跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:1742:3a1e:c308:7608) 您好!臺灣時間:2024/12/08 08:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃嘉宏
研究生(外文):Chia-hung Huang
論文名稱:調制掺雜技術應用於磷化鋁鎵銦發光二極體側邊位障層之研究
論文名稱(外文):The Study Of AlGaInP Light-Emitting Diodes With a Modulation-Doping Side-Barrier Layer
指導教授:李重義
指導教授(外文):Chong-Yi Lee
學位類別:碩士
校院名稱:義守大學
系所名稱:電子工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:54
中文關鍵詞:多量子井調制掺雜磷化鋁鎵銦
外文關鍵詞:AlGaInPmultiquantum-wellmodulation-doped
相關次數:
  • 被引用被引用:0
  • 點閱點閱:777
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用有機金屬化學氣相沉積技術,成長具側邊n型調制摻雜(Modulation-Doped;MD)位障層多量子井磷化鋁鎵銦發光二極體,並探討其元件電流電壓、電致發光及壽命等光電特性。實驗中發現,在直流20毫安培下,具側邊n型調制摻雜位障層之多量子井磷化鋁鎵銦發光二極體之導通電壓(2.003 V)雖然比傳統發光二極體(2.037 V)要小,但輸出功率(7.09 mW)卻比傳統發光二極體(7.93 mW)要低。推測造成此現象的原因,可能是因為過度的調制摻雜造成深位缺陷,形成了非復合中心,而導致漏電流的產生,降低了光輸出功率。此現象提醒我們,如要利用調制摻雜技術來增加複合載子的供應時,此不適當的摻雜造成深位缺陷的問題應加以克服。也就是說,雖然文獻記載調制摻雜技術可改善發光二極體發光特性,但在提供載子濃度(即摻雜濃度)與造成缺陷的效應上要取得一平衡點。
The AlGaInP multiquantum-well (MQW) light-emitting diodes (LEDs) with a modulation-doped (MD) side barrier (SB) structure was grown by metal-organic chemical vapor deposition (MOCVD). The characterisitcs of MD-SB LEDs were evaluated by scanning electron microscopy (SEM), double crystal X-ray diffractometer (DCXRD), secondary ion mass spectrometer (SIMS), photoluminescence (PL) measurement, output power measurement and life test. It was found that the MD-SB LEDs exhibited a lower cut-in voltage (2.003V), and lower output power (7.09mW) than conventional LEDs (2.037V, 7.93mW) at 20mA. This output power degradation can be attributed to the over doping of MD-SB structure since this over doping can induce more defects than the conventional LED. Although the MD LED can supply a higher electron concentration than in the conventional structure. There is trade-off between carrier supply and defect inducement.
中文摘要Ⅰ
英文摘要Ⅱ
誌謝Ⅲ
圖表索引Ⅳ
目錄Ⅴ
第一章 緒論1
1-1 發光二極體元件概述1
1-2 發光二極體發光原理2
1-3 研究動機4
第二章 實驗設備與儀器6
2-1 有機金屬化學氣相磊晶系統6
2-1-1 有機金屬氣相磊晶法之理論簡介7
2-1-2 有機金屬化學氣相磊晶系統簡介9
2-2 實驗中所使用的反應物性質10
2-3 實驗中磊晶的環境11
2-4 掃描式電子顯微鏡(SEM)12
2-5 X光繞射分析(XRD)13
2-6 光激發光譜儀(PL)13
第三章 實驗製程15
3-1 調制摻雜技術簡介15
3-2 元件研製步驟17
第四章 實驗結果與討論25
4-1 磊晶結構觀察25
4-1-1 雙晶格X射線繞射儀量測分析25
4-1-2 SEM量測25
4-2 冷光激發光譜分析26
4-3 元件之電壓-電流特性分析26
4-4 元件之輸出功率-電流特性分析27
4-5 元件之壽命測試27
第五章 總結及未來工作29
5-1 總結29
5-2 未來工作29
參考文獻46
圖1-1 未加偏壓之同質p-n接面能帶圖32
圖1-2 未加偏壓之同質接面能帶圖32
圖1-3 未加偏壓之雙異質接面能帶圖33
圖1-4 加順向偏壓之同質接面能帶圖33
圖1-5 具側邊n型調制摻雜位障層LED能帶圖34
圖2-1 有機金屬氣相磊晶法成長機制概述圖34
圖2-2 有機金屬氣相磊晶系統簡圖35
圖2-3 氣體傳輸系統實圖35
圖2-4 質流控制器(MFC)實圖36
圖2-5 Bubbler瓶實體圖36
圖2-6 磊晶反應腔實體圖37
圖2-7 RF Induction Heating管實體圖37
圖2-8 Control Computer介面圖38
圖2-9 磊晶速率與溫度關係圖38
圖2-10 PL系統測試流程圖39
圖3-1 異質結構中的二維電子氣系統39
圖3-2(a) 側邊n型調制摻雜位障層LED能帶圖40
