跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/29 02:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林文婷
研究生(外文):Wen-Ting Lin
論文名稱:慢性砷暴露造成小鼠大動脈管壁平滑肌的早期失常
論文名稱(外文):Early dysfunction of smooth muscle cells within the aorta in mice received chronic exposure to arsenic
指導教授:陳世杰陳世杰引用關係
指導教授(外文):Shih-Chieh Chen
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:84
中文關鍵詞:平滑肌血管動脈
外文關鍵詞:ArsenicSmooth muscle cellsSMCAorta
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
流行病學研究顯示砷暴露與心血管疾病之間有非常密切之關係。已知在血管受傷病變過程中,平滑肌細胞(smooth muscle cells, SMC)受到血小板衍生生長因子(platelet-derived growth factor-BB, PDGF-BB)刺激後,會由收縮(synthetic)態轉變為增生(proliferation)態,平滑肌之內分化指標蛋白smooth muscle 22-alpha (SM22α)表現隨之減少。小分子G蛋白RhoA及其下游作用分子Rho激酶(rho kinase1 and rho kinase 2;ROCK1 and ROCK2)與血管平滑肌的增生、移行、細胞凋亡有關。動物模式顯示小鼠經砷鹽(亞砷酸鈉)長期暴露(餵食)導致內皮細胞失常(dysfunction)。據此推測,砷鹽長期暴露也可能導致大型血管壁細胞失常。本研究採用原先建立之動物模式進行小鼠慢性砷暴露,分別以分子生物學實驗方法(蛋白質體學、mRNA表現量、西方墨點法)與形態學實驗方法探討砷暴露對大動脈管壁細胞的影響。以蛋白質體學檢測長期砷暴露後大動脈組織蛋白質的變化,與資料庫比對後,結果顯示經砷鹽餵食八週小鼠的大動脈組織蛋白質中,SM22α是五個確認蛋白質之一。mRNA表現量實驗結果指出砷暴露後ROCK2、SM22α與PDGF-BB皆顯著下降。而西方墨點法(Western blotting)實驗結果顯示砷暴露後ROCK2與SM22α的蛋白質表現量皆顯著下降。再以形態學檢測主動脈血管壁厚度與管內最長徑比值、SMC表面積比例,實驗結果顯示主動脈血管壁厚度與管內最長徑比值兩組之間無差異,然而SMC表面積比例在實驗組顯著減少。綜合上述實驗結果顯示慢性砷暴露,造成小鼠大動脈管壁平滑肌的早期失常(SMC表面積比例與SM22α表現量減少)。
Epidemiological studies have shown a very close relationship between arsenic exposure and cardiovascular diseases. In response to stimulation of platelet-derived growth factor-BB (PDGF-BB), smooth muscle cells (SMC) may transform from synthetic type to proliferation type, while expression of SM22α is down regulated in SMC. In SMC, RhoA and effectors Rho kinase 1 (ROCK1) and Rho kinase 2 (ROCK2) are implicated in various cellular functions, including migration, proliferation, and apoptosis. Microvascular dysfunction after chronic exposure to arsenic has been shown in mice suggests that arsenic-induced dysfunction may appear to be throughout the vessel wall including endothelium and SMC in aorta. With an established animal model, expression of either mRNA or protein was analyzed in arsenic-fed mice as compared to control mice using the techniques of PCR and Western blotting. Morphological changes including wall-to-lumen ratio and SMC coverage of aorta were also detected in aorta. In addition, the techniques of proteomics were also used to investigate differentially expressed proteins in aorta. The results of proteomics studies showed that SM22α was one of 5 identified proteins. Gene expression of ROCK2, SM22α and PDGF-BB appeared significant lower in arsenic-fed mice than control mice. The protein expression levels of ROCK2 and SM22α appeared the same as their mRNA expression. Although the ratios of wall-to-lumen appeared to be the same in two groups, SMC coverage appeared to be lower in arsenic-fed mice than control mice. The present results that decreased SMC coverage and down regulation of SM22α in arsenic-fed mice indicate chronic exposure to arsenic causes early dysfunction of SMC within the aorta.
Abstract...................5
中文摘要...................7
緒論.......................9
實驗設計..................16
步驟流程圖................17
縮寫表....................18
藥品與儀器................19
試劑配製..................24
材料與方法................28
結果......................41
討論......................45
參考文獻..................54
圖........................61
表........................77
附錄......................82
Akao, Y., Yamada, H., Nakagawa, Y., 2000. Arsenic-induced apoptosis in malignant cells in vitro. Leuk Lymphoma. 37, 53-63.
