跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/16 03:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃志成
研究生(外文):Chih-cheng Huang
論文名稱:一類具有不確定的扇形或量化致動器及雜訊之非線性系統全域指數穩定控制器設計
論文名稱(外文):Global exponential stabilization for a class of nonlinear systems with uncertain actuator and disturbance
指導教授:孫永莒
指導教授(外文):Yeong-jeu Sun
學位類別:碩士
校院名稱:義守大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:62
中文關鍵詞:扇形致動器雜訊非線性控制系統量化致動器全域指數穩定
外文關鍵詞:sector actuatornonlinear control systemsquantization actuatorGlobal exponential stabilizationdisturbance
相關次數:
  • 被引用被引用:1
  • 點閱點閱:380
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:1
本篇論文主要在使用強健控制方法探討一類具有不確定的扇形或量化致動器及雜訊之非線性系統的全域指數穩定控制器設計。吾人將提出一套回授控制器,使整個回授控制系統達成全域指數穩定;此外,吾人擬估算上述控制系統的指數收斂速率。最後,將以四個實例來說明主要定理之應用。
In this thesis, a robust control scheme is proposed such that the global exponential stability for a class of nonlinear systems with uncertain actuator and disturbance can be guaranteed. Moreover, an estimation of the guaranteed convergence rate is derived for such systems. Four numerical examples are also given to illustrate the main result.
致謝i
中文摘要ii
英文摘要iii
目錄iv
圖目錄vii
第一章 引言
1.1 概論1
1.2 符號定義2
第二章 Lyapunov穩定理論
2.1 非線性系統3
2.2 平衡點3
2.2.1 非時變系統之平衡點3
2.2.2 時變系統之平衡點5
2.3 穩定性的定義6
2.3.1 非時變系統穩定性的定義6
2.3.2 時變系統穩定性的定義9
2.3.3 均勻穩定10
2.3.4 局部穩定與全域穩定12
2.4 Lyapunov穩定理論12
2.4.1 非時變系統的Lyapunov穩定理論13
2.4.2 時變系統的Lyapunov穩定理論22
2.5 穩定性測試26
2.5.1 線性非時變系統的穩定性測試26
2.5.2 線性時變系統的穩定性測試28
2.6 控制系統中常見的非線性子29
2.6.1 飽和29
2.6.2 死區30
2.6.3 量化致動器31
2.6.4 扇型致動器32
第三章 主要定理
3.1 系統描述33
3.2 主要定理35
第四章 範例模擬
4.1 範例一38
4.2 範例二41
4.3 範例三43
4.4 範例四45
第五章 結論以及未來研究方向
5.1 結論48
5.2 未來研究方向48
參考文獻51
圖目錄
圖2.1 單擺系統4
圖2.2 穩定之平衡點6
圖2.3 漸近穩定之平衡點7
圖2.4 均勻穩定10
圖2.5 均勻漸近穩定11
圖2.6 正定函數 典型圖15
圖2.7 正定函數 之二為輪廓線圖16
圖2.8 定義2.15之示意圖17
圖2.9 定義2.15之示意圖17
圖2.10 非radially unbounded的狀態20
圖2.11 函數21
圖2.12 控制系統方塊圖29
圖2.13 飽和非線性子30
圖2.14 死區非線性子31
圖2.15 量化致動器32
圖2.16 扇型致動器32
圖4.1 系統(4.1)未加控制器之模擬圖40
圖4.2 系統(4.1)搭配控制器(4.2)之模擬圖40
圖4.3 系統(4.1)未加控制器之模擬圖42
圖4.4 系統(4.1)搭配控制器(4.3)之模擬圖42
圖4.5 系統(4.1)未加控制器之模擬圖44
圖4.6 系統(4.1)搭配控制器(4.4)之模擬圖44
圖4.7 系統(4.5)未加控制器之模擬圖47
圖4.8 系統(4.5)搭配控制器(4.6)之模擬圖47
圖5.1 飽和非線性子48
圖5.2 繼電器非線性子49
圖5.3 帶有死區之繼電器非線性子49
BEHERA L., ANAND A.A.: ‘Guaranteed tracking and regulatory performance of nonlinear dynamic system using fuzzy neural networks’ , IEE-Proceedings-Control Theory and Applications, 146, pp. 484-491, 1999.
BEHERA L., CHAUDHURY S., GOPAL M.: ‘Application of self-organizing neural networks in robot tracking control’ , IEE-Proceedings-Control Theory and Applications, 145, pp. 135-140, 1998.
EDWARDS C., SPURGEON S.: ‘Sliding mode stabilization of uncertain systems using only output information’ , International Journal of Control, 62, pp. 1129-1144, 1995.
FRANKLIN B.F., POWELL J.D., EMANI-NAEINI A.: ‘Feedback Control of Dynamic System’ , Addison-Wesley, Massachusetts, 1994.