圖3-2(b) 側邊n型調制摻雜位障層LED結構圖40
圖4-1 磷化鋁鎵銦發光二極體之DCXRD圖41
圖4-2(a) 未調制摻雜磷化鋁鎵銦發光二極體SEM側壁觀察41
圖4-2(b) 側邊n型調制摻雜磷化鋁鎵銦發光二極體SEM側壁觀察42
圖4-3(a) 未調制摻雜室溫冷光激發光譜42
圖4-3(b) 側邊n型調制摻雜室溫冷光激發光譜43
圖4-4 LED電流-電壓與動態電阻特性圖43
圖4-5 LED輸出功率與效率特性圖44
圖4-6 順偏下輻射復合與非輻射復合示意圖44
圖4-7(a) 室溫50mA光輸出壽命測試圖45
圖4-7(b) 室溫50mA電壓壽命測試圖45
圖4-7(c) 室溫50mA漏電流壽命測試圖46
表1.1 應用於不同波長之各式分散式布拉格反射鏡(DBR)46
一、中文部份
[1]林央正,磷化銦鋁鎵/砷化鎵/砷化銦鎵對稱型平面摻雜場效電晶體研究” 中央大學光電科學研究所碩士論文, 2000.
[2]莊賦祥, “藍綠發光二極體”, 科學發展349期, 第46-53頁, 2002.
二、英文部份
[1]A. F. Kish and M. R. Fletcher, edited by B. G. Stringfellow and M. G. Craford Semiconductors and Semimetals, vol. 48. 1997
[2]C. Rooman, R. Windisch, M. D’Hondt, B. Dutta, P. Modak, P. Mijlemans, G. Borghs, R. Vounckx, I. Moerman, M. Kuijk, and P. Heremans, “High-efficiency thin-film light-emitting diodes at 650 nm,” Electron. Lett., vol. 37, p. 852, 2001.
[3]C. Y. Lee, J. Y. Su, and C. M. Kuo, “630-nm n-type modulation-doped AlGaInP-AlInP multiquantum-well light-emitting diode, ” IEEE Photon. Technol. Lett., vol. 18, p. 25, 2006.
[4]F. A. Kish, D. A. Vanderwater, D. C. DeFevere, D. A. Steigerward, G. E. Hofler, K. G. Park, and F. M. Steranka, “Highly reliable and efficient semiconductor wafer-bonded AlGaInP/GaP light-emitting diodes,” Electron. Lett., vol. 32, p. 132, 1996
[5]F. Gueissaz, R. Houdre, and Ilegems, “High electron density and mobility in single and double planar doped InGaAs/InAlAs heterojunctions on InP, ” J. Crystal Growth, vol. 111, p. 470, 1991.
[6]Gerald B. Stringfellow, ”Organometallic Vapor-Phase Epitaxy : Theory and Practice”, (Second Edition).1995
[7]H. K. Huang and P. T. Chen, “Light emitting diode structure” U.S. Patent 5661742. 1997.
[8]H. M. Manasevit, “Single-crystal gallium arsenide on insulating substrates”, Applied Physics Letters, vol. 12, No. 4, p. 156, 1968
[9]H. Shimizu, K. Kumada, N. Yamanaka, N. Iwai, T. Mukaihara, and A. Kasukawa, “High-performance 1.3-µm InAsP strained-layer quantum-well ACIS (Al-Oxide Confined Inner Stripe) lasers”, IEEE J. Sel. Top. Quantum Electron., vol.5, p.6940, 1999.
[10]H. Sugawara, K. Itaya, and G. I. Hatakoshi, “Emission properties of InGaAlP visible light-emitting diodes employing a multiquantum-well active layer, ” Jpn. J. Appl. Phys., vol. 33, p. 5784, 1994.
[11]I. D. Babic, L. Piprek and E. J. Bowers, edited by C. W. Wilmsen, H. Temkin, and L. A. Coldren Cambridge, 1990
[12]J. Hashimoto, T. Katsuyama, J. Shinkai, I. Yoshida, H. Hayashi, “ Highly stable operation of AlGaInP/GaInP strained multiquantum well visible laser diodes”, Electron Lett. vol. 28, p. 1329, 1992.
[13]J. S. Cang and S. C. Chang, “650 nm AlGaInP/GaInP compressively strained multi-quantum well light emitting diodes,” J. J. Appl. Phys, vol. 37, p. L653, 1998.
