跳到主要內容

臺灣博碩士論文加值系統

(44.211.34.178) 您好!臺灣時間:2024/11/02 21:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳毓晉
研究生(外文):Yu-Chin Wu
論文名稱:鳳梨葉粉對水溶液中銅及鉛之吸附特性研究
論文名稱(外文):Adsorption of Copper and Lead onto Pineapple Leaf Powder in aqueous solution
指導教授:翁誌煌翁誌煌引用關係
指導教授(外文):Chih-Huang Weng
學位類別:碩士
校院名稱:義守大學
系所名稱:土木與生態工程學系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:89
中文關鍵詞:吸附鳳梨葉粉廢水
外文關鍵詞:AdsorptionWastewaterCopperLeadPineapple leaf powder
相關次數:
  • 被引用被引用:3
  • 點閱點閱:1323
  • 評分評分:
  • 下載下載:74
  • 收藏至我的研究室書目清單書目收藏:0
本論文之研究目的為探討使用鳳梨葉粉(PLP)吸附水溶液中之重金屬。針對影響因子包括重金屬濃度、離子強度、pH及溫度做研究,動力吸附實驗結果顯示經鹼洗過後之鳳梨葉粉有對銅及鉛有最高去除率。整體而言,重金屬的吸附量隨著重金屬濃度及pH值增加而增加。由平衡吸附實驗結果得知,pH值為影響鳳梨葉粉吸附特性之關鍵因子。Langmuir等溫吸附模式可對其平衡吸附試驗做很好的描述,其參數顯示鳳梨葉粉對廢水中的鉛之最大單層吸附量可達0.6 mg/g。經由吸附過程得知其吸附反應為自發性吸熱反應。本研究成果顯示鳳梨葉粉可處理含鉛及銅之廢水。
The purpose of this study is to investigate the adsorption of Cu and Pb from wastewater using pineapple leaf powder (PLP). Factors such as metal concentration, ionic strength, pH, and temperature that may affect metal adsorption were evaluated. Results show that the PLP treated by NaOH exhibited a highest efficiency both for Cu and Pb. In general, the amount of Cu adsorbed increased with increasing metal concentration and pH. The results of equilibrium studies showed that the solution pH was a key factor affecting the adsorption characteristics. The adsorption equilibrium data was well fitted by Langmuir adsorption isotherm. The adsorption capacity of PLP for Pb was 0.6 mg/g as it was applied to a lead containing wastewater. The adsorption process was found to be spontaneous and endothermic. Results show that the PLP can be used to remove Cu and Pb from wastewater.
摘要I
AbstractII
誌謝III
總目錄IV
表目錄VII
圖目錄IX
第一章緒論1
1.1前言1
1.2研究動機1
1.3研究目的2
第二章文獻回顧3
2.1鳳梨之簡介3
2.2鳳梨葉資源化之技術5
2.3吸附6
2.3.1吸附原理6
2.3.2吸附種類6
2.4吸附模式7
2.4.1動力吸附模式7
2.4.2恆溫吸附模式8
2.5重金屬9
2.5.1重金屬的定義9
2.5.2銅10
2.5.3鉛10
2.5.4重金屬吸附文獻11
2.5.5植物葉粉吸附文獻13
第三章研究設計14
3.1研究儀器、設備及藥品14
3.2研究流程圖16
3.3.1吸附劑之製備17
3.3.2鳳梨葉粉之特性分析18
3.3.3溶液pH對Cu、Pb吸附之影響19
3.3.4鳳梨葉粉對Cu之動力吸附試驗19
3.3.5鳳梨葉粉對Cu之平衡吸附試驗20
3.3.6鳳梨葉粉對Pb之動力吸附試驗21
第四章特性分析23
4.1外觀分析23
4.2微觀分析23
4.3元素成份分析25
4.4傅利葉轉換紅外線光譜儀之官能基分析27
4.5BET比表面積分析30
第五章Cu之吸附特性研究31
5.1Cu動力吸附試驗31
5.1.1不同吸附劑對Cu吸附試驗31
5.1.2不同Cu濃度之影響33
5.1.3不同離子強度之影響36
5.1.4不同pH值之影響40
5.1.5不同溫度之影響43
5.2Cu平衡吸附試驗48
5.2.1不同pH之平衡吸附試驗48
5.2.2不同離子強度之平衡吸附試驗49
5.2.3不同溫度之平衡吸附試驗51
5.2.4各種吸附劑對Cu去除之比較53
第六章Pb之吸附特性研究55
6.1 Pb動力吸附試驗55
6.1.1不同吸附劑對Pb吸附試驗55
6.1.2不同Pb濃度之影響57
6.1.3不同離子強度之影響60
