跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/19 01:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳威延
研究生(外文):Wei-yan Chen
論文名稱:具超疏水性質CNT/PDMS複合薄膜之研究
論文名稱(外文):Studies on Superhydrophobic CNT/PDMS Composite Thin Film
指導教授:鄭慧如鄭慧如引用關係
指導教授(外文):Huy-Zu Cheng
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系碩士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:100
中文關鍵詞:超疏水奈米碳管聚二甲基矽甲烷
外文關鍵詞:Polydimethyl SiloxaneSuperhydrophobicCarbon Nanotubes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1723
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一表面具有超疏水性質時,表示此表面同時具有自身清潔效果;把此材料運用在住宅與大樓外牆、玻璃、汽機車或衣服表面上,即可達到超疏水與自清潔的效果,不僅可提升生活品質,更能節省大量的維護成本。欲達超疏水表面須在表面上具有一定粗糙度及材料本身具疏水性質;本實驗利用旋轉塗佈法與噴塗法製作CNT/ PDMS複合薄膜,具有可在室溫下鍍膜、不需昂貴的製程設備、整體製造過程簡易與製作成本較低等優點,是本實驗最大特色。
本論文主要研究方向為:
1.觀察高分子薄膜對疏水性質的影響。
2.表面微結構對疏水性質之影響。
3.探討施加一壓力後對薄膜的疏水性之影響。
4.不同pH值溶液對薄膜的疏水性質之影響。
5.有機溶劑對複合薄膜的影響。
6.表面電性的探討。
When a superhydrophobic of that surface, at the same time this has the effect of self-cleaning. To use this material in residential and building facades, glass, clothes, cars and motorcycles or the face of it, you can achieve superhydrophobic and self-cleaning effect. Not only raising the quality of life, better save a lot of maintenance costs. To be superhydrophobic surface has a rough surface and the material itself is hydrophobic; this experiment using spin coating method and spray method, CNT / PDMS composite film. Coating at room temperature, without expensive process equipment, the overall manufacturing process and the production of simple and low cost is the most significant feature of this experiment.
In this paper, the main research directions are:
1. To observe the polymer film impact of hydrophobicity.
2. The microstructure of surface impact of hydrophobicity.
3. To explore the pressure imposed by thin film after the effect of hydrophobic.
