跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/17 19:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王慶翔
研究生(外文):Ching-shiang Wang
論文名稱:鏡像選擇性辨識L與D-色胺酸之電化學式分子模版感測器
論文名稱(外文):Molecularly Imprinted Electrochemical Sensor able to Enantioselectively Recognize L and D-tryptophan
指導教授:林宗榮林宗榮引用關係
指導教授(外文):Tzong-rong Ling
學位類別:碩士
校院名稱:義守大學
系所名稱:生物技術與化學工程研究所碩士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:95
中文關鍵詞:色胺酸聚砒硌電化學式感測器分子模版
外文關鍵詞:molecular imprintingpolypyrroletryptophanelectrochemical sensor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:523
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究使用分子模版技術以電聚合成法製備色胺酸分子感測電極,利用電化學方法探討其鏡像分子間辨識的選擇性,以及用循環伏安(CV)法分析其在白金電極上之電活性行為。研究發現在電壓+0.8 V~+1.0 V(vs. Ag/AgCl)之間,色胺酸分子在白金電極上出現強吸附的氧化電流峰,此訊號為色胺酸分子苯環結構上之π電子轉移所造成的氧化峰;相關的電活性分子對白金電極的作用電流大小將在本文一併做比較。
再者,以導電性高分子聚砒硌於白金電極上所製備出L與D-色胺酸分子模版感測器,在適當前處理條件下,再利用NaOH溶液進行對目標分子萃取,再以正電壓選擇性誘導吸附目標物分子於薄膜電極上,而後以庫倫方法計算其吸附量。本實驗分別以L與D-色胺酸製作成其分子模版感測電極,其選擇性分別為:L/D=17.8±2.4、D/L=15.1±1.2 ,電位範圍於-0.3 V~+1.2 V(vs. Ag/AgCl),掃描速率為0.1 V/sec,L與D-色胺酸在待測液中之感測濃度為10 mM。本研究並討論辨識能力之影響因素,包括:前處理條件、目標物分子之移除方式、不同目標物分子濃度、電聚合時間、掃描速率等。
In this research, trytophan sensing electrodes were prepared by molecular imprinting technique through electropolymerization process. The entro-selectivity of the electrode was investigated by using electrochemical method. And behaviors of the electro-active molecule were analyzed by CV method. The results revealed that strong peak of anodic current of trytophan appeared between 0.8 V to 1.0 V(vs. Ag/AgCl) from its π electron transfer. The interactions of related electro-active molecules were compared in the text.
Furthermore, conducting polymer, polypyrrole, was used to prepared L and D trytophan imprinted electrode. Under some pretreatment condition, the target molecule was extracted from the imprinted electrode in NaOH solution. Then, its rebinding was induced by positive potential and quantitative adsorption was evaluated by coulomb method. The selectivity of the D and L- trytophan imprinted electrode was estimated respectively as: L/D=17.8±2.4, D/L=15.1±1.2 under the conditions: potential range -0.3 V~+1.2 V(vs. Ag/AgCl), scan rate: 0.1 V/sec, in 10 mM sample solution. This study will discuss the recognition ability affected by many factors including: pretreatment condition, extraction method of target molecules, concentration of target molecules, electropolymerization time, scanning rate, etc.