6.1.4不同pH值之影響64
6.1.5不同溫度之影響67
6.2Pb平衡吸附試驗72
6.2.1不同pH之平衡吸附試驗72
6.3Pb廢水動力吸附試驗73
6.4Pb廢水平衡吸附試驗75
6.4.1不同pH之平衡吸附試驗75
6.4.2鳳梨葉粉對Pb廢水之吸附等溫線76
6.4.3各種吸附劑對Pb去除之比較78
第七章結論與建議79
7.1結論79
7.2建議80
第八章參考文獻81
附錄-口試委員意見回覆87
[1]Acar, F.N., and Eren, Z., “Removal of Cu(II) ions by activated poplar sawdust (Samsun clone) from aqueous solutions,” Journal of Hazardous Materials, Vol. 137, p.909-914 (2006).
[2]Aksu, Z., “Determination of equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris,” Process Biochemistry, Vol. 38, p.89–99 (2002).
[3]Aman, T., Kazi, A. A., Sabri, M. U., and Bano, Q., “Potato peels as solid waste for the removal of heavy metal copper(II) from waste water/industrial effluent,” Colloids and Surfaces B: Biointerfaces, Vol. 63, p.116-121 (2008).
[4]Amarasinghe, B.M.W.P.K., and Williams, R.A., “Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater,” Chemical Engineering Journal, Vol. 132, p.299-309 (2007).
[5]An, H. K., and Kin, D. S., “Crab shell for the removal of heavy metals from. aqueous solution,” Water Research, Vol. 35, p.3551-3556 (2001).
[6]Argun, M.E., Dursun, S., Ozdemir C., and Karatas, M. “Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics,” Journal of Hazardous Materials, Vol. 141, p.77-85 (2007).
[7]Balasubramanaian, N., and Ahamed, A. J., Pollut. Res., Vol. 17, p.341 (1998).
[8]Barrera, H., Urena-Nunez F. Bilyeu, B., and Barrera-Denz, C., “Removal of chromium and toxic ions present in mine drainage by Ectodermis of Opuntia,” Journal of Hazardous Materials., Vol. 136, p.846-853 (2006).
[9]Benguella, B., and Benaissa H., “Cadmium removal from aqueous solutions by chitin: kinetic and equilibrium studies,” Water Research, Vol. 36, p.2463-2474 (2002).
[10]Bhattacharyya, K. G., and Sarma, A., “Adsorption characteristics of the dye, Brilliant Green, on Neem leaf powder,” Dyes and Pigments, Vol. 57, p.211-222 (2003).
[11]Bhattacharyya, K. G., and Sharma, A., “Adsorption of Pb(II) from aqueous solution by Azadirachta indica (Neem) leaf powder,” Journal of Hazardous Materials, Vol. 113, p.97-109 (2004).
[12]Bhattacharya, K. G., and Sharma, A., “Kinetics and thermodynamics of Methylene Blue adsorption on Neem (Azadirachta indica) leaf powder,” Dyes and Pigments, Vol. 65, p.51-59 (2005).
[13]Bhattacharyya, K. G., and Gupta, S. S., “Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review,” Advances in Colloid and Interface Science, Vol. 140, p.114-131 (2008).