4. Different pH value of solution on the composite film impact of hydrophobic.
5. Organic solvent impact on the composite film.
6. The surface of the electrical properties.
中文摘要I
英文摘要II
誌謝III
總目錄IV
表目錄VII
圖目錄VIII
第一章 緒論1
1-1 背景1
1-2 研究動機與目的2
第二章 基礎理論與文獻回顧3
2-1 奈米複合材料簡介與應用3
2-1-1 奈米複合材料的構成形式3
2-1-2 奈米複合材料的性質4
2-2 奈米碳管7
2-2-1 奈米碳管的製作9
2-2-2 奈米碳管的應用11
2-3 聚二甲基矽甲烷12
2-4 表面接觸角定義與量測14
2-4-1 遲滯角15
2-4-2 滾動角16
2-5 超疏水表面定義與機制17
2-5-1 Wenzel理論17
2-5-2 Cassie理論18
2-6 自然界存在的超疏水表面20
2-7 人造超疏水表面21
2-8 超疏水的應用與未來展望24
2-9 奈米碳管在超疏水表面的應用24
第三章 實驗方法與內容32
3-1 實驗藥品32
3-2 儀器設備33
3-2-1 旋轉塗佈機33
3-2-2 空壓機與噴槍33
3-2-3 水滴接觸角量測儀33
3-2-5 膜厚量測儀33
3-2-6 掃描式電子顯微鏡34
3-3 實驗步驟35
3-3-1 基材清洗36
3-3-2 溶液配製36
3-3-3 複合薄膜的製作37
3-3-4 水滴接觸角度量測39
3-2-6 其他性質量測39
第四章 實驗結果與討論42
4-1 高分子薄膜對表面疏水性質之影響42
4-2 奈米碳管對表面疏水性質之影響44
4-3 奈米碳管對複合薄膜表面疏水性質之影響50
4-4 CNT/PDMS於不同基材上水滴接觸角隨時間變化52
4-5 表面微結構對表面疏水性質之影響55
4-6 施與一壓力後對試片表面疏水性質之影響57
4-7 不同pH值溶液對試片表面疏水性質之影響64
4-8 有機溶劑對片表面疏水性質之影響66
4-9 試片耐熱性質量測68
4-10 表面電性量測71
4-11 可饒式超疏水複合薄膜72
第五章 結論76
第六章 參考文獻78
作者簡介88
表目錄
表2-1 奈米碳管之各項性質7
表2-2 奈米碳管可能應用領域12
表2-3 聚二甲基矽甲烷其它物理性質13
表3-1 實驗藥品32
表4-1 高分子膜厚43
表4-2 試片經有機溶劑浸泡後水滴接觸角度67
表4-3 CNT/PDMS/Glass之片電阻71
圖目錄
圖2-1 TiO2之AFM分析圖;(a)單純TiO2薄膜;(b)利用UV光照射後表面吸附Ag+離子之TiO2薄膜5
圖2-2 (a)TiO2奈米顆粒之SEM圖;(b)UV-Vis吸收光譜圖5
圖2-3 (a)CdSe奈米顆粒之SEM圖;(b)CdSe奈米顆粒之螢光光譜圖6
圖2-4 CdSe/ZnS外接生物官能基示意圖與其螢光圖7
圖2-5 奈米碳管結構;(a)單層奈米碳管;(b)多層奈米碳管8
圖2-6 單層奈米碳管之不同結構;(a)扶手椅型;(b)鋸齒型;(c)對掌型8
圖2-7 化學氣相成長設備簡圖9
圖2-8 電弧放電系統簡易圖10
圖2-9 雷射催化系統簡易圖11
圖2-10 聚二甲基矽甲烷結構式14
圖2-11 液體表面接觸示意圖14
圖2-12 前進角與後退角16
圖2-13 滾動角量測示意圖17
圖2-14 Wenzel理論示意圖18
圖2-15 Cassie理論示意圖19
圖2-16 滾動水滴清潔表面示意圖;(a)水滴滾動清潔平坦表面示意圖;(b)水滴滾動清潔蓮葉表面示意圖20
圖2-17 蓮葉表面的微觀結構(a)在電子顯微鏡下之蓮葉表面結構;(b)蓮葉表面突起表皮細胞結構;(c)蓮葉表面纖毛顯微結構21
圖2-18 利用微影法製作超疏水表面之微觀結構22
圖2-19 化學氣相沉積法沉積奈米碳管之側面微觀結構22
圖2-20 電漿法製作超疏水表面之微觀結構;(a)未改質表面微觀結構;(b)改質後表面微觀結構23
圖2-21 溶膠凝膠法製作超疏水表面之微觀結構(a)單純奈米高分子顆粒;(b)複合奈米高分子顆粒24
圖2-22 (a)直列式奈米碳管,圖中右上方插圖是直列式奈米碳管側面圖;(b)團聚後奈米碳管,圖中右上方插圖是試片結構放大圖,箭頭所指為水滴中心25
圖2-23 水滴於直列奈米碳管隨時間的變化25
