中文部份:
[1]姚賀騰(2000),轉子-油膜軸承系統之混沌行為分析與控制,博士論文,成功大學。[2]劉秉正(1998),非線性動力學與混沌基礎,徐氏基金會。
[3]劉秉正(1998),非線性動力學與混沌基礎,徐氏基金會,141-142,234-252。
英文部份:
[1]Addision, P. S. (1995), On The Characterization of Non-linear Oscillator Sy-stems in Chaotic Mode, J. of Sound and Vibration, 179(3), 385-398.
[2]Adiletta, G., Guido, A.R., and Rossi,C. (1997). Nonlinear dynamics of a rigid unbalanced rotor in short bearings. Part Ⅱ:Experimental Analysis., Nonlinear Dynamics,14,157-189.
[3]Arnold, V. I. (1973), Ordinary Differential Equations, New York, Springer- Verlag.
[4]Arnold, V. I. (1973), Ordinary Differential Equations, New York, Springer -Verlag.
[5]Baker, G. L. and Gollub, J. P. 1900 Chaotic dynamics an introduction Cambridge university press.
[6]Bently, D. E. (1974), Forced Subrotative Speed Dynamic Action of Rotating Machinery, ASME Paper No.74-Pet-16.
[7]Birkhoff, G. D. (1927), On the Periodic Motion of Dynamical Systems, Acta Mathematica Vol. 50, pp. 359-365.
[8]Brown, R. D. (1994), Chaos in the Unbalance Response of Journal Bearings, Nonlinear Dynamics 5, 421-432.
[9]Capone, G., Russo, M. and Russo, R. (1987), Dynamic characteristics and stability of a journal bearing in a non-laminar lubrication regime, Tribology International 20 255-260.
[10]Chang-Jian, C. W., Chen, C. K. (2006), Bifurcation and chaos of a flexible rotor supported by turbulent journal bearings with nonlinear suspension, Proceedings Institution of Mechanical Engineering, Part J:Journal of Engineering Tribology, 220 549-561.
[11]Chang-Jian, C. W., Chen, C. K. (2006), Nonlinear dynamic analysis of a flexible rotor supported by micropolar fluid film journal bearings, International Journal of Engineering Sciences, 44 1050-1070.
[12]Child, D. W. (1982), Fractional Frequency Rotor Motion Due to Non- symmetric Clearance Effects, ASME Journal of Engineering for Power, July, pp.533-541.
[13]Christensen, H. (1969), Stochastic models for hydrodynamic lubrication of rough surfaces, Proceedings Institution of Mechanical Engineering (Part-I), 184 1013-1022.
[14]Constantinescu,V. N. (1962), Analysis of bearings operating in turbulent regime, Journal of Basic Engineering 139-151.
[15]Edward, Ott. (1993), Chaos in Dynamical Systems, New York, Cambridge University Press.
[16]Ehrich, F. F. (1988), High Order Subharmonic Response of High speed Rotor in Bearing Clearance, ASME Journal of Vibration and Acoustics, Stress and Reliability in Design, January, pp.9-16.
[17]Ehrich, F. F. (1988), High Order Subharmonic Rrsponse of High Speed Rotor in Bearing Clearance, ASME Journal of Vibration, Acoustics, Stress and Reliability in Design, January, pp.9-16.
[18]Ehrich, F. F. (1991), Some Observations of Chaotic Vibration Phenomena in High-Spees Rotordynamics, ASME Journal of Vibration and Acoustics. Vol. 113, pp.50-57, January.
[19]Elrod, H. G. and Ng, C. W. (1967), A theory for turbulent films and its application to bearings, Journal of Lubrication Technology 86 346-362.
[20]Erwin, Kramer, (1993) Dynamics of Rotors and Foundations, New York, Springer-Verlag.
[21]Gallegos, J. A. (1994), Nonlinear regulation of Lorenz system by feedback linearization techniques, Dynamics and Control, 4, pp.227-298.
[22]Gururajan, K. and Prakash, J. (2000), Effect of surface roughness in a narrow porous journal bearing, Journal of Tribology, 122 472.
[23]Hammad, A., Jonckheere E., Cheng C. Y., Bhajekar S. and Chien C. C. (1996), Sabilitization of chaotic dynamics: A modern control approach,Int’l J. of Contr., Vol. 64, pp.663-677.
[24]Hashimoto, H., Wada, S., Nojima, K. (1986), Performance characteristics of worn journal bearings in both laminar and turbulent regimes, Part I: steady state characteristics. ASLE Transactions 29 (4) 565-571.
[25]Hashimoto, H., Wada, S., Nojima, K. (1986), Performance characteristics of worn journal bearings in both laminar and turbulent regimes, Part I: steady state characteristics. ASLE Transactions 29 (4) 565-571.
