跳到主要內容

臺灣博碩士論文加值系統

(44.211.84.185) 您好!臺灣時間:2023/05/30 06:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:沈盈良
研究生(外文):Ying-liang Shen
論文名稱:應用於樣品前處理及聚合酶連續反應之微流體晶片控制系統的開發
論文名稱(外文):Development of Controller System for Sample Pre-treatment and PCR Microfluidic Chip
指導教授:林志龍林志龍引用關係
指導教授(外文):Jr-Lung Lin
學位類別:碩士
校院名稱:義守大學
系所名稱:機械與自動化工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:78
中文關鍵詞:微型全程系統分析磁分離器微機電幫浦聚合酶連鎖反應
外文關鍵詞:Magnetic separatorMicropumpPCRMEMSMmicro total analysis system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:525
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:2
微全程分析系統的概念被引入,微流體系統的多項技術已經被成功發展。在微流體系統裡的各種各樣的操作,例如樣品準備,樣品注射,樣品操控,反應,分離和偵測,都被成功地應用在生物科技領域。微流體系統的優勢,計有:大量降低的試劑消耗和廢物產生、快速反應時間、和較大表面-體積率,提供使用的微流體系統和表面分析之間的本質相容性。
本文研究目的在設計並且製造全新自動化微型整合控制系統,整合幫浦,混合器,磁分離器和PCR等模組的自動化微型晶片控制系統。本文提出一個新型氣動式微幫浦,它利用三對移動牆依序作動來傳輸樣品,讓本文發展的整合型系統可以展現全自動傳輸。對於微型生醫技術系統,將樣品由流體中分離已經變成一個極具挑戰的工作,一般來講,磁分離器可以簡單地利用永久磁鐵於管道的壁面上吸附磁珠。不過,永久磁鐵的磁力難以改變控制其強與弱或開與關。而使用微機電製成的微線圈產生磁場強度,其製造程序複雜,且易於產生高溫效應而破壞生物檢體。因此,本文利用小型電磁鐵與散熱鰭片,產生磁場同時也不會有高溫現象發生。藉此產生磁場梯度以捕獲帶有病毒檢體的磁珠,進而達到從流體中分離效果。最後,樣品利用ITO微加熱器,執行三個溫度的循環作PCR以複製RNA序列。
實驗結果顯示:PCR加熱區具有溫度均勻性和穩定性。本文發展的整合型疾病偵測晶片全程自動化,這項技術將提供我們強有力工具以有效率和快速方法來偵測病毒。
Technologies and applications of microfluidic systems have been successfully developed since the concept of micro total analysis systems (µ-TAS) was introduced,. Various fluidic operations in microfluidic systems, such as sample preparation, sample injection, sample manipulation, reaction, separation, and detection, were successfully demonstrated in the biotechnological application. The advantage of microfluidic systems included of reduced reagent consumption and waste generation, fast reaction times, and a large surface-to-volume ratio, offering an intrinsic compatibility between the use of a microfluidic system and surface-based assay.
This study aimed to design and fabricate a new microfluidic chip, which automatically controlled by a digital controlled system, integrated with pumps, a mixer, a magnetic separator and a PCR chamber. Here, a new micro-pump actuating 3-pair moving wall structures in a series has been demonstrated for sample transportation. The moving wall structures are activated pneumatically by six buried side chambers which deform the channel walls and generate a transportation of the sample streams to the detected region. Efficiency pumping are achieved using the developed controlled system to perform auto-transportation. Samples separated from fluid stream have been a challenging work for the application of the miniaturized biomedical systems. Generally, magnetic separator can be as simple as the application of the permanent magnet to the wall of the channel to cause aggregation. However, the permanent magnet is difficult to control of magnetic intensity as well as the function of switch on/off. Besides, 2-D microcoils were not only too difficult to be microfabricated but also that could be generated higher temperature to damage the biosample. Thus, a small-scale electromagnetic was introduced to generate a magnetic field to capture the magnetic beads to separate from the fluid streams. Finally, samples were amplified the RNA sequence for three PCR thermocycling temperatures by using ITO heaters. Experimental results showed that heated area of PCR chamber exhibited the temperature uniformity with a thermal variation within ±1?C. The developed chips will automatically detect the sample of virus. The success of the proposed microfluidic system will assure us to have a powerful tool to detect virus in an efficient and fast way.