圖2-24 奈米碳管不同團聚圖形(a)圓形,右上方插圖是試片結構示意圖,中心黑色部分為水滴中心;(b)六角形,右上方插圖是試片結構示意圖,中心黑色部分為水滴中心26
圖2-25 避免奈米碳管產生毛細現象之方法;(a)陣列式奈米碳管與產生團聚現象;(b)等向陣列式奈米碳管表面改質後之水滴角度;(c)非等相性奈米碳管;(d)非等相性且表面改質之奈米碳管27
圖2-26 (a)奈米碳管表面改質;(b)改質後奈米碳管在溶液中分散;(c)奈米碳管沉積於基材的微觀結構;(d) 試片表面的親水(00)與疏水性質(1450)28
圖2-27 (a)電漿改質法裝置示意圖;(b)改質前後奈米碳的疏水性質比較,左邊未改質奈米碳管,右邊為改質後奈米碳管;左方是未改質奈米碳與右方改質後奈米碳管表面接觸水滴情形29
圖2-28 (a)奈米碳管表面含氟改質;(b) PFA/MWNT-OOCC7F15表面水滴接觸角30
圖2-29 (a)OPVs化學結構式;(b)OPVs與CNT鍵結示意圖;(c)單純OPVs表面水滴接觸角;(d)OPVs/CNT表面水滴接觸角31
圖3-1 膜厚量測示意圖34
圖3-2 掃描式電子顯微鏡示意圖35
圖3-3 實驗流程圖36
圖3-4 旋轉塗佈示意圖37
圖3-5 噴塗法製作CNT/PDMS複合薄膜38
圖3-6 水滴接觸角度量測示意圖;圓點處表示隨機取點之水滴38
圖3-7 壓力測試示意圖40
圖3-8 表面電阻量測示意圖41
圖4-1 (a)鋁板之水滴接觸角度;(b)PDMS/鋁板之水滴接觸角度42
圖4-2 (a)玻璃之水滴接觸角度;(b)PDMS/玻璃之水滴接觸角度43
圖4-3 (a)光學顯微鏡下單純Al2O3薄膜,箭頭為試片放大圖(1×104);(b)真空過濾後試片;(c)沖水後試片44
圖4-4 (a)(b)CNT/Al2O3薄膜水滴接觸角度;(c)水滴接觸後分離圖;(d)水滴於試片表面拖行圖,前進角與後退角分別為1490和1350 45
圖4-5 水滴拖行時之前進角與後退角示意圖46
圖4-6 CNT/Al2O3薄膜隨水滴接觸(a)0分鐘;(b)5分鐘;(c)8分鐘;(d)9分鐘後之水滴角度變化47
圖4-7 試片遵循Wenzel理論時水滴接觸角隨時間變化示意圖48
圖4-8 試片遵循Cassie理論時水滴接觸角隨時間變化示意圖48
圖4-9 (a)CNT/Glass試片;(b)沖水後試片;(c)(d) CNT/Glass水滴接觸角度,箭頭所指表示有奈米碳管被帶離試片表面49
圖4-10 (a)CNT/PDMS/Al水滴接觸角;(b)沖水後CNT/PDMS/Al試片;(c)CNT/PDMS/Glass水滴接觸角;(d)沖水後CNT/PDMS/Glass試51
圖4-11 CNT/PDMS/Al水滴接觸角隨時間變化圖(a) 0分鐘;(b)10分鐘;(c)20分鐘;(d)30分鐘52
圖4-12 CNT/PDMS/Al水滴接觸角度隨時間變化曲線圖53
圖4-13 CNT/PDMS/Glass水滴接觸角度隨時間變化圖(a)0分鐘;(b)10分鐘;(c)20分鐘;(d)30分鐘53
圖4-14 CNT/PDMS/Glass水滴接觸角度隨時間變化圖 54
圖4-15 CNT/PDMS/Al試片表面微觀結構;(a)(b)(c)(d)分別為試片不同放大倍率(50,5×102,2×104,1×105)55
圖4-16 (a)利用尖嘴鉗將試片彎曲成450;(b)彎曲試片之水滴接觸角;(c)(d)彎曲後試片微結構56
圖4-17 試片受水壓(a)1小時;(b) 4小時;(c)12小時;(d)24小時測試後水滴接觸角度58
圖4-18 試片受不同時間水壓測試之水滴接觸角度變化58
圖4-19 試片置於去離子水中;(a)試片正面;(b)試片轉一角度59
圖4-20 單向油壓後試片水滴接觸角(a)3.3 kpsi;(b)6.7 kpsi;(c)14 kpsi;(d)30 kpsi 60
圖4-21 CNT/PDMS/Al試片受單向油壓壓力後之水滴接觸角度變化曲線61
圖4-22 單向油壓(30 kpsi)後之微觀結構圖;(a)(b)(c)(d) 分別代表不同放大倍率(5×102,5×103,2×104,5×104)62
圖4-23 多向冷均壓(40 kpsi)後試片水滴接觸角度63
圖4-24 多向冷均壓(40 kpsi)後試片微觀結構;(a)(b)(c)(d)分別代表不同放大倍率(10,5×103,1×104,5×104)63