Almofti, M. R., Huang, Z., Yang, P., et al., 2006. Proteomic analysis of rat aorta during atherosclerosis induced by high cholesterol diet and injection of vitamin D3. Clin Exp Pharmacol Physiol. 33, 305-9.
Anderson, N. L., Anderson, N. G., 1998. Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis. 19, 1853-61.
Ang, A. H., Tachas, G., Campbell, J. H., et al., 1990. Collagen synthesis by cultured rabbit aortic smooth-muscle cells. Alteration with phenotype. Biochem J. 265, 461-9.
Bates, M. N., Smith, A. H., Hopenhayn-Rich, C., 1992. Arsenic ingestion and internal cancers: a review. Am J Epidemiol. 135, 462-76.
Bo, L., Hiroyuki, I., Otway, L., et al., 2002. The signaling protein Rho is necessary for vascular smooth muscle migration and survival but not for proliferation. Surgery. 132, 317-325.
Bond, M., Wu, Y. J., Sala-Newby, G. B., et al., 2008. Rho GTPase, Rac1, regulates Skp2 levels, vascular smooth muscle cell proliferation, and intima formation in vitro and in vivo. Cardiovasc Res. 80, 290-8.
Bostrom, H., Willetts, K., Pekny, M., et al., 1996. PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell. 85, 863-73.
Campbell, J. H., Campbell, G. R., 1994. The role of smooth muscle cells in atherosclerosis. Curr Opin Lipidol. 5, 323-30.
Chen, C. J., Chen, C. W., Wu, M. M., et al., 1992. Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. Br J Cancer. 66, 888-92.
Chen, C. J., Wang, C. J., 1990. Ecological correlation between arsenic level in well water and age-adjusted mortality from malignant neoplasms. Cancer Res. 50, 5470-4.
Chen, S.-C., Chen, W.-C., 2008. Vascular leakage induced by exposure to arsenic via increased production of NO, hydroxyl radical and peroxynitrite. Microvascular Research. 75, 373-380.
Chen, S.-C., Tsai, M.-H., Wang, H.-J., et al., 2007. Involvement of Substance P and Neurogenic Inflammation in Arsenic-Induced Early Vascular Dysfunction. Toxicol. Sci. 95, 82-88.
Chen, S. C., Tsai, M. H., Wang, H. J., et al., 2004. Vascular permeability alterations induced by arsenic. Hum Exp Toxicol. 23, 1-7.
Chiou, H. Y., Hsueh, Y. M., Liaw, K. F., et al., 1995. Incidence of internal cancers and ingested inorganic arsenic: a seven-year follow-up study in Taiwan. Cancer Res. 55, 1296-300.
Chiou, H. Y., Huang, W. I., Su, C. L., et al., 1997. Dose-response relationship between prevalence of cerebrovascular disease and ingested inorganic arsenic. Stroke. 28, 1717-23.
Corjay, M. H., Thompson, M. M., Lynch, K. R., et al., 1989. Differential effect of platelet-derived growth factor- versus serum-induced growth on smooth muscle alpha-actin and nonmuscle beta-actin mRNA expression in cultured rat aortic smooth muscle cells. J Biol Chem. 264, 10501-6.
Desai, A., Zhao, Y., Warren, J. S., 2008. Development of atherosclerosis in Balb/c apolipoprotein E-deficient mice. Cardiovascular Pathology. 17, 233-240.
Engel, R. R., Hopenhayn-Rich, C., Receveur, O., et al., 1994. Vascular effects of chronic arsenic exposure: a review. Epidemiol Rev. 16, 184-209.
Engel, R. R., Smith, A. H., 1994. Arsenic in drinking water and mortality from vascular disease: an ecologic analysis in 30 counties in the United States. Arch Environ Health. 49, 418-27.
Feil, S., Hofmann, F., Feil, R., 2004. SM22alpha modulates vascular smooth muscle cell phenotype during atherogenesis. Circ Res. 94, 863-5.
Funa, K., Uramoto, H., 2003. Regulatory mechanisms for the expression and activity of platelet-derived growth factor receptor. Acta Biochim Pol. 50, 647-58.
