中文部份
[1]孔祥竹(2007),應用類神經網路減少TFT-LCD產品測試項目之研究,交通大學工業工程與管理研究所未出版碩士論文。[2]吳木杏(2000),彩色濾光片表面瑕疵檢測分析,台灣大學資訊工程學系研究所未出版碩士論文。[3]拓墣產業研究所(2003),中小尺寸顯示器發展前瞻(初版),台北:拓墣科技股份有限公司。
[4]拓墣產業研究所(2009),剖析全球面版產業競爭力版圖,台北:拓墣科技股份有限公司。
[5]林佑駿(2007),應用遞增式支持向量機於TFT-LCD陣列電路工程閘電極光罩線中瑕疵辨識,中原大學機械工程研究所未出版碩士論文。[6]金屬工業研究發展中心,2008/10/23 新聞稿。
[7]洪崇祐(2004),應用一維傅立葉分析於TFT-LCD液晶顯示面板之瑕疵檢測,元智大學工業工程與管理研究所未出版碩士論文。[8]莊凱評(2008),自動光學檢測產業設備發展趨勢,工研院量測技術發展中心,自動化光學檢測種子師資班講義。
[9]陳一斌(2001),TFT 彩色濾光片瑕疵檢測系統,機械工業雜誌十二月。[10]陳志忠(2001),液晶顯示器的像素點缺陷與亮度均一性之自動化檢測,私立中原大學機械工程研究所未出版碩士論文。[11]陳振銘(2004), TFT LCD 檢測與量測技術講義,自強基金會。
[12]陳學宇、蔡孟儒(2005),應用機器視覺於LCD 擴散片之檢測,第五屆全國AOI 論壇B-15,國立交通大學,新竹。
[13]曾彥馨(2003),應用機器視覺於TFT面板之表面瑕疵檢測與分類,私立元智大學工業工程研究所未出版碩士論文。[14]葉怡成(2004),類神經網路模式應用與實作(八版三刷),台北:儒林圖書有限公司。
[15]趙新民(2003),應用非線性擴散於非同質性紋路之ITO 導電玻璃表面檢測,元智大學工業工程與管理研究所未出版碩士論文。[16]鄧凱元(2006),應用視覺於TFT-LCD陣列電路工程中瑕疵辨識之研究-畫素電極光罩瑕疵自動分類,中原大學機械工程研究所未出版碩士論文。[17]錢志豪(2002),建構液晶顯示器(LCD)色彩偏差瑕疵之自動化視覺檢測系統之探討,私立朝陽科技大學工業工程研究所未出版碩士論文。[18]繆紹綱編譯(2003),數位元影像處理(初版),臺北市:普林斯頓國際有限公司。
英文部份
[1]Amet, A. L., A. Ertuzun and A. Ercil (1998), Texture defect detection using subband domain co-occurrence matrices, Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 205-210.
[2]Bakhadyrov, I., M. A. Jafari, T. Fang, A. Safari, S. Danforth and N. Langrana (1998), Defect defection in indirect layered manufacturing, IEEE International Conference on Systems, Man and Cybernetics, Vol. 5, pp. 4251-4256.
[3]Chan, C. H. and K. H. Pang (2000), Fabric defect detection by Fourier analysis, IEEE Trans. on Industry Application, Vol. 36, pp.1267-1276.
[4]Chan, Y. C., K. C. Huang and X. Dai (2000), Nondestructive defect detection in multiplayer ceramic capacitors using an improved digital speckle correlation method with wavelet packet noise reduction processing, IEEE Trans. Packaging and Manufacturing Technology, Vol. 46, pp. 80-87.
[5]Chetverikov, D. (1987), Texture imperfections, Pattern Recognition Letters, Vol. 6, pp. 45-50
[6]Chou, P. B. (1997), Automatic defect classification for semiconductor manufacturing, Machine Vision and Applications, Vol. 9, pp. 201–214.
[7]Conners, R. W., C. W. Mcmillin, K. Lin and R. E. Vasquez-Espinosa (1983), Identifying and locating surface defects in wood : part of and automated lumber processing dystem, IEEE Trans. Pattern Anal. and Mach. Intell., Vol. PAMI-5, pp. 573-583.
[8]Cortes, C. and Vapnik, V. (1995), Support-vector Networks, Machine learning, 20, pp. 273-297.
[9]Dudoit, S., Fridlyand, J. and Speed, T. (2000), Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the american statistical association, 97, pp. 1-43.
