility of host is associated with an impaired antioxidant system following infection with Cryptosporidium parvum in Se-deficient mice. PLoS One 4, e4628.
Wei, J., Xu, H., Davies, J.L., and Hemmings, G.P. (1992). Increase of plasma IL-6 concentration with age in healthy subjects. Life Sci 51, 1953-1956.
Whanger, P.D. (2004). Selenium and its relationship to cancer: an update. Br J Nutr 91, 11-28.
Willey, J.M., Sherwood, L.M., and Woolverton, C.J. (2008). Prescott, Harley, And Klein's Microbiology, 7/e. 768.
Wu, Q., and Huang, K. (2004). Effect of long-term Se deficiency on the antioxidant capacities of rat vascular tissue. Biol Trace Elem Res 98, 73-84.
Yamamoto, Y., Nagata, Y., Niki, E., Watanabe, K., and Yoshimura, S. (1993). Plasma glutathione peroxidase reduces phosphatidylcholine hydroperoxide. Biochem Biophys Res Commun 193, 133-138.
Yamazaki, I. (1987). Free radical mechanisms in enzyme reactions. Free Radic Biol Med 3, 397-404.
Yun, C.H., Yang, J.S., Kang, S.S., Yang, Y., Cho, J.H., Son, C.G., and Han, S.H. (2007). NF-kappaB signaling pathway, not IFN-beta/STAT1, is responsible for the selenium suppression of LPS-induced nitric oxide production. Int Immunopharmacol 7, 1192-1198.
Zhang, P., and Omaye, S.T. (2001). Antioxidant and prooxidant roles for beta-carotene, alpha-tocopherol and ascorbic acid in human lung cells. Toxicol In Vitro 15, 13-24.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