中文摘要I
英文摘要II
誌謝III
總目錄V
表目錄VII
圖目錄VIII
第一章 緒論1
1-1 前言1
1-2 分子辨識之要素2
1-3 導電性高分子簡介6
導電性高子之特性8
導電性高分子之應用9
1-4 砒硌(Pyrrole,Py)之電化學行為與聚合結構10
1-5 胺基酸之簡介11
1-6 目標物分子-色胺酸在人體內之重要性12
1-7 研究動機12
第二章 原理14
2-1 分子模版之起源與發展14
2-2 分子模版之原理15
2-3 製備分子模版所需之材料22
2-3-1 目標分子的選擇22
2-3-2 交聯劑23
2-3-3 功能性單體24
2-3-4 溶劑25
2-4 分子模版之應用領域26
2-4-1 分離26
2-4-2 生物感測器裝置28
2-4-3 催化作用與合成酵素28
2-4-4 抗體和鍵結位向模仿的接收體29
2-5 實際產品之開發30
2-6 電化學感測原理30
第三章 實驗方法31
3-1 藥品31
3-2 設備與電極材料32
3-3 分析儀器33
3-4 電化學系統介紹34
3-5 QCM原理38
震盪頻率與吸附質量的關係式-Sauerbrey Equation39
3-6 實驗流程41
3-7 實驗方法42
3-7-1 鉑工作電極前處理42
3-7-2 電聚合成分子模版電極42
3-7-3 分子模版電極中目標物分子之萃取43
3-7-4 電化學感應測試43
3-7-5 吸附值之計算(庫倫法)43
第四章 色胺酸分子的電活性行為分析45
4-1 不同電極鉑和鎳材料與色胺酸分子的作用行為45
4-2 干擾分子之電活性測試47
4-3 色胺酸分子氧化還原作用原理52
4-4 色胺酸不可逆的吸附現象54
4-5 石英晶體震盪測試56
4-6 掃描速率之影響58
4-7 不同pH之影響59
4-8 不同濃度之影響60
第五章 分子模版聚砒硌於鉑電極之特性探討62
5-1 CV前處理62
5-2 NaOH萃取過程65
5-3 L-與D-色胺酸之分子模版交叉選擇性測試68
5-4 CP聚合時間之影響70
5-5 掃描速率之影響72
5-6 目標物分子濃度與辨識之關係74
第六章 結論77
參考文獻79
表目錄
Table 2-1 共價鍵鍵結18
Table 2-2 非共價鍵鍵結19
Table 2-3 自組性與預組性系統之比較20
Table 2-4 單體與分析物結合方式之特性表21
Table 2-5 各式不同用途的目標物分子22
Table 2-6 分子模版實際應用的領域26
Table 5-1 不同CV前處理圈數下L-色胺酸分子模版薄膜之吸附庫倫值與選擇性之比較64
Table 5-2 不同CP電聚合時間下L-色胺酸分子模版薄膜之吸附庫倫值與選擇性之比較71
Table 5-3 不同掃描速率下L-色胺酸分子模版薄膜之吸附庫倫值與選擇性之比較73
Table 5-4 不同感測濃度下目標物分子L-色胺酸與干擾性分子D-色胺酸對L-色胺酸分子模版薄膜之吸附庫倫值與選擇性之比較75
圖目錄
Figure 1-1 Different kinds of electrostatic interaction3
Figure 1-2 Hydrogen bonding3
Figure 1-3 Van der waals interaction4
Figure 1-4 Hydrophobic interaction4
Figure 1-5 常見的導電性聚合物7
Figure 1-6 聚砒硌的兩種不同聚合結構10
Figure 1-7 胺基酸於生理pH值中所存在的兩極性離子11
Figure 1-8 D-和L-色胺酸的化學構造12
Figure 2-1 分子模版製作過程示意圖16
Figure 2-2 交聯劑的種類23
Figure 2-3 用於自組性分子模版製作之功能性單體的選擇24
Figure 3-1 電化學系統之電極反應中可改變的參數36
Figure 3-2 一般電化學系統裝置圖37
Figure 3-3 石英晶體在交流電場中受交流電場影響的震盪示意圖38
Figure 3-4 庫倫法計算示意圖(特徵峰經由時間t1至t2所圍的面積即為吸附之庫倫值可由電流值I對時間t積分得到)44
Figure 4-1 色胺酸分子對不同電極材料(a)鉑與(b)鎳,的CV行為比較,10 mM色胺酸,掃瞄速率0.1 V/sec,pH=6.6。46
Figure 4-2 不同分子對鉑電極的CV行為(a)色胺酸(b)酪胺酸(c)硝基酪胺酸(d)麩胺酸(e)離胺酸(f)苯丙胺酸(g)苯甲酸,10 mM待測液,掃描速率0.1 V/sec,pH=6.6。51
