跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/02 16:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳信宏
研究生(外文):Hsin-hung Wu
論文名稱:粗糙度效應對轉子-軸承系統非線性動態之分析
論文名稱(外文):Analysis of Non-linear Dynamic Behaviors on Rotor-Bearing System with Roughness Effect
指導教授:張簡才萬
指導教授(外文):Cai-Wan Chang-Jian
學位類別:碩士
校院名稱:義守大學
系所名稱:機械與自動化工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:87
中文關鍵詞:粗糙度混沌轉子-軸承非線性分岔圖軌跡圖龐卡萊映射圖頻譜圖最大李雅普諾夫指數
外文關鍵詞:RoughnessChaosRotor-BearingNon-linearPhase DiagramBifurcation diagramPoincarèsectionPower SpectrumThe largest lyapunov exponent
相關次數:
  • 被引用被引用:0
  • 點閱點閱:637
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主旨在探討粗糙度效應對轉子-軸承系統非線性動態之影響與分析,以數值分析去研究軸承支撐之轉子動態軌跡並考慮在非線性支撐及水平和垂直方向粗糙度之效應系統動態軌跡之影響,並同時分析轉子幾何中心和軸承幾何中心之動態行為。藉由動態軌跡圖、分岔圖、頻譜圖、龐卡萊映射圖及最大李雅普諾夫指數法分析系統的動態特性。
結果顯示不論是橫向或縱向粗糙度參數值對非線性轉子-軸承系統動態效應影響不大,但是在考慮有粗糙度和無粗糙度時動態響應的差異是非常的明顯。
此模擬結果未來將提供高速旋轉作業中,旋轉機構轉子-軸承系統研究理論的參考,特別是它考慮到軸承系統的粗糙度的效應,紊流流場和非線性支撐。
This research aims to study a numerical analysis to investigate the dynamic orbits of a rotor supported by two turbulent journal bearings considering longitudinal and transverse roughness effect under nonlinear suspension. The dynamic response of the rotor center and bearing center are studied. The dynamic trajectories of the rotor center and bearing center, bifurcation diagrams, Poincaré maps, Power Spectrum and the maximum Lyapunov exponent method are employed to analyze dynamic responses in this study.
The results show that either the longitudinal and transverse or the values of roughness parameters C1 would not affect strongly nonlinear rotor-bearing system very much but the difference of dynamic response between considering with roughness effect and without roughness effect are very obvious.
The modeling results provide some theoretical references for further researching of rotor-bearing system for rotating machinery that operate in highly rotational speed, especially it considers roughness effect, turbulent flow and nonlinear suspension of bearing system.
中文摘要Ⅰ
英文摘要Ⅱ
誌謝Ⅲ
總目錄Ⅳ
表目錄Ⅵ
圖目錄Ⅶ
符號說明Ⅸ
第一章 緒論1
1.1 前言1
1.2 文獻回顧2
1.3 研究目的與論文架構5
第二章 研究分析非線性動態與混沌的方法7
2.1 軌跡圖7
2.2 頻譜圖7
2.3 分岔圖9
2.4 龐卡萊映射圖14
2.5 最大李雅普諾夫指數19
第三章 轉子-軸承系統中混沌現象分析22
