跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/08 02:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃南議
研究生(外文):Nan-yi Huang
論文名稱:磷化鋁鎵銦發光二極體磷化鎵窗口層上金屬歐姆接觸層之研究
論文名稱(外文):Studies of Metal Ohmic-Contact Layer on GaP Window Layer in AlGaInP Light-Emitting Diodes
指導教授:李重義
指導教授(外文):Chong-yi Lee
學位類別:碩士
校院名稱:義守大學
系所名稱:電子工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:74
中文關鍵詞:多重量子井金鈹擴散氧化銦錫磷化鋁鎵銦發光二極體有機金屬化學氣相沉積
外文關鍵詞:indium tin oxide (ITO)AuBe diffusedAlGaInPmetal–organic chemical vapor deposition (MOCVD)light-emitting diode (LED)multiple quantum-well (MQW)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:907
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,隨著磷化鋁鎵銦發光二極體的發展,高透明度且低電阻率的氧化銦錫已經被廣泛的使用作為透明電流擴散層了。在本研究中,具薄碳摻雜磷化鎵表面接觸層和透明導電氧化銦錫薄膜之磷化鋁鎵銦多量子井發光二極體成功的被研製出來,同時亦完成了此種結構對元件特性影響之探討。為了比較其特性,在本實驗的發光二極體結構中亦包含了不同材料(磷化鎵、砷化鎵)之表面接觸層。實驗結果顯示,在直流電流操作下,具薄碳摻雜磷化鎵接觸層之發光二極體擁有較高的輸出功率(31.4 mW)與較高的外部量子效率(9 %),而具碳摻雜的砷化鎵接觸層的發光二極體輸出功率與外部量子效率僅分別為24.8 mW與8.3 %。此外,在20毫安培的工作電流下,與傳統的發光二極體比較,具薄碳摻雜磷化鎵接觸層的發光二極體約可增加18 %的輸出功率。推測元件獲得改善之原因,主要應是薄碳摻雜磷化鎵表面接觸層減少了與氧化銦錫薄膜之接觸電阻,而形成高電流擴散的效果。
此外,本研究亦進行磷化鎵窗口層表面直接沉積金鈹擴散薄層來形成直接歐姆接觸之研究。實驗結果顯示,在注入20毫安培的電流下,可得到5.7歐姆的動態電阻與1.91伏特的導通電壓,此種結構的發光二極體亦顯示出高的外部量子效率(9.7 %)和高的輸出功率(26.6 mW),推測元件特性獲得改善原因是由於金鈹原子均勻分佈在磷化鎵表面的關係和氧化銦錫薄膜增加電流擴散能力而減少串聯電阻結果。另外,該結構發光二極體在20毫安培操作情況下,其壽命行為與傳統的發光二極體差異並不大。
With the development of AlGaInP-based light-emitting diodes (LEDs) in the past year, indium-tin-oxide (ITO) has been widely applied as a transparent current spreading layer due to its high transparency and low electrical resistively. In this study, an AlGaInP multiple quantum-well (MQW) LED with a thin carbon-doped GaP contact layer and a transparent conducting ITO film is fabricated and studied. For comparison, the LED structures with different contact layer materials (GaP, GaAs) are also included in this work. Experimental results indicate that the LED with carbon-doped GaP contact layer exhibits higher output power (31.4 mW) and higher external quantum efficiency (9 %) under the dc operation, as compared to those of 24.8 mW and 8.3 % for the LED with carbon-doped GaAs contact layer, respectively. The output power, under a dc current of 20 mA, of these LED is increased by a factor of 18 % as compared with that of conventional LEDs. These positive results could be mainly attributed to the significantly higher current spreading effect resulting from the carbon-doped GaP contact layer structure in which the contact resistance is reduced.