[10]Erturk, S. and T. J. Dennis (2000), Image sequence stabilization based on DFT filtering, IEE Proc.-Vis. Image Signal Process, Vol. 147, pp. 95-102.
[11]Fayyad, U., Piatetsky, G., Smyth, P. (1996), From Data Mining to Knowledge Discovery in Database, American Association for Artificial Intelligence, pp.37-54.
[12]Haralick, R. M., K. Shanmugam and I. Dinstein (1973), Textural features for image classification, IEEE Trans. System, Man, Cybern., Vol. SMC-3, pp. 610-621.
[13]Hawthorne, J. (2000), Electro-optics technology tests flat-panel displays, Laser Focus World, Vol. 36, pp. 271- 276.
[14]Iivarinen, J. (2000), Surface defect detection with histogram-based texture features, Proceedings of SPIE 4197, pp. 140-145.
[15]Kido. T. (1992), In-process inspection technique for active-matrix LCD panels, International Test Conference, pp. 795-799.
[16]Kido. T. (1993), In-process functional inspection technique for TFT-LCD array, Journal of SID, Vol. 1, No. 4, pp. 429-435.
[17]Kido. T. (1995), Optical charge-sensing method for testing and characterizing thin-film transistor array, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 1, No. 4, pp. 993-1001.
[18]Kim, J. H, Ahn, S., Jeon, J. W. and Byun, J. E. (2001), A High-Speed High- Resolution Vision System for the Inspection of TFT LCD, ISIE, Pusan , Korea, pp.101-105
[19]Kim, S., Lee, M. H. and Woo, K. B.(1999), Wavelet analysis to fabric defects detection in weaving processes, Proceedings of the IEEE International Symposium on Industrial Electronics, Vol. 3, pp. 1406-1409.
[20]Kumar, S. (2004), Neural networks:a classroom approach (1st ed), Asia:McGraw-Hill Education, pp. 259-313.
[21]Kymeyama, K. (1999), Semiconductor Defect Classification using Hyperellipsoid Clustering Neural Networks and Model Switching, Neural Networks, Vol. 5, pp. 3505–3510.
[22]Lambert, G. and F. Bock (1997), Wavelet method for texture defect detection, Proceedings of the IEEE International Conference on Image Processing, Vol. 3, pp. 201-204.
[23]Lee, K. B., Ko, M. S. , Lee, J. J., Koo, T. M., Park, K. H. (2004), Defect Detection Method for TFT-LCD Panel Based on Saliency Map Model, IEEE Region 10 Conference Volume A, 21-24 Nov. 2004 Vol. 1, pp.223-226.
[24]Li, Y. and T. W. Liao (1996), Weld defect detection based on Gaussian curve, Proceedings of the Twenty-Eighth Southeastern Symposium on System Theory, pp. 227-231.
[25]Lin C. S., W. Z. Wu, Y. L. Lay and M. W. Chang (2001), A digital image-base measurement system for a LCD backlight module, Optics & Laser Technology, Vol.33, No. 7, pp.499-505.
[26]Liu, S. S. and M. E. Jernigan (1990), Texture analysis and discrimination in additive noise, Computer Vision, Graphics and Image Processing, Vol. 49, pp. 52-67.
[27]Malamas,E.N., Petrakis,E.G.M., Zervakis,M., Petit,L. and Legat,J.D. (2003), A survey on industrial vision systems, applications and tools, Image and Vision Computing, 21, pp. 171-188
[28]Nakashima K. (1994), Hybrid inspection system for LCD color filter panels, Tenth International Conference on Instrumentation and Measurement Technology, Hamamatsu, pp.689-692.
[29]Ramana, K. V. and B. Ramamoorthy (1996), Statistical methods to compare the texture features of machined surfaces, Pattern Recognition, Vol. 29, pp. 1447-1459.
[30]Soh, L. and Tsatsoulis, C. (1999), Texture Analysis of SAR Sea Ice Imagery Using Gray Level Co-Occurrence Matrices, Geoscience and Remote Sensing, vol. 37, no. 2.
[31]Specht, F. D. (1990), Probabilistic Neural Networks and Polynomial Adaline as Complementary Techniques for Classification, Neural Networks, Vol. 1, No. 1.
[32]Tsai, D. M. and C. Y. Hsieh (1999), Automated surface inspection for directional textures, Image and Vision Computing, Vol. 18, pp. 49-62.