跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/03 00:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝東良
研究生(外文):Dong-lang Hsieh
論文名稱:非晶矽及奈米晶矽薄膜結晶行為之研究
論文名稱(外文):The crystallization behavior of amorphous-silicon and nanocrystal-silicon thin films
指導教授:陳國駒
指導教授(外文):Guo-Ju Chen
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系碩士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:103
中文關鍵詞:金屬誘發結晶奈米晶矽薄膜非晶矽薄膜金屬誘發側向結晶
外文關鍵詞:metal-induced crystallizationmetal-induced lateral crystallizationnanocrystalline-silicon thin filmamorphous-silicon thin film
相關次數:
  • 被引用被引用:0
  • 點閱點閱:836
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
矽薄膜太陽能電池的缺點是薄膜成長之後的矽大多屬於非晶質結晶結構,非晶矽在太陽能電池中是矽三種結晶狀態(單晶、多晶、非晶)中效率最差的結構。然而在非晶矽薄膜轉成多晶矽薄膜上的製備常見的方法有:固相退火結晶法、雷射退火結晶法、金屬誘發(側向)結晶法、電場輔助誘發結晶法等,其中金屬誘發(側向)結晶法雖有不錯之結晶效果,和其他結晶法相比較缺點也較少,但誘發過後矽結晶之程度仍然有限,如何促使矽薄膜結晶效果能有效提升,為本論文研究主要目標。
本實驗中首先嘗試以奈米晶薄膜為出發點,探討非晶矽薄膜與奈米晶矽薄膜分別經過傳統熱處理法及快速熱退火法後結晶性質的差異,實驗結果得知不論為非晶矽或奈米晶矽薄膜,經傳統退火長時間持溫過後,其結晶性質會隨著持溫時間的增加而變好,且奈米晶矽薄膜更有著特殊之結晶行為,其結晶狀態會在熱處理溫度約400℃左右時又再度回到非晶狀態,後隨溫度的提升才又再次開始有二次結晶行為發生,且此次的結晶擁有較佳的結晶品質。
接著實驗對純鎳膜誘發側向結晶行為做研究觀察,證實鎳金屬確實能利用與矽作用所形成之矽化物,誘發非晶矽產生側向結晶行為,且金屬膜層厚度會影響矽化物之生成量進而決定矽晶粒是否有足夠空間產生MILC反應,得知擁有最佳側向結晶效果之鎳矽膜厚度比例約為1:7。
最後嘗試以鎳鋁合金誘發非晶/奈米晶矽薄膜產生側向結晶,實驗結果指出最大側向結晶長度可達20μm上下,相較於純鎳誘發的側向結晶長度有將近5倍的誘發效果,並且能夠改善以鎳膜誘發只能於側向結晶初始階段有較快結晶速率其後即趨向停止狀態之缺點。
The disadvantage of silicon-thin-film solar cells is mainly due to the amorphous structure of silicon after deposition. Compared with the solar cells of single-crystal or polycrystalline silicon, the amorphous-silicon solar cells show the worst efficiency. The general preparation methods of polycrystalline silicon from amorphous silicon are respectively the solid-phase annealing crystallization, the laser annealing crystallization, the metal-induced lateral crystallization, and the electric-field induced crystallization. Although the metal-induced lateral crystallization exhibits better properties than the others, its crystallization extent is still limited. Therefore, it is the main goal of this study to enhance the crystallization of silicon for the application of solar cells.
This experiment starts from the nanocrystalline-silicon thin films to explore the crystallization effects of the amorphous-silicon thin films and the nanocrystalline -silicon thin films by employing the conventional heat treatment as well as the rapid thermal annealing. After a long conventional heat treatment, both of the amorphous -silicon and the nanocrystalline-silicon thin films ameliorate in crystallization. Especially, the nanocrystalline-silicon thin films return to the amorphous state after a conventional heat treatment of temperature 400 ℃. The better secondary crystallization is observed by increasing the heat-treatment temperature again.
Then the experiments of nickel-induced lateral crystallization confirm that the silicide formed from the nickel and silicon plays a key role in the induced lateral crystallization of amorphous silicon. The thickness of silicide determines whether there is sufficient space for the metal-induced lateral crystallization (MILC). The best thickness ratio of nickel to silicon is about 1:7.