Figure 4-3 色胺酸分子對鉑電極的CV行為(a)背景緩衝溶液(b)色胺酸,10 mM待測液,掃描速率0.1 V/sec,pH=6.6。53
Figure 4-4 色胺酸分子對鉑電極不可逆吸附作用的CV行為,色胺酸濃度10 mM,掃描速率0.1 V/sec,pH=6.6。55
Figure 4-5 色胺酸分子對鉑電極的吸附作用之CV行為與EQCM變化,色胺酸濃度10 mM,掃描速率0.1 V/sec,pH=6.6。57
Figure 4-6 在不同掃描速率下色胺酸分子對鉑電極的CV行為,色胺酸濃度為10 mM,pH=6.6。58
Figure 4-7 在不同pH下色胺酸分子對鉑電極的CV行為,色胺酸濃度10 mM,掃描速率0.1 V/sec。59
Figure 4-8 在不同濃度下色胺酸分子對鉑電極的CV行為,掃描速率0.1 V/sec,pH=6.6。60
Figure 4-9 在不同色胺酸濃度下之峰電流(IP)關係圖,掃瞄速率0.1 V/sec,pH=6.6。61
Figure 5-1 不同CV前處理(a)無前處理(b)10圈(c)20圈,之L-色胺酸分子模版薄膜對目標物分子L-色胺酸與鏡像干擾性分子D-色胺酸的CV辨識圖譜,待測液10 mM,pH=6.6,掃描速率0.1 V/sec。63
Figure 5-2 CV前處理圈數與選擇性之趨勢關係圖64
Figure 5-3 L-色胺酸分子模版薄膜先經過(a)L-色胺酸待測液(b)D-色胺酸待測液CV前處理後在100 mM,pH=13的NaOH萃取溶劑下之CV萃取過程圖,掃描速率0.1 V/sec。66
Figure 5-4 L-色胺酸分子模版薄膜在不同萃取過程下之CV辨識圖譜(a)無萃取(b)CV萃取90圈(c)CV萃取100圈(d)CV萃取150圈,100 mM,pH=13的NaOH萃取溶劑,色胺酸待測液10 mM,pH=6.6,掃描速率0.1 V/sec。67
Figure 5-5 L-和D-色胺酸分子再吸附於(a)L-色胺酸分子模版(b)D-色胺酸分子模版的CV辨識圖譜,色胺酸待測液10 mM,pH=6.6,掃描速率0.1 V/sec。69
Figure 5-6 CP電聚合時間與選擇性之趨勢關係圖71
Figure 5-7 Log掃描速率與選擇性之趨勢關係圖73
Figure 5-8 不同感測濃度與選擇性之趨勢關係圖76
中文部份
[1]田福助,"電化學理論與應用",高立出版社,pp.1,1993.
[2]李昆峰,"電聚合鄰苯二胺薄膜之製作與評估其在分子模印感測上之應用",成功大學醫學工程研究所碩士論文,2000.
[3]李漢峰,"聚苯胺行固態電解值二極式氯氣感測器之研究",成功大學化學工程所碩士論文,1997.
[4]林宗榮,蔡耀慶,周澤川,"分子模版拓印技術-仿人造抗體之合成介紹",科儀新知,vol.24(3),pp.91-99,2002.
[5]施正雄,"壓電晶體化學感測器開發與應用",科儀新知,vol.21(4), pp.60,2000.
[6]陳怡旦,"聚苯胺修飾磨之合成與電化學及材料特性",中正大學化工碩士論文,1999.
[7]陳嘉崙,"導電性聚苯胺型高分子材料製造氯離子感測器之研究",成功大學化工碩士論文,1996.
英文部份
[1]A. F. Diaz, J. I. Castillo, J. A. Logan and W. Y. Lee, "Electrochemistry of Conducting Polypyrrole Films", Journal of Electroanalytical Chemistry, vol. 129, pp. 115, 1981.
[2]A. G. Mayes and K. Mosbach, "Molecularly imprinted polymers: useful materials for analytical chemistry", Trends in Analytical Chemistry, vol. 16(6), pp. 321-332, 1997.
[3]A. J. Bard and L. R. Faulkner, "Electrochemical Method", Willey, pp. 16, 1980.
[4]A. J. Downard and D. Pletcher, "A Study of the Conditions for the Electrodeposition of Poly Thiophene in Acetonitrilf", Journal of Electroanalytical Chemistry, vol. 206, pp. 147, 1986.