3.1 導論22
3.2 非線性油膜力23
3.2.1 雷諾方程式的建立23
3.3 粗糙度效應對轉子-軸承系統非線性動態分析29
3.3.1 運動方程式29
3.3.2 油膜力在短軸承的假設30
3.3.3 運動方程式無因次化33
第四章 結果與討論36
4.1 分岔圖分析36
4.2 動態軌跡圖分析38
4.3 頻譜圖分析39
4.4 龐卡萊暗射圖分析39
4.5 最大李雅普諾夫指數分析41
第五章 結論與未來研究方向70
參考文獻71
作者簡介77
表目錄
表4-1 不同轉速比區間內系統動態特性判續(c1=0.39/0.49)37
表4-2 不同轉速比區間內系統動態特性判續(c1=0)38
圖目錄
圖2-1 週期運動的頻譜圖8
圖2-2 非週期運動的頻譜圖8
圖2-3 誇臨界分岔圖10
圖2-4 音叉分岔圖:(a)音叉分岔圖樣(b)友音叉分岔圖12
圖2-5 邏輯疊代(Logistic)映像的倍周期分岔圖 13
圖2-6 邏輯疊代(Logistic)映像的局部3P倍周期分岔圖13
圖2-7 在3維空間的龐卡萊截面:(a)雙邊截面∑ (b)單邊截面15
圖2-8 週期解的龐卡萊截面:(a)一個交點;(b)兩個交點16
圖2-9 具時間週期項之二維非自律系統的動態軌跡與龐卡萊截面相交的情形:(a) (x1,x2,t) 空間;(b) (x1,x2,θ)空間17
圖2-10 Benettin法求最大李雅普諾夫指數示意圖21
圖3-1 滑動軸承剖面圖與座標系23
圖3-2 油膜座標系24
圖3-3 作用在油膜微元體 方向的力25
圖3-4 滑油微元體之流體流動圖27
圖3-5 一個轉子被二個橫向及縱向擾流軸承支撐之粗糙度效應系統29
圖4-1 轉子-軸承中心在水平及垂直方向的分岔圖(縱向粗糙度(C1=0.39))42
圖4-2 轉子-軸承中心在水平及垂直方向的分岔圖(縱向粗糙度(C1=0.49))43
圖4-3 轉子-軸承中心在水平及垂直方向的分岔圖(橫向粗糙度(C1=0.39))44
圖4-4 轉子-軸承中心在水平及垂直方向的分岔圖(橫向粗糙度(C1=0.49))45
圖4-5 轉子-軸承中心在水平及垂直方向的分岔圖(C1=0.0)46
圖4-6 S=0.5轉子-軸承中心軌跡圖(C1=0.39)47
圖4-7 S=1轉子-軸承中心軌跡圖(C1=0.39)48
圖4-8 S=1.2轉子-軸承中心軌跡圖(C1=0.39)49
圖4-9 S=1.6轉子-軸承中心軌跡圖(C1=0.39)50
圖4-10 S=2.2轉子-軸承中心軌跡圖(C1=0.39)51
圖4-11 S=2.4轉子-軸承中心軌跡圖(C1=0.39)52
圖4-12 S=2.8轉子-軸承中心軌跡圖(C1=0.39)53
圖4-13 S=2.9轉子-軸承中心軌跡圖(C1=0.39)54
圖4-14 S=3.0轉子-軸承中心軌跡圖(C1=0.39)55
圖4-15 S=3.2轉子-軸承中心軌跡圖(C1=0.39)56
圖4-16 S=3.4轉子-軸承中心軌跡圖(C1=0.39)57
圖4-17 S=1.0轉子-軸承中心頻譜分析圖(C1=0.39)58
圖4-18 S=1.6轉子-軸承中心頻譜分析圖(C1=0.39)59
圖4-19 S=2.9轉子-軸承中心頻譜分析圖(C1=0.39)60
圖4-20 S=3.0轉子-軸承中心頻譜分析圖(C1=0.39)61
圖4-21 S=3.2轉子-軸承中心頻譜分析圖(C1=0.39)62
圖4-22 S=0.5轉子-軸承中心龐卡萊映射圖(C1=0.39)63
圖4-23 S=1.0轉子-軸承中心龐卡萊映射圖(C1=0.39)63
圖4-24 S=1.2轉子-軸承中心龐卡萊映射圖(C1=0.39)64
圖4-25 S=1.6轉子-軸承中心龐卡萊映射圖(C1=0.39)64
圖4-26 S=2.2轉子-軸承中心龐卡萊映射圖(C1=0.39)65
圖4-27 S=2.4轉子-軸承中心龐卡萊映射圖(C1=0.39)65
圖4-28 S=2.8轉子-軸承中心龐卡萊映射圖(C1=0.39)66
圖4-39 S=2.9轉子-軸承中心龐卡萊映射圖(C1=0.39)66
圖4-30 S=3.0轉子-軸承中心龐卡萊映射圖(C1=0.39)67
圖4-31 S=3.2轉子-軸承中心龐卡萊映射圖(C1=0.39)67
圖4-32 S=3.4轉子-軸承中心龐卡萊映射圖(C1=0.39)68
圖4-33 S=1.6(a)、2.9(b)、3.0(c)時最大李雅普諾夫指數(C1=0.39)69
中文部份:
[1]姚賀騰(2000),轉子-油膜軸承系統之混沌行為分析與控制,博士論文,成功大學。
[2]劉秉正(1998),非線性動力學與混沌基礎,徐氏基金會。
[3]劉秉正(1998),非線性動力學與混沌基礎,徐氏基金會,141-142,234-252。
英文部份:
[1]Addision, P. S. (1995), On The Characterization of Non-linear Oscillator Sy-stems in Chaotic Mode, J. of Sound and Vibration, 179(3), 385-398.