圖4-25 不同pH值下水滴接觸角(a)pH = 1;(b)pH = 4;(c)pH = 10;(d)pH = 14 65
圖4-26 不同pH值水滴接觸角度變化曲線圖65
圖4-27 試片分別浸入 (a)丙酮;(b)正己烷;(c)甲苯;(d)四氫呋喃;(e)柴油有機溶劑後水滴接觸角度67
圖4-28 試片在空氣下,各溫度(a)50℃;(b)100℃;(c)150℃;(d)200℃熱處理後水滴接觸角度69
圖4-29 試片在空氣下熱處理後水滴接觸角度變化曲線圖69
圖4-30 試片在真空下,各溫度(a)50℃;(b)100℃;(c)150℃;(d)200℃熱處理後水滴接觸角度70
圖4-31 試片在真空下熱處理後水滴接觸角度變化曲線圖70
圖4-32 試片反覆對折示意圖73
圖4-33 試片對折數次後水滴接觸角度(a)對折20次;(b) 對折40次;(c)對折60次;(d) 對折80次;(e) 對折100次73
圖4-34 試片對折次數與水滴接觸角度變化曲線圖74
圖4-35 試片對折次數與表面片電阻變化曲線圖74
中文部份
[1]王世敏,許祖勛,傅晶,奈米材料原理與製備,五南出版社,2004年,pp.223-320。
[2]生瑜,朱德欽,陳建定,高分子通報,第4冊,2001年,p.9。
[3]成會明,奈米碳管,五南出版社,2004年, pp.15-158。
[4]江佳齡,碩士論文,添加SiC及Mullite/CNT對鋁基磨擦材料性質之探討,私立義守大學 材料科學與工程學系,2008年。
[5]李元堯,21世紀的尖端科技-奈米碳管,化工技術,第11卷,第3冊, pp.140-159。
[6]邱士峰,碩士論文,低表面能材料於超疏水表面製備與奈米壓印微影技術之應用,國立中央大學 化學工程與材料工程研究所,2005年。
[7]徐國財、張立德,奈米複合材料,五南出版社,2003年。
[8]許明發,郭文雄,奈米碳管科技,國興出版,2004年,p.58。
英文部份
[1]A. B. D. Cassie, S. Baxter, “Wettability of porous surfaces” , Transactions of the Faraday Society, vol.40, 1944, pp.546-551.
[2]A. D. Jadhav, S. B. Ogale, B. L. V. Prasad, “Carbon nano horn and bovine serum albumin hierarchical somposite:towards bio-friendly superhydrophobic protein film surfaces”, Journal of Materials Chemistry, vol.18, 2008, pp.3422-3425.
[3]A. D. Pasquier, H. E. Unalan, A. Kanwal, S. Miller, M. Chhowalla, “Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells”, Applied Physics Letters, vol.87, 2005, p.203511.
[4]A. Furube, L. Du, K. Hara, R. Katoh, M. Tachiya, “Ultrafast Plasmon- Induced Electron Transfer from Gold Nanodots into TiO2 Nanoparticles”, Journal of the American Chemical Society, vol.129, 2007, pp.14852-14853.
[5]A. O. Dikovska, P. A. Atanasov, S. Tonchev, J. Ferreira, L. Escoubas, “Periodically structured ZnO thin films for optical gas sensor application”, Sensors and Actuators A, vol.140, 2007, pp.19-23.
[6]A. Otten, S. Herminghaus, “How Plants Keep Dry : A Physicist’s Point of View”, Langmuir, vol.20, 2004, pp.2405-2408.