[5]B. Sellergren, "Noncovalent molecular imprinting: antibody-like molecular recognition in polymeric network materials", Trends in Analytical Chemistry, vol. 16(6), pp. 310-320, 1997.
[6]D. A. Buttry and M. D. Ward, "Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance", Chemical Reviews, vol. 92(6), pp. 1355-1379, 1992.
[7]D. Kriz, O. Ramström and K. Mosbach, "Molecular imprinting: new possibilities for sensor technology", Analytical Chemistry, vol. 69(11), pp. 345A-349A, 1997.
[8]E. K. W. Lai, P. D. Beattie, F. P. Orfino, E. Simon and S. Holdcroft, "Electrochemical oxygen reduction at composite films of Nafion, polyaniline and Pt", Electrochimica Acta, vol. 44(15), pp. 2559-2569, 1999.
[9]F. H. Dickey, "The preparation of specific adsorbents", Proceedings of the National Academy of Sciences of the United States of America, vol. 35, pp. 227-229, 1949.
[10]F. L. Dickert, P. Lieberzeit and M. Tortschanoff, "Molecular imprints as artificial antibodies– a new generation of chemical sensors", Sensors and Actuators B: Chemical, vol. 65, pp. 186-189, 2000.
[11]Further information on the Society for Molecular imprinting may be found at http://www.ng.hik.se/SMI
[12]G. Hailin and L. Yucheng, "Characterization of a chemoresistor pH-sensor based on conducting polypyrrole", Sensors and Actuators B, vol. 21, pp. 57-63, 1994.
[13]G. Sauerbery, "Verwendung von Schwingquarzen zur Wägung dünner Schichten and zur Mikrowägung", Zeitschrift für Physik A Hadrons and Nuclei, vol. 155(2), pp. 206-222, 1959.
[14]G. Wulff and A. Sarhan, "Use of polymers with enzyme-analogous structures for the resolution of racemates", Angewandte Chemie, vol. 11, pp. 341-344, 1972.
[15]G. Wulff, "Molecular Imprinting in Cross-Linked Materials with Aid of Molecular Templates A Way toward Artificial Antibodies", Angewandta Chemie, vol. 34, pp. 1812-1832, 1995.
[16]G. Wulff, A. Sarhan and K. Zabrocki, "Enzyme-analogue Built Polymers and Their Use for the Resolution of Race mares", Tetrahedron Letters, vol. 44, pp. 4329-4332, 1973.
[17]Guang Jin, et al, Electrochemistry Communications, vol. 6, pp. 454-460, 2004.
[18]J. C. LaCroix and A. F. Diaz, "Electrolyte Effects on the Switching Reaction of Polyaniline", Journal of the Electrochemical Society, vol. 135, pp. 1457-1463, 1988.
[19]J. Matsui, Y. Miyoshi, R. Matsui and T. Takeuchi, "Rod-type affinity media for liquid chromatography prepared by in-situ molecular imprinting", Analytical Sciences, vol. 11(6), pp. 1017-1019, 1995.
[20]K. Haupt and K. Mosbach, "Molecularly imprinted polymers and their use in biomimetic sensors", Chemical Reviews, vol. 100(7), pp. 2495-2504, 2000.
[21]K. I. Yoshikawa, K. I. Yoshioka, A. Kitani and K. Sasaki, "Preparation of Highly Conducting Polyanilines", Journal of Electroanalytical Chemistry, vol. 270, pp. 421, 1989.
[22]K. Mosbach and O. Ramström, "The emerging technique of molecular imprinting and its future impact on biotechnology", Bio/Technology, vol. 14(2), pp. 163-170, 1996.
[23]K. Mosbash, "Molecular imprinting", Trends in Biochemical Sciences, vol. 19(1), pp. 9-14, 1994.
[24]K. Tanaka, T. Shichiri, S. Wang and T. Yamabe, "A Study of the Electropolymerization of Thiophene", Synthetic Metals, vol. 24, pp. 203, 1998.
[25]K. Y. Qiu and J. Ma, Huanxue. Tongbao, vol. 11, pp. 15, 1985.
[26]L. Andersson, B. Ekberg and K. Mosbach, "Synthesis of a New Amino Acid Based Cross-Linker for Preparation of Substrate Selective Acrylic Polymers", Tetrahedron Letters, vol. 26(30), pp. 3623-3624, 1985.