HASANUL BASHER A.M., MUKUNDAN R., O`CONNOR D.A.: ‘Memoryless feedback control in uncertain dynamic delay systems’ , International Journal of Systems Science, 17, pp. 409-415, 1986.
Hou L., Michel A.N., Ye H.: ‘Some qualitative properties of sampled-data control systems’ , IEEE Transactions on Automatic Control, 42, pp. 1721-1725, 1997.
KOLK W.R., LERMAN R.A.: ‘Nonlinear System Dynamics’ , Van Nostrand Reinhold, NY, 1992.
KUO R.S., KUO C.F., SUN Y.J.: ‘Exponential tracking control and guaranteed tracking time for MRAC with uncertain deadzone nonlinearities’ , 2000 Conference on Industrial Automatic Control & Power Applications,
Kaohsiung, Taiwan, pp. D2-13-D2-16, 2000.
PARK J.H., KIM Y.H.: ‘Time-delay sliding mode control for a servo’ , ASME Journal of Dynamic System, Measurement, and Control, 121, pp. 143-148, 1999.
PARK S.K., AHN H.K.: ‘Robust controller design with novel sliding surface’ , IEE-Proceedings-Control Theory and Applications, 146, pp. 242-246, 1999.
RECKER D.A., KOKOTOVIC P.V., RHODE D., WINKELMAN J.: ‘Adaptive nonlinear control of systems containing a deadzone’ , Proceedings of the 30th Conference on Decision and Control, pp. 748-753, 1991.
SCHREIER R., ZHANG B.: ‘Delta-sigma modulators employing continuous-time circuitry’ , IEEE Trans. Circuits Syst. 1, 43, pp. 324-332, 1996.
SHYU K.K., CHEN Y.C.: ‘Robust tracking and model following for uncertain time-delay systems’ , International Journal of Control, 62, pp. 589-600, 1995
SLOTINE, J.-J. E., LI W.: ‘Applied Nonlinear Control’ , Prentice-Hall, Englewood Cliffs, NJ, 1991.
STOJANOVSKI T., KOCARER L., PARLITZ U.: ‘Digital coding via chaotic systems’ , IEEE Trans. Circuits Syst. 1, 44, pp. 562-565, 1997.
SUN Y.J.: ‘A unifying control scheme for a class of nonlinear systems with uncertain deadzone or quantization actuator’ , in 2003 National Symposium on Automatic Control, pp. 1113-1118, 2003.
SUN Y.J.: ‘Composite tracking control for a class of uncertain nonlinear systems with uncertain deadzone nonlinearities’ , Chaos, Solitons & Fractals, 35, pp. 383-389, 2008.
SUN Y.J., HSIEH J.G.: ‘Exponential tracking control for a class of uncertain systems with time-varying arguments and deadzone nonlinearities’ , ASME Journal of Dynamic Systems, Measurement, and Control, 119, pp. 825-830, 1997.
SUN Y.J, LEE H.C, CHEN Y.K.: ‘Terminal control for a class of nonlinear systems with uncertain deadzone or quantization actuator’ , Proceedings of 2004 National Symposium on Automatic Control, A03-03, pp. 1-6, 2004.
SUN Y.J., LIEN C.H., HSIEH J.G.: ‘Global exponential stabilization for a class of uncertain nonlinear systems with control constraint’ , IEEE Transactions on Automatic Control, 43, pp.674-677, 1998.
SUN Y.J., YU G.J., CHAO Y.H., HSIEH J.G.: ‘Exponential stability and guaranteed tracking time for a class of model reference control systems via composite feedback control’ , International Journal of Adaptive Control and Signal Processing, 11, pp. 155-165, 1997.
THALER G.J., PASTEL M.P.: ‘Analysis and Design of Nonlinear Feedback Control Systems’ , McGraw-Hill, NJ, 1962.
VIDYASAGAR M.: ‘Nonlinear Systems Analysis’ , Prentice-Hall, Englewood Cliffs, NJ, 1993.
VINCENT T.L., GRANTHAM W.J.: ‘Nonlinear and Optimal Control Systems’ , John Wiley & Sons, NY, 1997.
YAO B., TOMIZUKA M.: ‘Adaptive robust motion and force tracking control of robust manipulators in contact with compliant surfaces with unknown stiffness’ , ASME Journal of Dynamic Systems, Measurement, and Control, 120, pp. 232-240, 1998.
YEDAVALLI R.K., LIANG Z.: ‘Reduced conservatism in stability robustness bounds by state transformation’ , IEEE Transactions on Automatic Control, 31, pp.863-866, 1986.
YEH T.T., KAMAL Y.T.: ‘Adaptive control of nonlinear, uncertain systems using local function estimation’ , ASME Journal of Dynamic Systems, Measurement, and Control, 120, pp. 429-438, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top