跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:2119:b261:d24c:ce10) 您好!臺灣時間:2025/01/21 07:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林娜瑩
研究生(外文):Na-ying Lin
論文名稱:資料包絡分析應用於多目標運輸問題
論文名稱(外文):Using Data Envelopment Analysis to Study the Multi-Objective Transportation Problem
指導教授:蔡明智蔡明智引用關係
指導教授(外文):Ming-chi Tsai
學位類別:碩士
校院名稱:義守大學
系所名稱:管理學院碩士班
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:41
中文關鍵詞:運輸問題多目標問題線性規劃資料包絡分析
外文關鍵詞:transportation problemmulti-objective problemliner programmingdata envelopment analysis(DEA)
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1492
  • 評分評分:
  • 下載下載:113
  • 收藏至我的研究室書目清單書目收藏:0
運輸問題是作業研究領域中常見的問題,指派問題則是運輸問題的特例。一般均利用線性規劃或其他特殊解法,求得問題的最適解,即使用最少資源,得到最大利潤。運輸和指派問題的求解已有許多相關的研究(Reeb, 2002)(董振寧,2004),但大部份的研究均只考慮一項資源或因素。僅有少部分研究同時考慮兩項以上之因素(薄喬萍,2006),而現有之方法(Liang, 2008), 在求解時多半過於複雜,不符合實際需求。
現實生活中,運輸問題常需同時考慮許多資源或因素,而上述研究在計算時過於複雜。為改善這項缺點,本研究結合了資料包絡分析(Data Envelopment Analysis, DEA)和線性規劃(Liner Programming, LP)等技術,提出三種解決多目標運輸問題的方法:(1)修改薄喬萍法(MBM):薄喬萍(2006)的方法係利用線性規劃解決多目標指派問題,本研究將該方法加以修正,使其能解決多目標運輸問題(2)直覺法(HEU):本研究證明,將個別單一目標運輸問題之最適解,加權相加後,仍符合原運輸問題之限制條件(3)應用資料包絡分析法(DEA)。利用一組隨機產生的數據,以Microsoft Excel進行計算,分別比較三種方法在解決多目標運輸問題時之優劣。
研究結果顯示,當需要解決同時考慮許多資源或因素的運輸問題時,本研究所提出之方法,能有效解決此多目標運輸問題。比起現有研究,本研究所提出之方法,執行步驟相對簡單、易懂,具實用參考價值,可提供管理者在實務應用中作為一參考方法。
Transportation and assignment problem are common problems in operation research. Using liner programming, optimal solution that spend least resource and obtain most revenue can be found. Most of the studies just focus on solving the single-objective problem, only some of them try to solve the multi-objective transportation problem. Moreover, the existing technologies in solving multi-objective transportation problem are so complex that makes the model almost unrealistic.
In real world, many factors and/or resources must be considered simultaneously in solving the transportation problem. Unfortunately, the existing technologies are too complex to use. This study proposes new approaches that combine DEA and linear programming. Three methods that are easy to understand and easy to use in real world are proposed in this study: (1) modified Bao’s method (MBM), (2) the heuristic method (HEU), and (3) the DEA method (DEA). Random data are used to illustrate the proposed methods.
The results show that the proposed methods can solve the multi-objective transportation problem with simple and easy processes. Especially the DEA method, it does not need decision maker or manager to decide the weights. Through DEA, became we are able to decide the objective weight of each datum; it is convenient for decision makers or manager in real world for possible application.
1.Introduction 1
1.1 Research Background and Motivation 1
1.2 Research Objective 2
1.3 Organization of This Thesis 2
2.Literature Review 4
2.1 Transportation and Assignment Problem 4
2.2 Linear Programming 6
2.3 Multi-Objective Problem 7
2.4 Data Envelopment Analysis 8
3.Methodology 12
3.1 Modified Bao’s Method 13
3.2 The Heuristic Method 15
3.3 The DEA Method 17
4.Numerical Example 18
4.1 Proposed Methods 20
4.2 Two-Objective Transportation Problem 21
4.3 Multi-Objective Transportation Problem 25
5.Conclusion and Future Research 31
Reference 33
List of Tables
Table 1 Random data for shipping cost 21
Table 2 Random data for shipping time 21
Table 3 The results solved by MBM 22
Table 4 The result solved by HEU 23
Table 5 Total amount of recourse 24
Table 6 Random data for shipping resources 26
Table 7 The results of three methods 27
Table 8 The ratio of three methods 28
List of Figures
Figure 1 Researchprocess 3
Figure 2 Research framework 12
Figure 3 Total cost and time solved by MBM 22
Figure 4 Total cost and time solved by HEU 23
Figure 5 Comparison of three models on total cost 24
Figure 6 Comparison of three models on total time 24
Figure 7 Total amount of resource solved by three methods 25
Figure 8 The diagram of curves for three methods 28
Figure 9 Total resources of three methods 29
[1]Anderson, David R., Sweeney, Dennis J., and Williams, Thomas A.. (2003). An Introduction to Management Science 10e, pp. 297-308. South-Western, Ohio, USA.