[7]B. Liu, Y. He, Y. Fan, X. Wang, “Fabricating Super-Hydrophobic Lotus-Leaf-Like Surfaces through Soft-Lithographic Imprinting”, Macromolecular Rapid Communications, vol.27, 2006, pp.1859-1864.
[8]C. Neinhuis, W. Barthlott, “Characterization and Distribution of Water- repellent, Self-cleaning Plant Surfaces”, Annals of Botany, vol.79, 1997, pp.667-677.
[9]C.Burda, Y. Lou, X. Chen, A. C. S. Samia, J. Stout, J. L. Gole, “Enhanced Nitrogen Doping in TiO2 Nanoparticles”, Nano Letters, vol.3, no.8, 2003, pp.1049-1051.
[10]C.-H. Chen, Q. Cai, C. Tsai, C.-L. Chen,“Dropwise condensation on superhydrophobic surfaces with two-tier roughness”,Applied Physics Letters, vol.90, 2007, p.173180.
[11]C.-T. Hsieh, W.-Y. Chen, F.-L. Wu, “Fabrication and superhydrophobicity of fluorinated carbon fabrics with micro/ nanoscaled two-tier roughness”, Carbon , vol.46, 2008, pp.1218-1224.
[12]D. Oner, T. J. McCarthy,“Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability”, Langmuir, vol.16, 2000, pp.7777-7782.
[13]D. Xu, H. Liu, L. Yang, Z. Wang, “Fabrication of superhydrophobic surfaces with non-aligned alkyl-modified multi-wall carbon nanotubes”, Carbon, vol.44, 2006, pp.3226-3231.
[14]E. Kymakis, E. Stratakis, E. Koudoumas, “Integration of carbon nanotubes as hole transport electrode in polymer/fullerene bulk heterojunction solar cells”, Thin Solid Films, vol.515, 2007, pp.8598-8600.
[15]E. Kymakis, G. A. J. Amaratunga, “Single-wall carbon nanotube/ conjugated polymer photovoltaic devices”, Applied Physics Letters, vol.80, no.1, 2002, pp.112-114.
[16]E. Kymakis, I. Alexandrou, G. A. J. Amaratunga, “High open- circuit voltage photovoltaic devices from carbon-nanotubepolymer composites”, Journal Applied Physics, vol.93, no.3, 2003, pp.1764-1768.
[17]E. Stathatos, P. Lianos, “Photocatalytically Deposited Silver Nanoparticles on Mesoporous TiO2 Films”, Langmuir , vol.16, 2000, pp.2398-2400.
[18]H. Bala, W. Fu, Y. Yu, H. Yang, Y. Zhang, “Preparation, optical properties, magnetic properties and thermal stability of core-shell structure cobalt/zinc oxide nanocomposites”, Applied Surface Science, vol.255, 2009, pp.4050-4055.
[19]H. Li, X. Wang, Y. Song, Y. Liu, Q. Li, L. Jiang, D.Zhu, “Super- Amphiphobic Aligned Carbon Nanotube Films”, Angewandte Chemie International Edition, vol.40, no. 9, 2001, pp.1743-1746.
[20]H. Liu, J. Zhai, L. Jiang, “Wetting and anti-wetting on aligned carbon nanotube films”, Soft Matter, vol.2, 2006, pp.811-821.
[21]H. Mattoussi, J. M. Mauro, E. R. Goldman, G. O. Anderson, V. C. Sundar, F. V. Mikulec, M. G. Bawendi, “Self-Assembly of CdSe-ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein”, Journal of the American Chemical Society, vol.122, 2000, pp. 12142-12150.
[22]http://www.getgoal.com.tw/tech/tech-27-3.htm
[23]http://www.nec.co.jp/press/en/rd.html
[24]I. Robel, M. Kuno, P. V. Kamat, “Size-Dependent Electron Injection from Excited CdSe Quantum Dots into TiO2 Nanoparticles”, Journal of the American Chemical Society, vol.129, 2007, pp.4136-4137.
[25]J. T. Han, S. Y. Kim, J. S. Woo, G.-W. Lee, “Transparent, Conductive, and Superhydrophobic Films from Stabilized Carbon Nanotube/Silane Sol Mixture Solution”, Advanced Materials, vol.20, 2008, pp.3724-3727.