[14]Chaari I., Fakhfakh, E., Chakroun, S., Bouzid, J., Boujelben, N., Feki, M., Rocha, F., and Jamoussi, F., “Lead removal from aqueous solutions by a tunisian smectitic clay,” Journal of Hazardous Materials, Vol. 156, p.545-551 (2008).
[15]Davis, T.A., Volesky, B., and Mucci, A., “A review of the biochemistry of heavy metal biosorption by browm algae,” Water Research, Vol. 37, p.4311-4330 (2003).
[16]Dimitrova, S. V., and Mehanjiev, D. R., “Lead removal from aqueous solutions by granulated Blast-Furnace Slag”, Water Research, Vol. 32, p.3289-3292 (1998).
[17]Elliott, D. W., and Zhang, W-X., “Field assessment of nanoscale bimetallic particles for groundwater treatment,” Environmental Science and Technology, Vol. 35, p.4922-4926 (2001).
[18]Fiol, N., Villaescusa, I., Martínez, M., Miralles, N., Poch, J., and Serarols, J., “Sorption of Pb(II),NI(II),Cu(II) and Cd(II) from aqueous solution by olive stone waste,” Separation and Purification Technology, Vol. 50, p.132-140 (2006).
[19]Guo, X., Zhang, S., and Shan, X. Q., “Adsorption of metal ions on lignin,” Journal of Hazardous Materials, Vol. 151, p.134-142 (2008).
[20]Han, R., Zou, W., Yu, W., Cheng, S., Wang, Y., and Shi, J., “Biosorption of methylene blue from aqueous solution by fallen phoenix tree''s leaves,” Journal of Hazardous Materials, Vol. 141, p.156-162 (2007).
[21]Ho, Y. S., Wase D.A.J., and Forster, C.F., “Kinetic studies of competitive heavy metal adsorption by sphagnum moss Peat,” Environmental Technology, Vol. 17, p.71-79 (1996).
[22]Ho, Y. S., “Removal of copper ions from aqueous solution by tree fern,” Water Research, Vol. 37, p.2323-2330 (2003).
[23]Ho, Y., and McKay, G., “Pseudo-second-order model for sorption processes,” Process Biochem., Vol. 34, p.451-465 (1999).
[24]Hou, S.C., Lin, C.I., and Kuo, S. l., “Heat regeneration of spent bleaching clay,” Journal of the Chinese Institute of Chemical Engineers, Vol. 30, p.501-506 (1999).
[25]Jaycok, M. J., and Parfitt, E. G., “Chemistry of Interfaces,” p.265-269 (1981).
[26]Khan, S., Reham R., and Khan M., “Adsorption of Cr(III), Cr(VI) and Ag(I) on bentonite,” Waste Management,” Vol. 15, p.271-282 (1995).
[27]Kuo, S., and Lotse, E. G., “Kinetics of phosphate adsorption and desorption by hematite and gibbsite,” Soil Science Society of America Journal, Vol. 116, p.400-406 (1973).
[28]Lagergren, S., “Zur theorie der sogenannten adsorption gelöster stoffe,” Kungliga Svenska Vetenskapsakademiens, Handlingar., Vol. 24, p.1-39 (1898)
[29]Langmuir, I., “The adsorption of gases on plane surfaces of glass, mica and platinum,” Journal of the American Chemical Society, Vol. 40, p.1361-1403 (1918).
[30]Mathur, A., and Rupainwar, D. C., “Removal of lead from polluted water by adsorption on fly ash,” Asia Environment, Vol. 10, p.19-25 (1988).
[31]Malkoc, E., and Nuhoglu, Y., “Fixed bed studies for the sorption of chromium(Ⅵ) ontotea factory waste,” Chemical Engineering Science, Vol. 61, p.4363-4372 (2006).
[32]Nies, D. H., “Microbial heavy-metal resistance,” Applied Microbiology and Biotechnology, Vol. 51, p.730-750 (1999).