[2]Bao, Chiao-Pin, Tsai, Ming-chi, and Tsai, Meei-ing. (2006). A new approach to study the multi-objective assignment problem, WHAMPOA - An Interdisciplinary Journal 53 (2007) 123-132.
[3]Bao, Chiao-Pin. (2006). Operation Research. Wu-Nan Book Inc, Taipei, Taiwan.
[4]Bao, Chiao-Pin. (2007). Data Envelopment Analysis 2e. Wu-Nan Book Inc, Taipei, Taiwan.
[5]Charnes, A., Cooper, W.W., and Rhodes, E. (1978). Measuring the efficiency of decision making units. Europan Journal of Opational Research, Vol2.
[6]Chung, An-min. (1980). Linear Programming. Fuwen, Taina, Taiwan.
[7]Cooper, William W., Seiford, Lawrence M., and Tone, Kaoru. (2006). Introduction to Data Envelopment Analysis and Its Uses with DEA-Solver software and References. Springer-Verlag, Germany.
[8]Dong, Zhenning, and Ma, Jianhua. (2004). A Kind of Shortest Time Limit Transportation Problem with Cost constraints, Proceedings of 5th world Congress on Intellgent Contorol and Automation.
[9]Duffy, Jo Ann M., Fitzsimmons, James A., and Jain, Nikhil. (2006). Identifying and studying “best-performing” services: An application of DEA to long-term care. An International Journal, Vol. 13 No.3, 2006.
[10]Gal, Tomas and Greenberg, Harvey J.. (1997). Advances in sensitivity analysis and parametric programming, pp. 7-2 – 7-3. Boston: Kluwer Academic, Boston, USA.
[11]Hillier, Frederick S., and Lieberman, Gerald J.. (2002). Introduction To Operations Research 7e. McGraw-Hill, an imprint of The McGraw-Hill Companies, NY, USA.
[12]Hsu, Chih-I. (1994). Multi-objective Decision Making. Wu-Nan Book Inc, Taipei, Taiwan.
[13]Kao, Chiang, Huang, Hsu-Nan, & Sueyoshi, Toshiyuki. (2003). Management Performance Evaluation Data Envelopment Analysis. Hwa Tai Publishing, Taipei, Taiwan.
[14]Li, Lingyun, Huang, Zuqing, Da, Qingli, and Hu, Jinsong. (2008). A New Method Based on Goal Programming for Solving Transportation Problem with Fuzzy Cost. IEEE.
[15]Liang, Tien-Fu. (2008). Interactive Multi-Objective Transportation Planning Decisions using Fuzzy Linear Programming. Asia-Pacific Journal of Operation Research.
[16]Lu, Yiping, Cha, Jianzhong, Zhao, Yingshuai, and Meng, Jingjuan. (2007). A Simple Multi-Objective Optimization Approach for Material Purchasing Problem of a Railway Transportation Business. IEEE.
[17]Meyer, Michael D., and Miller, Eric J.. (2001). Urban Transportation Planning 2e. Thomson, CA, USA.
[18]Orzdemir, Mujgan S., and Gasimov, Rafail N.. (2003). The analytic hierarchy process and multiobjective 0-1 faculty course assignment. European Journal of operation Research 157 (2004) 398-408
[19]Reeb James E., and Leavengood, S.. (2002). Transportation Problem: A Special Case for Linear Programming Problem. Performance Excellence in The Wood Products Industry – Operations Research.
[20]Sueyoshi, Toshiyuki. (1992). Algorithmic Strategy for Assurance Region Analysis in DEA. Journal of Operations Research Society of Japan, Vol. 35, NO. 1, March 1992.
[21]Thompsom, Russell G., Singleton, F. D., Jr., Thrall, Robert M., and Smith, Barton A. (1986) Comparative Site Evaluations for Locating a High-Energy Physics Lab in Texas. The Institute of Management Sciences.
[22]Winston, Wayne L.. (2004). Operations Research – Applications and Algorithms 4e. Thomson, CA, USA.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top