[26]J. T. Han, Y. Zheng, J. H. Cho, X. Xu, K. Cho, “Stable Superhydrophobic Organic-Inorganic Hybrid Films by Electrostatic Self-Assembly”, Journal of Physical Chemistry B, vol.109 , 2005, pp.20773-20778.
[27]J. Wei, Y. Jia, Q. Shu, Z. Gu, K. Wang, D. Zhuang, G. Zhang, Z. Wang, J. Luo, A. Cao, D. Wu, “Double-Walled Carbon Nanotube Solar cells”, Nano Letters, vol. 7, no. 8, 2007, pp.2317-2321.
[28]J. Zhang, X. Sheng, L. Jiang, “The Dewetting Properties of Lotus Leaves”, Langmuir, vol.25, no.3, 2009, pp.1371-1376.
[29]J.-Y. Shiu, C.-W. Kuo, P. Chen, C.-Y. Mou, “Fabrication of Tunable Superhydrophobic surfaces by Nanosphere Lithography”, Chemistry Materials, vol.16, no.4, 2004, pp.561-563.
[30]K. K. S. Lau, J. Bico, K. B. K. Teo, M.Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. Mckinley, K. K. Gleason, “Superhydrophibic Carbon Nanotube Forests”, Nano Letters, vol. 3, no.12, 2003, pp.1701-1705.
[31]K. MA, T. S. Chung, R. J. Good, “Surface Energy of Thermotropic Liquid Crystalline Polyesters and Polyesteramide”, Journal Polymer Science Part B, vol.36, 1998, p.2327.
[32]K.-S. Liao, A. Wan, J. D. Batteas, D. E. Bergbreiter, “Superhydrophobic Surfaces Formed Using Layer-by-Layer Self-Assembly with Aminated Multiwall Carbon Nanotubes”, Langmuir, vol.24, 2008, pp.4245-4253.
[33]L. Ci, S. M. Manikoth, X. Li, R. Vajtai, P. M. Ajayan, “Ultrathick Freestanding Aligned Carbon Nanotube Films”, Advanced Materials, vol.19, 2007, pp.3300-3303.
[34]L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, D. Zhu, “Super-Hydrophobic Surfaces : From Natural to Artificial”, Advanced Materials, vol.14, no.14, 2002, pp.1857-1860.
[35]L. Huang, S. P. Lau, H. Y. Yang, E. S. P. Leong, S. F. Yu, “Stable Superhydrophobic Surface via Carbon Nanotubes Coated with a ZnO Thin Film”, Journal of Physical Chemistry B, vol.109, 2005, pp.7746-7748.
[36]L. Jiang, Y. Zhao, J. Zhai, “A Lotus-Leaf-like Superhydrophobic Surface:A Porous Microsphere/Nanofiber Composite Film Prepared by Electrohydrodynamics”, Angewandte Chemie International Edition, vol.43, 2004, pp.4338-4341.
[37]L. Wu, Y. Wu, X. Pan, F. Kong, “Sythesis of ZnO nanorod and the annealing effect on its photoluminescence property”, Optical Materials, vol.28, 2006, pp.418-422.
[38]L. Zhu, Y. Xiu, J. Xu, P. A. Tamirisa,D. W. Hess, C.-P. Wong, “Superhydrophobicity on Two-Tier Rough Surfaces Fabricated by Controlled Growth of Aligned Carbon Nanotube Arrays Coated with Fluorocarbon”, Langmuir, vol.21, no.24, 2005, pp.11208-11212.
[39]M. A. Contreras, T. Barnes, J. V. D. Lagemaat, G. Rumbles, T. J. Coutts, C. Weeks, P. Glatkowski, I. Levitsky, J. Peltola, D. A. Britz, “Replacement of Transparent Conductive Oxides by Single-Wall Carbon Nanotubes in Cu(In,Ga)Se2-Based Solar Cells”, Journal of Physical Chemistry C, vol.111, no.38, 2007, pp.14045-14048.