Finally, a nickel-aluminum alloy is used to induce the lateral crystallizations of the amorphous-silicon and the nanocrystalline-silicon thin films. The maximum length of the nickel-aluminum-induced lateral crystallization is up to 20μm, which is nearly 5 times of the length in the nickel-induced lateral crystallization. The nickel-induced lateral crystallization has a rapid rate only in its initial stage, and then it stops. However, the nickel-aluminum-induced lateral crystallization can improve this shortcoming shown in the nickel-induced lateral crystallization.
中文摘要I
英文摘要III
誌謝V
總目錄VI
表目錄IX
圖目錄X
第一章 緒論1
1-1 前言1
1-2 研究動機與目的2
第二章 理論基礎5
2-1 太陽電池構造與發電原理5
2-2 矽太陽能電池發展現況5
2-2-1 薄膜太陽能電池發展趨勢分析5
2-2-2 太陽能電池市場現況與展望6
2-2-3 薄膜太陽能電池未來發展潛力與挑戰7
2-3 矽太陽能電池8
2-4 非晶態薄膜特性9
2-5 非晶矽結晶成長多晶矽之製程10
2-5-1 金屬誘發/側向結晶法10
2-5-2 金屬誘發/側向結晶法(MIC/MILC)近年發展及回顧13
2-5-3 快速熱退火法(RTA)14
2-5-4 快速熱退火法(RTA) 近年發展及回顧15
第三章 實驗方法與步驟24
3-1 實驗流程24
3-2 實驗設備及樣品製備24
3-2-1 靶材選用24
3-2-2 基板裁製24
3-2-3 基板清洗25
3-2-4 磁控式直流電源濺鍍系統25
3-2-5 真空熱處理26
3-3 分析與量測27
3-3-1 高溫顯微鏡 (Hot Stage)27
3-3-2 場發式掃描電子顯微鏡(FE-SEM)表面形貌分析27
3-3-3 成份分析(EDX)28
3-3-4 霍爾量測28
3-3-5 微觀組織分析(TEM)29
3-3-6 拉曼光譜儀(Raman)29
第四章 非晶質/奈米晶矽膜的結晶行為及其性質38
4-1 傳統退火(CTA)不同持溫時間對薄膜性質的影響38
4-1-1 濺鍍時間對薄膜厚度及結晶性之影響38
4-1-2 結晶結構分析39
4-1-3 微觀結構分析40
4-1-4 電性分析41
4-2 快速熱退火(RTA)不同溫度與膜厚對薄膜性質影響42
4-2-1 結晶結構分析42
4-2-2 微觀結構分析43
4-2-3 電性分析43
4-3 結論44
第五章 鎳膜側向誘發非晶/奈米晶矽膜之結晶行為57
5-1 表面形貌分析58
5-2 結晶結構分析59
5-3 微結構分析60
5-4 動態表面形貌分析60
5-5 Ni膜側向誘發機構61
5-6 結論62
第六章 鎳鋁合金薄膜側向誘發非晶/奈米晶矽膜之結晶行為70
6-1 表面形貌分析70
6-2 結晶結構分析71
6-3 動態表面形貌分析72
6-4 Ni-Al膜側向誘發機構73
6-5 結論74
第七章 總結84
第八章 參考文獻85
作者簡介91
表目錄
表1-1 太陽能與其他再生能源的能源蘊藏量比較表3
表1-2 目前太陽能電池的材料種類與效率比較表3
表1-3 各非晶矽轉變多晶矽方法之優缺點比較表4
表2-1 各類太陽能光電模組製造成本推估18