中文摘要I
英文摘要Ⅱ
誌謝IV
目錄V
表目錄Ⅷ
圖目錄IX
符號說明XII
第一章緒論
1-1 前言1
1-1-1 微機電系統技術應用2
1-1-2 生醫晶片種類簡介2
1-2 文獻回顧4
1-2-1 聚合醃連鎖反應4
1-2-2 微型氣動式幚浦9
1-2-3 磁分離器12
1-3 研究動機與目的13
1-4 論文架構14
第二章 研究方法與原理
2-1 氣動微幫浦17
2-1-1 氣動微幫浦設計17
2-1-2 微型幫浦晶片設計原理18
2-2 磁分離器設計20
2-3 ITO玻璃加熱器製作原理22
2-4 聚合醃連鎖反應原理 23
2-5 熱電偶溫度檢測原理25
2-6 PWM控制溫度原理27
第三章 晶片製程與控制器設計
3-1 前製程中的製程29
3-1-1 光罩製作29
3-1-2 晶片清潔31
3-1-3 黃光微影製程32
3-2 後製程中的製程37
3-3 ITO玻璃加熱器製作38
3-3-1 ITO導電玻璃網印(screen print)製程39
3-4 晶片封裝40
3-5 晶片控制器設計與製作42
3-5-1 控制器架構42
3-5-2 控制器電子電路45
第四章 結果與討論
4-1 晶片設備裝置47
4-2 氣動式幫浦晶片測試結果分析48
4-3 磁分離器測試結果分析50
4-4 PCR溫度循環測試結果分析53
4-4-1 ITO加熱器的溫度測試53
4-4-2 升溫/降溫速率量測56
4-4-3 恆溫控制情形57
第五章 結論與未來展望
5-1 結論59
5-2 未來展望59
參考文獻61
自述66
表目錄
表3-1 光罩型態與其相關條件30
圖目錄
圖1-1 實驗室晶片的示意圖3
圖1-2 早期的連續流式晶片6
圖1-3 Fukuba 的連續流式PCR 晶片構造圖7
圖1-4 以PDMS 為材質的連續流式晶片7
圖1-5 成功大學Lein整合之晶片示意圖(一)8
圖1-6 成功大學Lein整合之晶片示意圖(一)8
圖1-7 氣動蠕動型幫浦實驗圖10
圖1-8 氣動回轉式幫浦實驗圖11
圖1-9 S型幫浦實驗圖11
圖1-10 雙邊進氣腔室微幫浦示意圖12
圖2-1 新微型自動化疾病偵測晶片整合示意圖16
圖2-2 本計劃之研究流程圖17
圖2-3 (a)為無氣壓源薄膜未變形上視圖(b)為有氣壓源薄膜變形壓縮流道上視圖18
圖2-4 晶片的SEM圖(a)翻模後的PDMS(b)SU-8母膜18
圖2-5 側進室氣體驅動式微幫浦驅動流體示意圖19
圖2-6 小型電磁鐵21
圖2-7 電磁鐵加銅鰭片散熱模組21
圖2-8 整合晶片夾具磁分離器加散熱模組21
圖2-9 ITO加熱玻璃製作成品22
圖2-10 聚合醃連鎖反應步驟圖24
圖2-11 聚合醃連鎖反應序列以2n幾何複製圖25
圖2-12 熱電偶原理示意圖26
圖2-13 各種型態熱電偶的熱起電力曲線圖26
圖2-14 顯示了三種不同的PWM信號28
圖3-1 SU-8光阻微影製程表示圖33
圖3-2 正、負光阻經曝光、顯影後,所呈現的圖形結構(a)為正光阻(b)為負光阻34
圖3-3 ITO玻璃加熱器製作流程38
圖3-4 金屬網印製程示意圖40
圖3-5 晶片去除氣泡圖澆注成形時產生氣泡,利用真空幫浦機抽出氣泡圖形41
圖3-6 晶片封裝示意圖42
圖3-7 完整操控系統之簡單示意圖43
圖3-8 控制器架構方塊圖44
圖3-9 數位式控制器實體圖44
圖3-10 笙泉MPC82G516單晶片45
圖3-11 系統控制器內部結構圖(一) 46
圖3-12 系統控制器內部結構圖(二) 46
圖4-1 實驗裝置(晶片控制器+溫度記錄器+多功能電表及紅外線溫度顯影設備)47
圖4-2 雙邊氣動式幫浦輸送微流體實驗結果圖49
圖4-3 雙邊氣動式幫浦在不同操作壓力、操控頻率與流體流量之間關係圖50
圖4-4 電磁鐵輸入電壓與產生磁場強度及溫升圖51
圖4-5 磁珠懸浮液於離心管中自然沉澱情形52
圖4-6 電磁鐵吸引磁珠的情形53
圖4-7 ITO加熱器的溫度IR分佈圖54
圖4-8 PCR腔室95℃的溫度IR分佈圖55
圖4-9 PCR腔室57℃的溫度IR分佈圖55
圖4-10 PCR腔室72℃的溫度IR分佈圖55
圖4-11 PCR升溫降溫溫度曲線圖57
圖4-12 PCR溫度循環58
中文部份
[1]王志豪, “整合氣動式微閥門與微幫浦之多功能生醫微流體檢測晶片及其疾病偵測之應用,” 國立成功大學工程科學系碩士班碩士論文,2003.
[2]李文乾, “功能性微米磁珠之製備及其應用於細胞分離與特性分析的研究開發“,工程科技通訊第九十七期,2008 .
[3]李國賓, “下一波生物晶片-微流體生物晶片,” 科學發展, 385, 2005 .
[4]張志誠, “微機電技術,” 商周出版, pp. 62-69,100-110,2002
英文部份
[1]A. R. Bausch , F. Ziemann, A. A. Boulbitch, K . Jacobson, E. Sackmann, " Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrhrometry " , Biophys . J . 75 2038 -2049 , 1998 .