[40]M. B. Jr., M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, “Semiconductor Nanocrystals as Fluorescent Biological Labels”, Science, vol. 281, 1998, pp.2013-2015.
[41]M. Callies, D. Quere, “On water repellency”, Soft Matter, vol.1, 2005, pp.55-61.
[42]M. Ma, R. M. Hill, “Superhydrophobic surface”, Current Opinion in Colloid & Interface Science, vol.11, 2006, pp.193-202.
[43]M. Ma, Y. Mao, M. Gupta, K. K. Gleason, G. C. Rutledge, “Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition”, Macromolecules, vol.38, 2005, pp.9742-09748.
[44]M. W. Rowell, M. A. Topinka, M. D. McGeheea, H.-J. Prall, G. Dennler, N. S. Sariciftci, L. Hu,G. Gruner, “Organic solar cells with carbon nanotube network electrodes”, Applied Physics Letters, vol.88, 2006, p.233506.
[45]P. Colvert, “Rough guide to the nanoworld” ,Nature, vol.383, no.26, 1996, p.300.
[46]R. N. Wenzel, “Resistance of Solid Surfaces to Wetting by water”, Industrial & Engineering Chemistry Research, vol.28, 1936, p.988.
[47]R. Ulbricht, S. B. Lee, X. Jiang, K. Inoue, M. Zhang, S. Fang, R. H. Baughman, A. A. Zakhidov, “Transparent carbon nanotube sheets as 3-D charge collectors in organic solar cells”,Solar Energy Materials & Solar Cells, vol.91, 2007, pp.416-419.
[48]S. C. Cho, Y. C. Hong, H. S. Uhm, “Hydrophobic coating of carbon nanotubes by CH4 glow plasma at low pressure, and their resulting wettability”, Journal of Materials Chemistry, vol.17, 2007, pp.232-237.
[49]S. Iijima, “Helical microstructures of graphitic carbon”, Nature , vol.354, 1991, pp.56-58.
[50]S. J. Pastine, D. Okawa, B. Kessler, M. Rolandi, M. Lorente, A. Zettl, J.M. J. Frechet, “A Facile and Patternable Method for the Surface Modification of Carbon Nanotube Forests Using Perfluoroarylazides”, Journal of the American Chemical Society, vol.130, 2008, pp.4238-4239.
[51]S. J. Young, L. W. Ji, S. J. Chang, S. H. Liang, K. T. Lam, T. H. Fang, K. J. Chen, X. L. Du, Q. K. Xue, “ZnO-based MIS photodetectors”, Sensors and Actuators A, vol.141, 2008, pp.225-229.
[52]S. Li, H. Li, X. Wang, Y. Song, Y. Liu, L. Jiang, D. Zhu, “Super- Hydrophobicity of Large-Area Honeycomb-Like Aligned Carbon Nanotubes”, Journal of Physical Chemistry B, vol.106, 2002, pp.9274-9276.
[53]S. Sethi, L. Ge, L. Ci, P. M. Ajayan, A. Dhinojwala, “Gecko- Inspired Carbon Nanotube-Based Self-Cleaning Adhesives”, Nano Letters, vol. 8, no.3, 2008, pp.822-825.
[54]S. Srinivasan, V. K. Praveen, R. Philip, A. Ajayaghosh, “Bioinspired Superhydrophobic Coatings of Carbon Nanotubes and Linear π Systems Based on the Bottom-up Self-assembly”, Angewandte Chemie International Edition, vol.47, 2008, pp.5750-5754.
[55]T. Soeno, K. Inokuchi, S. Shiratori, “Ultra-water-repellent surface: fabrication of complicated structure of SiO2 nanoparticles by electrostatic self-assembled films”, Applied Surface Science, vol.237, 2004, pp.543-547.
[56]T. Yonezawa, H. Matsune, T. Kunitake, “Layered Nanocomposite of Close-Packed Gold Nanoparticles and TiO2 Gel Layers”, Chemistry of Materials, vol.11, 1999, pp.33-35.