Harazny, J. M., Ritt, M., Baleanu, D., et al., 2007. Increased Wall:Lumen Ratio of Retinal Arterioles in Male Patients With a History of a Cerebrovascular Event. Hypertension. 50, 623-629.
Hautmann, M. B., Madsen, C. S., Owens, G. K., 1997. A transforming growth factor beta (TGFbeta) control element drives TGFbeta-induced stimulation of smooth muscle alpha-actin gene expression in concert with two CArG elements. J Biol Chem. 272, 10948-56.
Hedin, U., Bottger, B. A., Luthman, J., et al., 1989. A substrate of the cell-attachment sequence of fibronectin (Arg-Gly-Asp-Ser) is sufficient to promote transition of arterial smooth muscle cells from a contractile to a synthetic phenotype. Developmental Biology. 133, 489-501.
Heldin, C. H., Westermark, B., 1999. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev. 79, 1283-316.
Hellstrom, M., Kalen, M., Lindahl, P., et al., 1999. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development. 126, 3047-55.
Hoch, R. V., Soriano, P., 2003. Roles of PDGF in animal development. Development. 130, 4769-84.
Holycross, B. J., Blank, R. S., Thompson, M. M., et al., 1992. Platelet-derived growth factor-BB-induced suppression of smooth muscle cell differentiation. Circ Res. 71, 1525-32.
Hsueh, Y. M., Wu, W. L., Huang, Y. L., et al., 1998. Low serum carotene level and increased risk of ischemic heart disease related to long-term arsenic exposure. Atherosclerosis. 141, 249-57.
Intengan, H. D., Schiffrin, E. L., 2001. Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension. 38, 581-7.
Jawien, A., Bowen-Pope, D. F., Lindner, V., et al., 1992. Platelet-derived growth factor promotes smooth muscle migration and intimal thickening in a rat model of balloon angioplasty. J Clin Invest. 89, 507-11.
Jones, M. R., Ravid, K., 2004. Vascular smooth muscle polyploidization as a biomarker for aging and its impact on differential gene expression. J Biol Chem. 279, 5306-13.
Kamiyama, M., Utsunomiya, K., Taniguchi, K., et al., 2003. Contribution of Rho A and Rho kinase to platelet-derived growth factor-BB-induced proliferation of vascular smooth muscle cells. J Atheroscler Thromb. 10, 117-23.
Kaplan-Albuquerque, N., Garat, C., Van Putten, V., et al., 2003. Regulation of SM22 alpha expression by arginine vasopressin and PDGF-BB in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol. 285, H1444-52.
Keaney, J. F., Jr., 2000. Atherosclerosis: from lesion formation to plaque activation and endothelial dysfunction. Mol Aspects Med. 21, 99-166.
Kerns, W., Schwartz, L., Blanchard, K., et al., 2005. Drug-induced vascular injury--a quest for biomarkers. Toxicol Appl Pharmacol. 203, 62-87.
Kobayashi, N., Honda, T., Yoshida, K., et al., 2006. Critical role of bradykinin-eNOS and oxidative stress-LOX-1 pathway in cardiovascular remodeling under chronic angiotensin-converting enzyme inhibition. Atherosclerosis. 187, 92-100.
Kocher, O., Gabbiani, F., Gabbiani, G., et al., 1991. Phenotypic features of smooth muscle cells during the evolution of experimental carotid artery intimal thickening. Biochemical and morphologic studies. Lab Invest. 65, 459-70.
Kourembanas, S., Morita, T., Liu, Y., et al., 1997. Mechanisms by which oxygen regulates gene expression and cell-cell interaction in the vasculature. Kidney Int. 51, 438-43.
Kumjian, D. A., Wahl, M. I., Rhee, S. G., et al., 1989. Platelet-derived growth factor (PDGF) binding promotes physical association of PDGF receptor with phospholipase C. Proc Natl Acad Sci U S A. 86, 8232-6.
Lai, M. S., Hsueh, Y. M., Chen, C. J., et al., 1994. Ingested inorganic arsenic and prevalence of diabetes mellitus. Am J Epidemiol. 139, 484-92.
Lee, M. Y., Lee, Y. H., Lim, K. M., et al., 2005. Inorganic arsenite potentiates vasoconstriction through calcium sensitization in vascular smooth muscle. Environ Health Perspect. 113, 1330-5.