Furthermore, the direct ohmic contact structure is performed by the deposition of an AuBe diffused thin layer on the surface of GaP window layer in this studied. Experimental results demonstrate that a dynamic resistance of 5.7 Ω and a forward voltage of 1.91 V, under an injection current of 20 mA, are obtained. This structure LED exhibits a higher external quantum efficiency of 9.7 % and a higher light-output power of 26.6 mW. This device characteristic was improved supposition to the reduced series resistance resulted from the relatively uniform distribution of AuBe atoms near the GaP layer surface and the effective current spreading ability by the use of ITO film. Moreover, the life behavior of the studied LED, under a 20 mA operation condition, is comparable to the conventional LED without this structure.
中文摘要Ⅰ
英文摘要Ⅱ
誌謝Ⅲ
目錄Ⅳ
圖表索引Ⅵ
第一章 緒論1
1-1 磷化鋁鎵銦(AlGaInP)發光二極體歷史簡介1
1-2 發光二極體的工作原理3
1-3 化合物半導體材料4
1-4 氧化銦錫(ITO)之特性6
1-4-1 簡介6
1-4-2 光學特性8
第二章 實驗設備與材料特性量測系統11
2-1 低壓有機金屬化學氣相沉積(LP-MOCVD11
2-1-1 有機金屬化學氣相沉積法之概述11
2-1-2 MOCVD成長機制12
2-1-3 MOCVD成長過程12
2-2 材料特性量測系統15
2-2-1 雙晶X射線繞射儀(DC-XRD)15
2-2-2 二次離子質譜儀(SIMS)18
2-2-3 光子激發光光譜儀(Photoluminescence)19
2-2-4 掃描式電子顯微鏡(SEM)20
第三章 實驗製程方法與步驟21
3-1 磷化鎵窗口層上不同歐姆接觸材料層之研製21
3-1-1 元件研製21
3-1-2 磊晶各層結構成長剖析23
3-2 直接歐姆接觸之氧化銦錫電流擴散層於磷化鎵窗口層上之研製27
3-2-1 元件研製27
第四章 實驗結果分析與討論29
4-1 磷化鎵窗口層上不同歐姆接觸材料層之光電特性比較29
4-1-1 雙晶X射線繞射儀量測分析29
4-1-2 元件之電流-電壓特性分析29
4-1-3 電激光光譜分析30
4-1-4 元件之輸出功率-工作電流特性分析31
4-1-5 發光亮度比較31
4-1-6 元件之發光波長-工作電流特性分析32
4-1-7 壽命測試32
4-2 直接歐姆接觸於磷化鎵窗口層上之發光二極體光電特性比較33
4-2-1 雙晶X射線繞射儀量測分析33
4-2-2 光激光光譜圖33
4-2-3 二次離子質譜儀分析33
4-2-4 元件之電流-電壓特性分析34
4-2-5 元件之輸出功率-工作電流特性分析35
4-2-6 壽命測試35
第五章 結論及未來工作37
5-1 結論37
5-2 未來工作38
參考文獻65
圖表索引
圖1.1 世界能源蘊藏39
圖1.2 照明光源歷史演進39
圖1.3 發光二極體p-n接面圖(a)為平衡狀態(b)為順向導通時的狀態40
圖1.4 在室溫下能隙與晶格常數對應Ⅲ-Ⅴ化合物半導體材料41
圖1.5 發光波長對應Ⅲ-Ⅴ化合物半導體材料42
圖1.6 直接能隙與間接能隙轉換關係42
圖1.7 典型ITO膜穿透率、反射率以及吸收率的光譜圖43
圖1.8 電子傳導示意圖(a)原本的In2O3能帶結構(b)摻雜Sn之後的能帶結構43
圖2.1 MOCVD系統簡圖44
圖2.2 MOCVD之磊晶原理44
圖2.3 布拉格繞射示意圖45
圖2.4 入射晶格平面示意圖45
圖2.5 不同波長之入射光以不同入射角入射到樣品的示意圖46