[26]Hirs, G. G. (1973), A bulk-flow theory for turbulence in lubricants films, Journal of Lubrication Technology 95 137-146.
[27]Holmes, R. (1960), The vibration of a rigid shaft on short sleeve bearings, Journal of Mechanical Engineering Science 2, 337-341.
[28]Holmes, R. (1970), Non-linear performance of turbine bearings,Journal of Mechanical Engineering Science 12, pp377- 380.
[29]Kolmogorov, A. N. (1954), On conservation of conditionally periodic motions under small perturbations of the Hamiltonian. Dokl. Akad. Nauk. SSSR, 98 527-530.
[30]Kumar, A., Mishra, S. S. (1996), Stability of a rigid rotor in turbulent hydrodynamic worn journal bearings, WEAR 193 25-30.
[31]Lahmar, M., Haddad, A., Nicolas, D. (2000), An optimized short bearing theory for nonlinear dynamic analysis of turbulent journal bearings, European Journal of Mechanics- A/Solids 19 151-177.
[32]Lahmar, M., Haddad, A., Nicolas, D. (2000), An optimized short bearing theory for nonlinear dynamic analysis of turbulent journal bearings, European Journal of Mechanics- A/Solids 19 151-177.
[33]Li, T. Y. and Yorke, J. A.(1975), Period three implies chaos. Amer. Math. Monthly, 82, 985-992.
[34]Lin, J. R., Hsu, C. H., Lai, C. (2002), Surface roughness effects on the oscillating squeeze-film behaviour of long partial journal bearings, Computers & Structures, 80 297-303.
[35]Lin, J.R. (2000), Squeeze film characteristics between a sphere and a flat plate: couple stress fluid model, Computers & Structures, 75 73-80.
[36]Lin, T. R. (1996), The effects of three-dimensional irregularities on the performance characteristics of turbulent journal bearing, WEAR 196 126-132.
[37]Lorenz, E. N. (1963), Deterministic Non-periodic Flow, J. Atmos. Sci., Vol. 20, pp. 130-141.
[38]Mareels, I. M. Y. and Bitmead, R. R. (1986), Nonlinear dynamics in adaptive control: Chaotic and periodic stabilization, Automatica, Vol. 22, pp.641-665.
[39]May, R. M. (1976), Simple Mathematical with Very Complicated Dynamics, Nature Vol. 261, pp. 459-467.
[40]Moon,F.C. (1992), Chaotic and Fractal Dynamics, New York, John Wiley & Sons, Inc.
[41]Moser, J. (1973), Stable and Random Motions in Dynamical systems. Princeton University Press: Princeton.
[42]Muszynska, A.(1984), Partial Lateral Rotor to Stator Rubs, IMechE Paper No.C281/84.
[43]Nayfeh, Ali H. (1994), Applied Nonlinear Dynamics, John Wiley & Sons, Inc., New York.
[44]Prakash, J., Tiwari, K. (1982), Lubrication of a porous bearing with surface corrugations, ASME Journal of Lubrication Technology 104-127.
[45]Rossler, O. E. (1976), An Equation for Continuous Chaos, Physics Letters, Vol. 57A, no. 5, pp.397-398.
[46]Rossler, O. E. (1979), An Equation for Hyperchaos, Physics Letters, Vol.71, no. 2, 3, pp.155-156.
[47]Smale, S. (1963), Diffeomorphisms with many perodic points. In Differential and Combinatorial Topology, S. S. Cairns (ed.), pp. 63- 80. Princeton University Press: Prinecton.
[48]Smale, S. (1967), Differentiable Dynamical systems, Bull. Am. Math. Soc. 73, 748-817.
[49]Sundararajan, P. and Noah, S. T. (1997), Dynamics of Forced Nonlinear Systems Using Shooting/Arc-length Continuation Method-Application to Rotor Systems, ASME Journal of Vibration and Acoustics. Vol.119, pp.9-20.
[50]Sykes, J. E. H. and Holmes, R. (1990), The effect of bearing misalignment on the ono-linear vibration of aero-engine rotor-damper assemblies, Proceedings Institution of Mechanical Engineers 204, pp.83-99.
[51]Thompson, J. M. T. and Stewart, H. B. (1986), Nonlinear Dynamics and Chaos, New York, John Wiley and Sons.
[52]Zhao, J. Y., Linnett, I. W., and McLean, L. J. (1994), Subharmonic and Quasi-Periodic Motions of an Eccentric Squeeze Film Damper- Mounted Rigid Rotor, ASME Journal of Vibration and Acoustics. Vol. 116, pp.357-363,July.