[2]Adiletta, G., Guido, A.R., and Rossi,C. (1997). Nonlinear dynamics of a rigid unbalanced rotor in short bearings. Part Ⅱ:Experimental Analysis., Nonlinear Dynamics,14,157-189.
[3]Arnold, V. I. (1973), Ordinary Differential Equations, New York, Springer- Verlag.
[4]Arnold, V. I. (1973), Ordinary Differential Equations, New York, Springer -Verlag.
[5]Baker, G. L. and Gollub, J. P. 1900 Chaotic dynamics an introduction Cambridge university press.
[6]Bently, D. E. (1974), Forced Subrotative Speed Dynamic Action of Rotating Machinery, ASME Paper No.74-Pet-16.
[7]Birkhoff, G. D. (1927), On the Periodic Motion of Dynamical Systems, Acta Mathematica Vol. 50, pp. 359-365.
[8]Brown, R. D. (1994), Chaos in the Unbalance Response of Journal Bearings, Nonlinear Dynamics 5, 421-432.
[9]Capone, G., Russo, M. and Russo, R. (1987), Dynamic characteristics and stability of a journal bearing in a non-laminar lubrication regime, Tribology International 20 255-260.
[10]Chang-Jian, C. W., Chen, C. K. (2006), Bifurcation and chaos of a flexible rotor supported by turbulent journal bearings with nonlinear suspension, Proceedings Institution of Mechanical Engineering, Part J:Journal of Engineering Tribology, 220 549-561.
[11]Chang-Jian, C. W., Chen, C. K. (2006), Nonlinear dynamic analysis of a flexible rotor supported by micropolar fluid film journal bearings, International Journal of Engineering Sciences, 44 1050-1070.
[12]Child, D. W. (1982), Fractional Frequency Rotor Motion Due to Non- symmetric Clearance Effects, ASME Journal of Engineering for Power, July, pp.533-541.
[13]Christensen, H. (1969), Stochastic models for hydrodynamic lubrication of rough surfaces, Proceedings Institution of Mechanical Engineering (Part-I), 184 1013-1022.
[14]Constantinescu,V. N. (1962), Analysis of bearings operating in turbulent regime, Journal of Basic Engineering 139-151.
[15]Edward, Ott. (1993), Chaos in Dynamical Systems, New York, Cambridge University Press.
[16]Ehrich, F. F. (1988), High Order Subharmonic Response of High speed Rotor in Bearing Clearance, ASME Journal of Vibration and Acoustics, Stress and Reliability in Design, January, pp.9-16.
[17]Ehrich, F. F. (1988), High Order Subharmonic Rrsponse of High Speed Rotor in Bearing Clearance, ASME Journal of Vibration, Acoustics, Stress and Reliability in Design, January, pp.9-16.
[18]Ehrich, F. F. (1991), Some Observations of Chaotic Vibration Phenomena in High-Spees Rotordynamics, ASME Journal of Vibration and Acoustics. Vol. 113, pp.50-57, January.
[19]Elrod, H. G. and Ng, C. W. (1967), A theory for turbulent films and its application to bearings, Journal of Lubrication Technology 86 346-362.
[20]Erwin, Kramer, (1993) Dynamics of Rotors and Foundations, New York, Springer-Verlag.
[21]Gallegos, J. A. (1994), Nonlinear regulation of Lorenz system by feedback linearization techniques, Dynamics and Control, 4, pp.227-298.
[22]Gururajan, K. and Prakash, J. (2000), Effect of surface roughness in a narrow porous journal bearing, Journal of Tribology, 122 472.
[23]Hammad, A., Jonckheere E., Cheng C. Y., Bhajekar S. and Chien C. C. (1996), Sabilitization of chaotic dynamics: A modern control approach,Int’l J. of Contr., Vol. 64, pp.663-677.
[24]Hashimoto, H., Wada, S., Nojima, K. (1986), Performance characteristics of worn journal bearings in both laminar and turbulent regimes, Part I: steady state characteristics. ASLE Transactions 29 (4) 565-571.
[25]Hashimoto, H., Wada, S., Nojima, K. (1986), Performance characteristics of worn journal bearings in both laminar and turbulent regimes, Part I: steady state characteristics. ASLE Transactions 29 (4) 565-571.
[26]Hirs, G. G. (1973), A bulk-flow theory for turbulence in lubricants films, Journal of Lubrication Technology 95 137-146.