[27]L. Andersson, B. Sellergren and K. Mosbach, "Imprinting of Amino Acid Derivatives in Macroporous Polymers", Tetrahedron Letters, vol. 25(45), pp. 5211-5214, 1984.
[28]L. N. Castro, J. Fernando and F. J. Zuben, "Learning an optimization using the clonal selection principle", IEEE Transaction on Evolutionary Computation, vol. 6(3), pp. 239-251, 2002.
[29]L. Pauling and D. Campbell, "The manufacture of antibodies in vitro", Journal of Experimental Medicine, vol. 76(2), pp. 200-211, 1942.
[30]L. Pauling, "A Theory of the Structure and Process of Formation of Antibodies", Journal of the American Chemical Society, vol. 62, pp. 2643-2657, 1940.
[31]L. Q. Zheng, M. Suzuki and T. Inoue, "Phase Behavior of an Aqueous Mixture of Octaethylene Glycol Dodecyl Ether Revealed by DSC, FT-IR, and 13C NMR Measurements", Langmuir, vol. 18(6), pp. 1991-1998, 2002.
[32]M. J. Whitcombe, M. E. Rodrihuez and P. A. Villar, "New Method for the Introduction of Recognition Site Functionality into Polymers Prepared by Molecular Imprinting: Synthesis and Characterization of Polymeric Receptors for Cholesterol", Journal of the American Chemical Society, vol. 117, pp. 7105-7111, 1995.
[33]O. Norrlow, M. Glad and K. J. Mosbach, "Acrylic Polymer Preparations Containing Recognition Sites Obtained by Imprinting with Substrates", Journal of Chromatography, vol. 299(1), pp. 29-41, 1984.
[34]O. Ramström and K. Mosbach, "Sythesis and catalysis by molecularly imprinted materials", Current Opinion in Chemical Biology, vol. 3(6), pp. 759-764, 1999.
[35]P. K. Owens, L. Karlsson, E. S. M. Lutz and L. I. Andersson, "Molecular imprinting for bio-and pharmaceutical Analysis", Trends in Analytical Chemistry, vol. 18(3), pp. 146-154, 1999.
[36]R. A. Jones(editor), Pyrroles. Part1. "The Synthesis and the Physical and Chemical Aspedcts of the Pyrrole Ring", John Wiley & Sonc Inc, New York, pp. 305-325, 1990.
[37]R. Arshady and K. Mosbach, "Synthesis of Substrate-selective Polymers by Host-Guest Polymerization", Macromoleculare Chemie, vol. 182, pp. 687-692, 1981.
[38]R. Qian and J. Qiu, "Electrochemically Prepared Polypyrroles from Aqueous Solutions", Polymer Journal, vol. 19(1), pp. 157-172, 1987.
[39]Rodney Boyer著, "生物化學(Concepts in Biochemistry)", International Thomson Publishing 與 學富文化事業有限公司 合作出版.
[40]S. C. Ho and T. C. Chou, "The Role of Anion in the Preparation of Nickel Catalyst Detected by TPR and FT-IR Spectra", Industrial & Engineering Chemistry Research, vol. 34(7), pp. 2279-2284, 1995.
[41]S. Maeda, D. B. Cairns and S. P. Armes, "New reactive polyelectrolytestabilizers for polyaniline colloids", European Polymer Journal, vol. 33(3), pp. 245-253, 1997.
[42]T. Inoue, M. Matsuda, Y. Nibu, Y. Misono and M. Suzuki, "Phase Behavior of Heptaethylene Glycol Dodecyl Ether and Its Aqueous Mixture Reveled by DSC and FT-IR Spectroscopy", Langmuir, vol. 17(6), pp. 1833-1840, 2001.
[43]T. Takeuchi and J. Matsui, "Molecular imprinting: an approach to ‘tailor-made’ synthetic polymers with biomimetic function", Acta Polymerica, vol. 47(11-12), pp. 471-480, 1996.
[44]T. Tanaka, Chem. Sci. Am., vol. 244, pp. 100, 1981.
[45]Wei Wang, et al, Electrophoresis, vol. 25, pp. 903-910, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top