Li, X., Van Putten, V., Zarinetchi, F., et al., 1997. Suppression of smooth-muscle alpha-actin expression by platelet-derived growth factor in vascular smooth-muscle cells involves Ras and cytosolic phospholipase A2. Biochem J. 327 ( Pt 3), 709-16.
Libby, P., Warner, S. J., Salomon, R. N., et al., 1988. Production of platelet-derived growth factor-like mitogen by smooth-muscle cells from human atheroma. N Engl J Med. 318, 1493-8.
Loirand, G., Guerin, P., Pacaud, P., 2006. Rho kinases in cardiovascular physiology and pathophysiology. Circ Res. 98, 322-34.
Louden, C., Brott, D., Katein, A., et al., 2006. Biomarkers and mechanisms of drug-induced vascular injury in non-rodents. Toxicol Pathol. 34, 19-26.
Mack, C. P., Somlyo, A. V., Hautmann, M., et al., 2001. Smooth muscle differentiation marker gene expression is regulated by RhoA-mediated actin polymerization. J Biol Chem. 276, 341-7.
Matsui, T., Amano, M., Yamamoto, T., et al., 1996. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J. 15, 2208-16.
Mayr, M., Chung, Y. L., Mayr, U., et al., 2005. Proteomic and metabolomic analyses of atherosclerotic vessels from apolipoprotein E-deficient mice reveal alterations in inflammation, oxidative stress, and energy metabolism. Arterioscler Thromb Vasc Biol. 25, 2135-42.
Mayr, M., Zhang, J., Greene, A. S., et al., 2006. Proteomics-based development of biomarkers in cardiovascular disease: mechanistic, clinical, and therapeutic insights. Mol Cell Proteomics. 5, 1853-64.
McDonald, D. M., Bowden, J. J., Baluk, P., et al., 1996. Neurogenic inflammation. A model for studying efferent actions of sensory nerves. Adv Exp Med Biol. 410, 453-62.
Morgan, K. G., Gangopadhyay, S. S., 2001. Invited review: cross-bridge regulation by thin filament-associated proteins. J Appl Physiol. 91, 953-62.
Mosse, P. R., Campbell, G. R., Wang, Z. L., et al., 1985. Smooth muscle phenotypic expression in human carotid arteries. I. Comparison of cells from diffuse intimal thickenings adjacent to atheromatous plaques with those of the media. Lab Invest. 53, 556-62.
Nakagami, H., Nakagawa, N., Takeya, Y., et al., 2006. Model of vasculogenesis from embryonic stem cells for vascular research and regenerative medicine. Hypertension. 48, 112-9.
Newby, A. C., 2000. An overview of the vascular response to injury: a tribute to the late Russell Ross. Toxicol Lett. 112-113, 519-29.
Ng, J. C., Wang, J., Shraim, A., 2003. A global health problem caused by arsenic from natural sources. Chemosphere. 52, 1353-9.
Owens, G. K., 1995. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev. 75, 487-517.
Owens, G. K., 1998. Molecular control of vascular smooth muscle cell differentiation. Acta Physiol Scand. 164, 623-35.
Owens, G. K., Kumar, M. S., Wamhoff, B. R., 2004. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 84, 767-801.
Pandey, A., Mann, M., 2000. Proteomics to study genes and genomes. Nature. 405, 837-46.
Paul, D. S., Hernandez-Zavala, A., Walton, F. S., et al., 2007. Examination of the effects of arsenic on glucose homeostasis in cell culture and animal studies: development of a mouse model for arsenic-induced diabetes. Toxicol Appl Pharmacol. 222, 305-14.
Plump, A. S., Breslow, J. L., 1995. Apolipoprotein E and the apolipoprotein E-deficient mouse. Annu Rev Nutr. 15, 495-518.
Rahman, M., Tondel, M., Ahmad, S. A., et al., 1998. Diabetes mellitus associated with arsenic exposure in Bangladesh. Am J Epidemiol. 148, 198-203.
Rahman, M., Tondel, M., Ahmad, S. A., et al., 1999. Hypertension and arsenic exposure in Bangladesh. Hypertension. 33, 74-8.
Reaven, G. M., 1993. Role of insulin resistance in human disease (syndrome X): an expanded definition. Annu Rev Med. 44, 121-31.