[33]Nuhoglu, Y., Malkoc, E., Gürses, A., and Canpolat, N., “The removal of Cu(II) from aqueous by Ulothrix zonata,” Bioresource Technology, Vol. 85, p.331-333 (2002).
[34]Ponnusami, V., Vikram, S., and Srivastava, S.N., “Guava (Psidium guajava) leaf powder: Novel adsorbent for removal of methylene blue from aqueous solutions,” Journal of Hazardous Materials, Vol. 152, p.276-286 (2008).
[35]Reddad, Z., Gerente, C., Andres, Y., and Cloirec, P. L., “Adsorption of several metal Ions onto a low-cost biosorbent : kinetic and equilibrium studies,” Environmental Science and Technology, Vol. 36, p.2067-2073 (2002).
[36]Sarma, J., Sarma, A., and Bhattacharyya, K. G., “Biosorption of commercial dyes on Azadirachta indica leaf powder: A case study with a basic dye rhodamine B,” Industrial and Engineering Chemistry Research, Vol. 47, p.5433-5440 (2008).
[37]Sharma, A., and Bhattacharyya, K. G., “Azadirachta indica (Neem) leaf powder as a biosorbent for removal of Cd(II) from aqueous medium,” Journal of Hazardous Materials, Vol. 125, p.102-112 (2005).
[38]Sciban, M., Klasnja M., and Skrbic, B., “Modified softwood sawdust as adsorbent of heavy metal ions from water,” Journal of Hazardous Materials, Vol. 136, p.266-271 (2006).
[39]Vaughan, T., Seo, C. W., and Marshall, W. E., “Removal of selected metal ions from aqueous solution using modified corncobs,” Bioresource Technology, Vol. 78, p.133-139 (2001).
[40]Volesky, B., “Biosorption of Heavy Metals,” CRC Press, Boca Raton (1990).
[41]Wan Ngah, W.S., and Hanafiah, M.A.K.M., “Adsorption of copper on rubber (Hevea brasiliensis) leaf powder: Kinetic, equilibrium and thermodynamic studies,” Biochemical Engineering Journal, Vol. 39, p.521-530 (2008).
[42]Weng, C. H., Tsai, C. Z., Chu, S. H., and Sharma, Y. C., “Adsorption characteristics of copper(II) onto spent activated clay,” Separation and Purification Technology, Vol. 54, p.187-197 (2007).
[43]Weng, C. H., Chiang, P. C., and Chang, E. E., “Adsorption Characteristics of Cu(II) onto Industrial Wastewater Sludges,” Adsorption Science and Technology, Vol. 19, p.143-158 (2001).
[44]Weng, C. H., and Pan, Y. F., “Adsorption characteristics of Methylene Blue from Aqueous Solution by Sludge Ash,” Colloids and Surfaces A: Physicochem. Eng., Vol. 274, p.154-162 (2006).
[45]李俊福,環境基質對污染物的吸附,吸附專刊,第44期,第47-55頁。 (1997)。
[46]康有德,鳳梨,水果與果樹,第129-151頁,黎明文化出版社,台北,台灣。(1992)。
[47]黃春蘭,微量元素-金屬與非金屬,水質學,第189-215頁,藝軒圖書出版社,台北,台灣。(2003) 。
[48]趙承琛,吸附的種類,界面科學基礎,第20頁,復文圖書有限公司,台南,台灣。(2007) 。
[49]張清勤,鳳梨,台灣農家要覽(二),第25-32頁,豐年社,台北,台灣。 (1995)。
[50]張清勤,鮮食鳳梨品種特性及其生產適期,農藥世界,第148期,第80-83頁,農藥世界雜誌社,台中,台灣(1995)。
[51]蔡珮新,黑后葡萄酒製備之研究,國立台灣大學農業化學研究所碩士論文(2001)。
[52]農業統計年報,行政院農委會。台北,台灣(2006)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top