[14]J. S. Cang, S. C. Chang, K. Y. Su, T. P. Chang, R. Y. Wu, H. K. Huang, and P. T. Chen, “AlGaInP multiquantum well light-emitting diodes,” IEE Proceedings-Optoelectronics, vol. 144, p. 405, 1997.
[15]K. Nakahara, K. Uomi, T. Tsuchiya, A. Niwa, T. Haga, and T. Taniwatari,“1.3-μm InGaAsP-InP n-type modulation-doped strained multiquantum-well lasers”, IEEE J. Select. Topics Quantum Electron., vol.3, p. 166, 1997.
[16]K. Uomi, T. Mishima and N. Chinone, “Modulation-Doped Multi-Quantum Well (MD-MQW) Lasers. II. Experiment ” Jpn. J. Appl. Phys., vol. 29, p. 88, 1990.
[17]L. Shen, I. P. Smochkova, D. S. Green, S. Heikman , and U. K. Mishra, “GaN planar-doped-barrier electron emitter with piezoelectric surface barrier lowering, ” IEEE Trans. on Electron. Dev., vol. 41, p. 223, 2001.
[18]M. J. Kearney, N. R. Couch, M. Edwards, and I. Dale, “Neutron radiation effects in GaAs planar doped barrier diodes,” IEEE Trans. on Nuclear. Sci., vol. 40, p. 102, 1993.
[19]N. Holonyak Jr. and S. F. Bevacqua,, "Coherent (Visible) Light Emission from Ga(As1-xPx) Junctions," Appl. Phys. Lett., vol. 1, p. 82, 1962.
[20]R. A. Logan, H. G. White, and W. Wiegmann, “Efficient Green Electroluminescent. Junctions in GaP,” Solid State Electronics, vol. 14, p. 55, 1971.
[21]R. M. Fletcher, C. P. Kuo, T. D. Wsentowski, K. H. Huang, M. G. Craford, V. M. Robbins, J. Electron. Mater. vol. 20, p. 1125, 1991.
[22]R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiestel, D. Zipperer, G. H. Dohler, B. Duta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett., vol. 79, p.1, 2001.
[23]S. Adachi, H. kato, A. Moki and Ohtsuka K. J. Appll. Phys. vol. 75, p. 478, 1994.
[24]S. Li, G. Fan, T. Zhou, H. Wang, H. Sun, S. Zheng, Z. Guo,and C. Tan, “The influence of Si-doping to the characteristics of AlGaInP/GaInP multiple quantum wells, ” Physica B, vol. 349, p. 214, 2004.
[25]S. M. Sze, “Physics of Semiconductor Devices, 2nd Ed. ”, p. 291, John Wiley & Sons ,1981
[26]S. Sasa, Y. Yamamoto, S. Izumiya, M. Yano, Y. Iwai, and M. Inoue, “Increased electron concentration in InAs/AlGaSb heterostructures usinga Si planar doped ultrathin InAs Quantum Well, ” Jpn. J. Appl. Phys., vol.36, p. 1869, 1997.
[27]T. Nakanisi, T. Udagawa, A. Tanaki, and K. kamei : J. Crystal Growth, vol. 50, p. 255, 1981.
[28]T. Ohtoshi and N. Chinone,” Linewidth enhancement factor in strained quantum well lasers”, IEEE Photon. Technol. Lett., vol. 1, p. 117, June 1989.
[29]W. N. Jiang and U. K. Mishra, “A novel electron emitter with AlGaAs planar doped barrier, ” IEDM, vol. 92, p. 985, 1992.
[30]W. N. Jiang, D. J. Holcombe, M. M. Hashemi, and U. K. Mishra, “InGaAs/GaAs planar doped barrier electron emitters, ” IEEE Trans. on Electron. Dev., vol. 38, p. 2355, 1991.
[31]Y. Hosokawa, W. Nabekura, T. Hoshina, R. Takeuchi, K. Sakaue, and T. Udagawa, “High power ohmic-electrodes dispersive AlGaInP. double-hetero structure yellowish-green light-emitting diodes,” J. Crystal Growth, vol. 221, p. 652, 2000.
[32]Y. L. Lai, E. Y. Chang, C.Y. Chang, T. H. Liu, and S. P. Wang, “High-power-density and High-efficiency atomic-planar-doped AlGaAs/InGaAs quantum-well power high-electron-mobility transistors for 2.4V medium-power wireless communication applications, ” Jpn. J. Appl. Phys., vol. 36, p. 1856, 1997.
[33]Zh. I. Alferov, V. M. Andre, D. Z. Garbuzov, and Rumyantsev, “Radiative characteristics of InP-GaInPAs laser heterostructures,” Sov. Phys. Semicond., vol. 9, p. 305, 1975.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top