[27]Holmes, R. (1960), The vibration of a rigid shaft on short sleeve bearings, Journal of Mechanical Engineering Science 2, 337-341.
[28]Holmes, R. (1970), Non-linear performance of turbine bearings,Journal of Mechanical Engineering Science 12, pp377- 380.
[29]Kolmogorov, A. N. (1954), On conservation of conditionally periodic motions under small perturbations of the Hamiltonian. Dokl. Akad. Nauk. SSSR, 98 527-530.
[30]Kumar, A., Mishra, S. S. (1996), Stability of a rigid rotor in turbulent hydrodynamic worn journal bearings, WEAR 193 25-30.
[31]Lahmar, M., Haddad, A., Nicolas, D. (2000), An optimized short bearing theory for nonlinear dynamic analysis of turbulent journal bearings, European Journal of Mechanics- A/Solids 19 151-177.
[32]Lahmar, M., Haddad, A., Nicolas, D. (2000), An optimized short bearing theory for nonlinear dynamic analysis of turbulent journal bearings, European Journal of Mechanics- A/Solids 19 151-177.
[33]Li, T. Y. and Yorke, J. A.(1975), Period three implies chaos. Amer. Math. Monthly, 82, 985-992.
[34]Lin, J. R., Hsu, C. H., Lai, C. (2002), Surface roughness effects on the oscillating squeeze-film behaviour of long partial journal bearings, Computers & Structures, 80 297-303.
[35]Lin, J.R. (2000), Squeeze film characteristics between a sphere and a flat plate: couple stress fluid model, Computers & Structures, 75 73-80.
[36]Lin, T. R. (1996), The effects of three-dimensional irregularities on the performance characteristics of turbulent journal bearing, WEAR 196 126-132.
[37]Lorenz, E. N. (1963), Deterministic Non-periodic Flow, J. Atmos. Sci., Vol. 20, pp. 130-141.
[38]Mareels, I. M. Y. and Bitmead, R. R. (1986), Nonlinear dynamics in adaptive control: Chaotic and periodic stabilization, Automatica, Vol. 22, pp.641-665.
[39]May, R. M. (1976), Simple Mathematical with Very Complicated Dynamics, Nature Vol. 261, pp. 459-467.
[40]Moon,F.C. (1992), Chaotic and Fractal Dynamics, New York, John Wiley & Sons, Inc.
[41]Moser, J. (1973), Stable and Random Motions in Dynamical systems. Princeton University Press: Princeton.
[42]Muszynska, A.(1984), Partial Lateral Rotor to Stator Rubs, IMechE Paper No.C281/84.
[43]Nayfeh, Ali H. (1994), Applied Nonlinear Dynamics, John Wiley & Sons, Inc., New York.
[44]Prakash, J., Tiwari, K. (1982), Lubrication of a porous bearing with surface corrugations, ASME Journal of Lubrication Technology 104-127.
[45]Rossler, O. E. (1976), An Equation for Continuous Chaos, Physics Letters, Vol. 57A, no. 5, pp.397-398.
[46]Rossler, O. E. (1979), An Equation for Hyperchaos, Physics Letters, Vol.71, no. 2, 3, pp.155-156.
[47]Smale, S. (1963), Diffeomorphisms with many perodic points. In Differential and Combinatorial Topology, S. S. Cairns (ed.), pp. 63- 80. Princeton University Press: Prinecton.
[48]Smale, S. (1967), Differentiable Dynamical systems, Bull. Am. Math. Soc. 73, 748-817.
[49]Sundararajan, P. and Noah, S. T. (1997), Dynamics of Forced Nonlinear Systems Using Shooting/Arc-length Continuation Method-Application to Rotor Systems, ASME Journal of Vibration and Acoustics. Vol.119, pp.9-20.
[50]Sykes, J. E. H. and Holmes, R. (1990), The effect of bearing misalignment on the ono-linear vibration of aero-engine rotor-damper assemblies, Proceedings Institution of Mechanical Engineers 204, pp.83-99.
[51]Thompson, J. M. T. and Stewart, H. B. (1986), Nonlinear Dynamics and Chaos, New York, John Wiley and Sons.
[52]Zhao, J. Y., Linnett, I. W., and McLean, L. J. (1994), Subharmonic and Quasi-Periodic Motions of an Eccentric Squeeze Film Damper- Mounted Rigid Rotor, ASME Journal of Vibration and Acoustics. Vol. 116, pp.357-363,July.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