圖2.6 固定偵測器之示意圖46
圖2.7 θ-2θ掃描之示意圖47
圖2.8 雙晶繞射之示意圖47
圖2.9 二次離子質譜儀架構48
圖2.10 RPM2000光子激發光光譜儀48
圖2.11 掃描式電子顯微鏡49
圖2.12 掃描式電子顯微鏡構造示意圖49
圖3.1 磷化鋁鎵銦多量子井發光二極體之磊晶結構圖50
圖3.2 砷化鋁/砷化鋁鎵分散式布拉格反射層之SEM圖50
圖3.3 主動層之SEM圖51
圖3.4 磷化鋁鎵銦多重量子井發光二極體元件之結構圖(碳摻雜研究)51
圖3.5 切割後之晶粒實體圖52
圖3.6 磷化鋁鎵銦多重量子井發光二極體結構示意圖(直接歐姆接觸研究)52
圖3.7 使用ITO/AuBe/p-GaP直接接觸在LED製作流程示意圖53
圖4.1 雙晶X射線繞射儀量測圖54
圖4.2 (a) Device-A X-Ray量測磷化鎵信號半高寬54
圖4.2 (b) Device-B X-Ray量測磷化鎵信號半高寬55
圖4.2 (c) Device-C X-Ray量測磷化鎵信號半高寬55
圖4.3 元件之電流-電壓特性曲線圖56
圖4.4 ITO電流擴散示意圖56
圖4.5 電激光光譜圖57
圖4.6 室溫下AlGaInP晶格匹配之能帶與發光波長關係圖57
圖4.7 元件之輸出功率-工作電流特性曲線圖58
圖4.8 2D/3D發光亮度比較圖58
圖4.9 元件之發光波長-工作電流特性曲線圖59
圖4.10 在室溫中直流20 mA下壽命測試59
圖4.11 雙晶X射線繞射儀量測圖60
圖4.12 光激光光譜圖60
圖4.13 直接歐姆接觸之發光二極體SIMS量測圖61
圖4.14 p-p電流-電壓與電阻之特性曲線圖61
圖4.15 元件之電流-電壓特性曲線圖62
圖4.16 元件之輸出功率-工作電流特性曲線圖62
圖4.17 室溫下Iv壽命測試結果63
圖4.18 室溫下VF壽命測試結果63
表1.1 元素週期表41
表5.1 發光二極體各特性之比較表(碳摻雜研究)64
表5.2 發光二極體各特性之比較表(直接歐姆接觸研究)64
中文部份:
台証投顧, “LED—開啟照明產業新紀元,” 研究分析報告, 2007年12月.
張俊彥, 鄭晃忠, “積體電路製程及設備技術手冊,” 經濟部技術處, p. 580, 1997.
陳隆建, “發光二極體之原理與製程,” 全華科技圖書, 2006年08月.
楊鏡堂, 顏溪成, “綠色能源發展與提高能源使用效率,” 全國能源會議, 2004.
英文部份:
A. J. Steckl, G. Mohammed, “The Effect of Ambient Atmosphere in the Annealing of Indium Tin Oxides Films,” J. J. Appl. Phys., vol. 51, p. 3890, 1980.
C. Rooman, R. Windisch, M. D’Hondt, B. Dutta, P. Modak, P. Mijlemans, G. Borghs, R. Vounckx, I. Moerman, M. Kuijk, and P. Heremans, “High-efficiency thin-film light-emitting diodes at 650 nm,” Electron. Lett., vol. 37, p. 852, 2001.
C. Y. Lee, J. Y. Su, and C. M. Kuo, “630-nm n-type modulation-doped AlGaInP-AlInP multiquantum-well light-emitting diode,” IEEE Photon. Technol. Lett., vol. 18, p. 25, 2006.
D. K. Brown, B. K. Tanner, “High Resolution X-ray Diffraction and Topography,” Taylor and Francis, London, 1998.
F. A. Kish, D. A. Vanderwater, D. C. DeFevere, D. A. Steigerward, G. E. Hofler, K. G. Park, and F. M. Steranka, “Highly reliable and efficient semiconductor wafer-bonded AlGaInP/GaP light-emitting diodes,” Electron. Lett., vol. 32, p. 132, 1996.