[57]V. Georgakilas, A. B. Bourlinos, R. Zboril, C. Trapalis, “Sythesis, Characterization and Aspects of Superhydrophibic Functionalized Carbon Nanotubes”, Chemistry Materials, vol.20, 2008, pp.2884-2886.
[58]V. Subramanian, E. E. Wolf, P. V. Kamat, “Green Emission to Probe Photoinduced Charging Events in ZnO-Au Nanoparticles. Charge Distribution and Fermi-Level Equilibration”, Journal of Physical Chemistry B, vol.107, 2003, pp.7479-7485.
[59]W. Barthlott, C. Neinhuis, “Purity of the sacred lotus,or escape from contamination in biological surfaces”, Planta , vol.202, 1997, pp.1-8.
[60]W. C. W. Chan, S. Nie, “Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection”, Science, vol. 281, 1998, pp.2016-2018.
[61]webservice.oxygenekatalog.dk/getdoc.aspx?DocID=10494
[62]X. Xiao,Y. T. Cheng, B. W. Sheldon, J. Rankin, “Condensed water on superhydrophobic carbon films”, Journal of Materials Research, vol.23, no.8, 2008, pp.2174-2178.
[63]X. Zhang, F. Shi, J. Niu, Y. Jiang, Z. Wang, “Superhydrophobic surfaces: form structural control to functional application”, Journal of Materials Chemistry, vol.18, 2008, pp.621-633.
[64]X. Zhong, R. Xie, Y. Zhang, T. Basch, W. Knoll, “High-Quality Violet- to Red-Emitting ZnSe/CdSe Core/Shell Nanocrystals”, Chemistry of Materials, vol.17, 2005, pp.4038-4042.
[65]X. Zhou, Y. Kobayashi, V. Romanyuk, N. Ochuchi, M. Takeda, S. Tsunekawa, A. Kasuya, “Preparation of silica encapsulated CdSe quantum dots in aqueous solution with the improved optical properties”, Applied Surface Science, vol.242, 2005, pp.281-286.
[66]X.-H. Men, Z.-Z. Zhang, H.-J. Song, K. Wang, W, Jiang, “Fabrication of superhydrophobic surfaces with poly(furfuryl alcohol)/multi-walled carbon nanotubes compisites”, Applied Surface Science, vol.254, 2008, pp.2563-2568.
[67]Y. C. Hong, D. H. Shin, S. C. Cho, H. S. Uhm, “Surface transformation of carbon nanotube powder into super-hydrophobic and measurement of wettability”, Chemical Physics Letters, vol.427, 2006, pp.390-393.
[68]Y. Feng, G. Zhou, G. Wang, M. Qu, Z. Yu, “Removal of some impurities from carbon nanotubes”, Chemical Physics Letters, vol.375, 2003, pp.645-648.
[69]Y. L. Wu, A. I. Y. Tok, F. Y. C. Boey, X. T. Zeng, X. H. Zhang, “Chemical Synthesis of ZnO Nanocrystals”, Nanotechnology, vol. 6, 2007, pp.497-503.
[70]Y. Li, X. J. Huang, S. H. Heo, C. C. Li, Y. K. Choi, W. P. Cai, S. O. Cho, “Superhydrophobic Bionic Surfaces with Hierarchical Microsphere/SWCNT Composite Arrays”, Langmuir, vol.23, 2007, pp.2169-2174.
[71]Y. Liu, J. Tang, R. Wang, H. Lu, L. Li, Y. Kong, K. Qia, J. H. Xin, “Aritificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles”, Journal of Materials Chemistry, vol.17, 2007, pp.1071-1078.
[72]Z. J. Han, B. K. Tay, M. Shakerzadeh, K. Ostrikov,“Superhydrophobic amorphous carbon/carbon nanotube nanocomposites”, Applied Physics Letters, vol.94, 2009, p.223106.
[73]Z. Wang, N. Koratkar, “Combinded micro-/nanoscale surface roughness for enhanced hydrophobic stability in carbon nanotube arrays”, Applied Physics Letters, vol.90, 2007, p.143117.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top