表2-2 結晶矽與非晶矽的太陽能電池之比較表18
表3-1 試片編號表30
表4-1 矽膜平均厚度表46
表5-1 鎳膜平均厚度表63
表6-1 鎳鋁合金膜平均厚度表75
圖目錄
圖2-1 太陽能電池光電反應的工作原理19
圖2-2 2006年各類薄膜太陽能電池之年度產量與市佔率圖19
圖2-3 2015年薄膜太陽能電池各類應用市場預測20
圖2-4 Ni-Si反應自由能圖20
圖2-5 c-Si在NiSi2/a-Si介面形成的結晶成長機制21
圖2-6 Si與NiSi2晶體結構21
圖2-7 鎳金屬薄膜對應不同溫度下之矽化物相22
圖2-8 鎳金屬誘發側向結晶成長機制22
圖2-9 MILC的優選成長方向23
圖2-10 RTA之內部運作原理圖23
圖3-1 實驗流程圖31
圖3-2 靶材選用(A)矽靶、(B)鎳靶、(C)鎳鋁靶(Ni:>95% ,Al:<5%)31
圖3-3 基板前處理流程圖32
圖3-4 直流磁控濺鍍機33
圖3-5 真空熱處理系統33
圖3-6 RTA真空熱處理系統34
圖3-7 LinKam TS1500高溫載台34
圖3-8 FE-SEM機台35
圖3-9 霍爾儀器35
圖3-10 Tecnai G2穿透式電子顯微鏡36
圖3-11 鍍碳銅網36
圖3-12 拉曼光譜儀37
圖4-1 濺鍍時間與膜厚之關係圖47
圖4-2 不同矽膜厚度之Raman圖47
圖4-3 (A)S5系列(B)S10系列經CTA550℃不同持溫時間之Raman圖48
圖4-4 (A)S5系列(B)S10系列經CTA550℃不同持溫時間之TEM明視野圖50
圖4-5 (A)S5系列(B)S10系列經CTA550℃不同持溫時間之TEM暗視野圖51
圖4-6 (A)S5系列(B)S10系列經CTA550℃不同持溫時間之Hall圖52
圖4-7 (A)S5系列(B)S10系列(C)S55系列經不同溫度RTA熱處理之Raman圖54
圖4-8 10分鐘矽膜試片經過RTA不同溫度熱處理之TEM圖55
圖4-9 (A)S5系列(B)S10系列(C)S55系列經RTA不同溫度之Hall圖57
圖5-1 不同鎳膜濺鍍時間(1~5分鐘)經550℃5小時熱處理後之OM圖64
圖5-2 N4C5505之SEM-Mapping圖65
圖5-3 不同鎳膜濺鍍時間(1~5分鐘)經550℃5小時熱處理後之SEM圖66
圖5-4 Ni金屬誘發之MILC速率曲線圖67
圖5-5 N4C5505不同位置之Raman圖67
圖5-6 鎳膜金屬誘發之TEM剖面圖(a)遠端a-Si區明視野(b)介面明視野(c)介面暗視野68
圖5-7 N4H5503之熱處理過程動態觀察OM圖69
圖6-1 鎳鋁合金相圖76
圖6-2 固定鎳膜濺鍍時間不同鋁片掺雜量誘發結晶之OM圖77
圖6-3 固定鋁片掺雜量不同鎳膜濺鍍時間誘發結晶之OM圖78
圖6-4 固定鋁片掺雜量不同鎳膜濺鍍時間誘發結晶之SEM圖79
圖6-5 Ni-Al合金誘發之MILC速率曲線圖80
圖6-6 合金誘發腐蝕後試片之SEM圖(a)腐蝕10sec(b)腐蝕30sec 81
圖6-7 NA41C5505不同位置之Raman圖82
圖6-8 NA41H5503之熱處理過程動態觀察OM圖83
圖6-9 鋁金屬誘發再結晶之成長機制示意圖83
中文部份
[1]尤如瑾,世界太陽光電產業現況與展望,機械工業,第263期,1994年,pp.156-263。
[2]王文德,利用金做低溫金屬誘發橫向結晶(MILC)成長應用於光電元件的複晶矽鍺薄膜之研究,國立成功大學微電子工程研究所碩士論文,2003年。
[3]田民波編著,薄膜技術與薄膜材料,五南圖書出版股份有限公司,2007年。
[4]侯智元,鎳金屬誘發非晶矽薄膜側向結晶-成長機制與低溫複晶矽薄膜電晶體效能之研究,國立交通大學材料科學與工程研究所碩士論文,2006年。
[5]莊仁吉,金屬誘發側向結晶-溫複晶矽薄膜電晶體之漏電流與可靠度研究 ,國立交通大學工學院半導體材料與製程設備學程碩士論文,2009年.