[2]B. Husband, M. Bu, A. G. R. Evans and T. Melvin, "Investigation for the Operation of an Integrated Peristaltic Micropump, " Journal of Micromechanics and Microengineering, 14, S64-S69, 2004.
[3]B.G. Hosu, K. Jakab, P. Banki, F.I. Toth, G. Forgacs, "Magnetic tweezers for intracellular applications",Rev. Sci. Instrum . 74 4158-4163,2003.
[4]C. H. Wang and G. B. Lee, "Automatic Bio-sensing Diagnostic Chips Integrated with Micro-pumps and Micro-valves for Multiple Disease Detection," Biosensors and Bioelectronics, 21, 419-425, 2004.
[5]C. H. Wang, and G. B. Lee, "Pneumatically driven peristaltic micropumps utilizing serpentine-shape channels," J. Micromech. Microeng., 16, 341–348, 2006.
[6]C. Haber, D. Wirtz, "Magnetic tweezers for DNA micromanipulation ", Rev. Sci. Instrum. 71 4561-4570, 2000.
[7]F. Ziemann﹐J. Radler, E. Sackmann, 〝Local measurements of viscoelastic moduli of entangled actin networks using an oscillating magnetic bead micro-rheometer〞, Biophys . J . 66 2210-2216 , 1994﹒
[8]F.J. Alenghat, B. Fabry, K.Y. Tsai, " Analysis of cell mechanics in single vinculin-deficient cells using a magnetic tweezers ", Biochem. Biopphys. Res. Commun. 277 93-99, 2000.
[9]H. P. Chou, M. A. Unger, and S. R. Quake, "A Microfabricated Rotary Pump, " Biomedical Microdevices, 3, 323-320, 2001
[10]H. Y. Tseng, C. H. Wang, and G. B Lee, "Membrane-activated microfluidic rotary devices for pumping and mixing, " Biomed. Microdev., 545-554, 2007.
[11]J. G. Spencer, "Piezoelectric micropump with three valves workingperistaltically , " Sensor Actuators A, 21–23, 203–206,1990.
[12]K. Sato, A. Hibara, M. Tokeshi, H. Hisamoto, and T. Kitamori, “Microchip-based chemical and biochemical analysis systems,” Journal of Chromatography A, vol. 987, pp. 197-204, 2003.
[13]K. Y. Lien, J. L. Lin, C. Y. Liu, H. Y. Lei and G. B. Lee, "Purification and enrichment of virus samples utilizing magnetic beads on a microfluidic system," Lab on a Chip, 7, 868-875, 2007.
[14]M . U . Kopp , A . J . de Mello , A . Manz , " Chemical alllplification : continuous-flow PCR on a chip , " Science , vol . 280 , May 1998 .
[15]M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer ands. R. Quake, " Monolithic microfabricated valves and pumps by multilayer soft lithography, " Science, 288 113–116, 2000.
[16]N. H. Chiem and D. J. Harrison, “Microchip systems for immunoassay: an integrated immunoreactor with electrophoretic separation for serum theophylline determination,” Clinical Chemistry, vol. 44, pp. 591-598, 1998.
[17]O. C. Jeong and S. S. Yang, "Fabrication and test of a thermopneumatic micropump with a corrugated p+ diaphragm, "Sensors Actuators A, 83, 249–255, 2000.
[18]P . J . Hung , P . J . Lee , P . Sabounchi , N . Aghdam , R . Lin and L . P . Lee , " A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array , " Lab on a chip,vol . 5 , pp . 44 -48 , 2005 .
[19]R. Zengerle , J. Ulrich, S. Kluge, M. Richter and A. Richter, "A bidirectional siliconmicropump," Sensors Actuators A, 50, 81–86,1995.
[20]S. B. Smith, L. Finzi, C. Bustamante, 〝Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads〞, Science 258 1122-1126 , 1992﹒
[21]S. Mutlu, C. Yu, P. Selvaganapathy, F. Svec,C. H. Mastrangelo and J. M. J. Frechet, "Micromachined Porous Polymer for Bubble Free Electro-osmotic Pump," Proceeding of IEEE MEMS 2002, Las Vegas, USA, 19-24, 2002.
[22]T . Fuktlba , T . Naganuma , and T . Fujii , " Microfabricated flow -through PCR device for in situ gene analysis in extreme environments , " Conference on miniaturized chemical and blochemlcal analysts systems , Squaw Valley , Califomia USA , Oct , 2003.
[23]V. Srinivasan, V. K. Pamula and R. B. Fair, "An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids "Lab on a chip.vol . 4 , pp . 310-315 , 2004 .
[24]W. C. Tang, T. C. H. Nguye and R. T. Howe, "Laterally driven polysilicon resonant microstructures," Sensors Actuators , 20, 25–32,1989.
[25]W. Zhang and C. H. Ahn, "A bidirectional magnetic micropump on a silicon wafer, " IEEE Solid-State Sensor and Actuator Workshop 1996 Technical Digest, 94–97, 1996
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