G. B. Stringfellow, M. G. Craford, “High brightness light-emitting diodes,” In Semiconductors and Semimetals. New York: Academic, vol. 48, 1997.
H. C. Chen, A. S. Stochman, J. M. Peanasky and P. C. Kuo, edited by G. B. Stringfellow and M. G. Craford, “Journal of crystal growth,” Semiconductors and semimetals. vol. 48, 1997.
H. J. J. van Boort, E. Kauer, Philips Tech. Rev., vol. 29, p. 17, 1968.
H. K. Huang, P. T. Chen, “Light emitting diode structure,” U.S. Patent 5, 661, 742. 1997.
H. L. Hartnagel, A. L. Dawar, A. K. Jain and C. Jagadish, “Semi- conducting Transparent Thin Films,” Institute of Physics Publication, p. 1, 1995.
H. M. Manasevit, “Single-crystal gallium arsenide on insulating substrates,” Appl. Phys. Lett., vol. 12, p. 156, 1968.
H. Sugawara, K. Itaya, and G. I. Hatakoshi, “Emission properties of InGaAlP visible light-emitting diodes employing a multiquantum-well active layer,” J. J. Appl. Phys., vol. 33, p. 5784, 1994.
J. I. Pankove, I. Balberg, “Optical Measurements on Magnetite Single Crystals,” Phys. Rev. Lett., vol, 27, p. 596, 1971.
J. N. Holonyak, S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1-xPx) junctions,” Appl. Phys. Lett., vol. 1, p. 82, 1962.
J. S. Cang, S. C. Chang, “650 nm AlGaInP/GaInP Compressively Strained Multi-Quantum Well Light Emitting Diodes,” J. J. Appl. Phys., vol. 37, p. 653, 1998.
J. S. Cang, S. C. Chang, K. Y. Su, T. P. Chang, R. Y. Wu, H. K. Huang and P. T. Chen, “AlGaInP multiquantum well light-emitting diodes,” IEE Proceedings-Optoelectronics, vol. 144, p. 405, 1997.
K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, and M. G. Craford, “Twofold efficiency improvement in high performance AlGaInP light-emitting diodes in the 555–620 nm spectral region using a thick GaP window layer,” Appl. Phys. Lett.,, vol. 61, p. 1045, 1992.
R. M. Fletcher, C. P. Kuo, T. D. Osentowski, K. H. Huang, M. G. Craford , and V. M . Robbins, “The Growth and Properties of High Performance AlGaInP Emitters Using a Lattice Mismatched GaP Window Layer,” Journal of Electronic Materials, vol. 20, p. 1125, 1991.
R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiestel, D. Zipperer, G. H. Dohler, B. Duta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett., vol. 79, p. 1, 2001.
R. Winterhoff, P. Raisch, V. Frey, W. Wagner, and F. Scholz, “Control of dopant distribution profiles in GaInP laser diodes with Mg- and Se- doped AlInP cladding layers,” Journal Crystal Growth, vol. 195, p. 133, 1998.
S. Li, G. Fan, T. Zhou, H. Wang, H. Sun, S. Zheng, Z. Guo,and C. Tan, “The influence of Si-doping to the characteristics of AlGaInP/GaInP multiple quantum wells,” Physica B, vol. 349, p. 214, 2004.
T. Nakanishi, “Growth of high-purity GaAs epilayers by MOCVD and their applications to microwave MESFET''s,” Journal Crystal Growth, vol. 50, p. 255, 1981.
W. Su, G. Zhong, “Numerical design of Novel DBR,” SPIE, vol. 5628, p. 208, 2005.
Y. Hosokawa, W. Nabekura, T. Hoshina, R. Takeuchi, K. Sakaue, and T. Udagawa, “High power ohmic-electrodes dispersive AlGaInP. double-hetero structure yellowish-green light-emitting diodes,” Journal Crystal Growth, vol. 221, p. 652, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