[6]楊昌中,能源領域中的奈米科技研究,工業研究院,能源與環境研究所, 2006年。
[7]楊素華 http://www.nsc.gov.tw/files/popsc/2005_68/50-55.pdf,太陽光能發電元件。
[8]鍾思行,以快速熱退火法加強金屬側向誘發結晶速率之研究,國立交通大學材料科學與工程研究所碩士論文,2009年。
英文部份
[1]A. Ben Abdelmoumen, R. Cherfi, M. Kechoune and M. Aoucher, “Hydrogenated amorphous silicon deposited by pulsed DC magnetron sputtering Deposition temperature effect”, Thin Solid Films, vol.517, 2008, pp.369-371.
[2]A. Yu. Kuznetsov and B. G. Svensson, “Nickel atomic diffusion in amorphous silicon”, Appl. Phys. Lett., vol.66, 1995, pp.2229-2231.
[3]Amol R. Joshi, Tejas Krishnamohan and Krishna C. Saraswat, “A model for crystal growth during metal induced lateral crystallization of amorphous silicon”, Jurnal of applied physics, vol.93, no.1, 2003.
[4]C. F. Cheng, Vincent M. C. Poon, C. W. Kok and Mansun Chan, “Modeling of Grain Growth Mechanism by Nickel Silicide Reactive Grain Boundary Effect in Metal-Induced-Lateral-Crystallization”, transactions on electron devices, vol.50, no.6, 2003.
[5]C. Hayzelden and J. L. Batstone, “Silicide formation and silicide-mediated crystallization of nickel-implanted amorphous silicon thin films”, J. Appl. Phys., vol.73, 1993, pp.8280-8289.
[6]Chan-Jae Lee, Jae-Bok Lee, Yong-Chae Chung and Duck-kyun Choi, “The Influence of Cu and Au on Field Aided Lateral Crystallization of Amrphous Silicon Films”, Journal of applied physics, vol.39, 2000, pp.6191-6195.
[7]Chih-Yuan Hou and Yew Chung Sermon Wu, “Effects of Tensile Stress on Growth of Ni-Metal-Induced Lateral Crystallization of Amorphous Silicon”, Japanese Journal of Applied Physics, vol.44, no.10, 2005, pp.7327-7331.
[8]Ching-Ming Hsu, Ian-Fu Chen and Ming-Chang Yu, “Stress Effect on Aluminum-Induced Crystallization of Sputtered Amorphous Silicon Thin Film”, Journal of applied physics, vol.42, 2003, pp.4928-4934.
[9]D. Dimova-Malinovska, O. Angelov, M. Sendova-Vassileva, M. Kamenova, J. C. Pivin and L. Pramatarova, “Polycrystalline silicon thin films obtained by Ni-induced crystallization on glass substrate”, vol.76, 2004, pp.151-154.
[10]D. He, J. Y. Wang and E. J. Mittemeijer, “Reaction between amorphous Si and crystalline Al in Al/Si and Si/Al bilayers:microstructural and thermodynamic analysis of layer exchange”, Journal of applied physics, vol.80, 2005, pp.501-509.
[11]E. Pihan, A. Slaoui and C. Maurice, “Growth kinetics and crystallographic properties of polysilicon thin films formed by aluminium-induced crystallization”, Joural of Crystal Growth, vol.305, 2007, pp.88-98.
[12]G. Radnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Gong and M.A. Hasan, “Al induced crystallization of a-Si”, Journal of applied physics, vol.69, no.9, 1991.
[13]http://solarpv.itri.org.tw/aboutus/sense/principle.asp,太陽能資訊網2005年。
[14]http://www.materialsnet.com.tw/DocView.aspx?id=6752,材料世界網。
[15]http://www.solar-i.com/know.html#12,「認識太陽能電池」,中華太陽能聯誼會。
[16]J. F. Li, X. W. Sun, M. B. Yu, G. J. Qi and X. T. Zeng, “Nickel induced lateral crystallization behavior of amorphous silicon films”, Applied Surface Science, vol.240, 2005, pp.155-160.
[17]Jong Hyun Choi, Do Young Kim, Byoung Kwon Choo, Woo Sung Sohn and Jin Jang, “Metal Induced Lateral Crystallization of Amorphous Silicon Through a Silicon Nitride Cap Layer”, Electrochemical and Solid-State Letters, 2003, pp.G16-G18.
[18]K. Tu, J. W. Mayer and L. C. Feldman, Electronic Thin Film Science for Electrical Engineers and Materials Scientists, Free Press, 1996.
[19]Kleber Andrade and Jin Jang, “Gold Induced Crystallization of Amorphous Silicon”, Journal of the Korean Physical Society, vol.39, 2001, pp.376-381.
[20]L. Pereira, H. Aguas, R. M. S. Martins, P. Vilarinho, E. Fortunato and R.Martins, “Polycrystalline silicon obtained by metal induced crystallization using different metals”, Thin Solid Film, vol.451, 2004, pp.334-393.
[21]L. Pereira, H. Aguas, R. M. S. Martins, P. Vilarinho, E. Fortunato and R. Martins, “Polycrystalline silicon obtained by gold metal induced crystallization”, Journal of Non-Crystalline Solids, vol.338-340, 2004, pp.178-182.
[22]L. Pereira, P. Barquinha, E. Fortunato and R. Martins, “Influence of metal induced crystallization parameters on the performance of polycrystalline silicon thin film transistors”, Thin Solid Films, vol.487, 2005, pp.102-106.
[23]Lawrence K. Lam, Szu-ke Chen and Dieter G. Ast, “Kinetics of nickel-induced lateral crystallization of amorphous silicon thin-film transistors by rapid thermal and furnace anneals”, applied physics letters, vol.74, no.13, 1999.
[24]O. Prache, “Active matrix molecular OLED microdisplays”, Displays, vol.22, 2001, pp.49-56.
[25]Oliver Nast, Stephan Brehme, Dirk H.Neuhaus and Stuart R.Wenham, “Polycrystalline Silicon Thin Films on Glass by Aluminum-Induced Crystallization”, Transactions on electron devices, vol.46, no.10, 1999.
[26]Ru-Yuan Yang, Min-Hang Weng, Chihng-Tsung Liang, Yan-Kuin Su and Shyi-Long Shy, “Low Temperature Metal Induced Crystallization of Amorphous Silicon by Nano-Gold-Particles”, Japanese Journal of Applied Physics, vol.45, no.43, 2006, pp.1146-1148.
[27]S. Iaiche, N. Benouattas, A. Bouabellou and L. Osmani, L. Salik, “Atomic diffusion at the Cu-Au-Si multilayers interface”, Microelectronic Engineering, vol.81, 2005, pp.349-352.
[28]Seok-Woon Lee and Seung-Ki Joo, “Low temperature poly-Si thin-film transistor fabrication bymetal-induced lateral crystallization”, IEEE Electron Device Letters, vol.17, 2002.
[29]T. Aoyama, G. Kawachi, N. konishi, T. Suzuki, Y. Okajima and K. Miyata, “Crystallization of LPCVD Silicon Films by Low Temperature Annealing”, J. Electronchem. Soc., vol.136, 1989, p.1169.
[30]Tae-Hyung Ihn, Tae-Kyung Kim, Byung-I1 Lee and Seung Ki Joo, “A study on the leakage current of poly-Si TFTs fabricated by metal induced lateral crystallization”, Microelectronics Reliability, vol.39, 1999, pp.53-58.
[31]W. Knaepen, C. Detavernier, R. L. Van Meirhaeghe, J. Jordan Sweet and C. Lavoie, “In-situ X-ray Diffraction study of Metal Induced Crystallization of amorphous silicon”, Thin Solid Films, vol.516, 2008, pp.4946-4952.
[32]Yen-Ting Chiang, Yuen-Kuen Fang, Kung-Cheng Lin, Tse-Heng Chou, and Shih-Fang Chen, “The Effect of H-Treatment on Au-Induced Lateral Crystallization of Phosphorus-Doped a-Si:H Films”, Electrochemical and Solid-State Letters, vol.10, no.8, 2007, pp.221-223.
[33]Yue Kuo, “Thin film transistors-Materials and Processes -Volume 2-Polycrystalline Silicon”, Thin Film Transistors, 2004, p.236.
[34]Zhonghe Jin, Gururaj A. Bhat, Milton Yeung, Hoi S.Kwok and Man Wong, “Nickel induced crystallization of amorphous silicon thin films”, journal of applied physics, vol.84, no.1, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top