Regan, C. P., Adam, P. J., Madsen, C. S., et al., 2000. Molecular mechanisms of decreased smooth muscle differentiation marker expression after vascular injury. J Clin Invest. 106, 1139-47.
Reusch, P., Wagdy, H., Reusch, R., et al., 1996. Mechanical strain increases smooth muscle and decreases nonmuscle myosin expression in rat vascular smooth muscle cells. Circ Res. 79, 1046-53.
Rolfe, B. E., Worth, N. F., World, C. J., et al., 2005. Rho and vascular disease. Atherosclerosis. 183, 1-16.
Rong, J. X., Shapiro, M., Trogan, E., et al., 2003. Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading. Proc Natl Acad Sci U S A. 100, 13531-6.
Ross, R., 1993. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 362, 801-9.
Ross, R., 1999. Atherosclerosis--an inflammatory disease. N Engl J Med. 340, 115-26.
Sanchez-Fernandez, M. A., Gallois, A., Riedl, T., et al., 2008. Osteoclasts control osteoblast chemotaxis via PDGF-BB/PDGF receptor beta signaling. PLoS ONE. 3, e3537.
Shibata, R., Kai, H., Seki, Y., et al., 2003. Rho-kinase inhibition reduces neointima formation after vascular injury by enhancing Bax expression and apoptosis. J Cardiovasc Pharmacol. 42 Suppl 1, S43-7.
Thomas, D. J., Styblo, M., Lin, S., 2001. The cellular metabolism and systemic toxicity of arsenic. Toxicol Appl Pharmacol. 176, 127-44.
Thyberg, J., Hultgardh-Nilsson, A., 1994. Fibronectin and the basement membrane components laminin and collagen type IV influence the phenotypic properties of subcultured rat aortic smooth muscle cells differently. Cell Tissue Res. 276, 263-71.
Tsai, M.-H., Chen, S.-C., Wang, H.-J., et al., 2005. A Mouse Model for the Study of Vascular Permeability Changes Induced by Arsenic. Toxicology Mechanisms and Methods. 15, 433 - 437.
Tseng, C. H., Chong, C. K., Chen, C. J., et al., 1995. Abnormal peripheral microcirculation in seemingly normal subjects living in blackfoot-disease-hyperendemic villages in Taiwan. Int J Microcirc Clin Exp. 15, 21-7.
Tseng, C. H., Chong, C. K., Chen, C. J., et al., 1996. Dose-response relationship between peripheral vascular disease and ingested inorganic arsenic among residents in blackfoot disease endemic villages in Taiwan. Atherosclerosis. 120, 125-33.
Tseng, C. H., Chong, C. K., Tseng, C. P., et al., 2003. Long-term arsenic exposure and ischemic heart disease in arseniasis-hyperendemic villages in Taiwan. Toxicol Lett. 137, 15-21.
Tseng, C. H., Tai, T. Y., Chong, C. K., et al., 2000. Long-term arsenic exposure and incidence of non-insulin-dependent diabetes mellitus: a cohort study in arseniasis-hyperendemic villages in Taiwan. Environ Health Perspect. 108, 847-51.
Tseng, W. P., 1977. Effects and dose--response relationships of skin cancer and blackfoot disease with arsenic. Environ Health Perspect. 19, 109-19.
Utsunomiya, I., Yoshihashi, E., Tanabe, S., et al., 2008. Expression and localization of Kv1 potassium channels in rat dorsal and ventral spinal roots. Exp Neurol. 210, 51-8.
Vahter, M. E., 2007. Interactions between Arsenic-Induced Toxicity and Nutrition in Early Life. J. Nutr. 137, 2798-2804.
Wamhoff, B. R., Hoofnagle, M. H., Burns, A., et al., 2004. A G/C element mediates repression of the SM22alpha promoter within phenotypically modulated smooth muscle cells in experimental atherosclerosis. Circ Res. 95, 981-8.
Wang, C. H., Jeng, J. S., Yip, P. K., et al., 2002. Biological gradient between long-term arsenic exposure and carotid atherosclerosis. Circulation. 105, 1804-9.
Wang, S. L., Chiou, J. M., Chen, C. J., et al., 2003. Prevalence of non-insulin-dependent diabetes mellitus and related vascular diseases in southwestern arseniasis-endemic and nonendemic areas in Taiwan. Environ Health Perspect. 111, 155-59.
Wei, L., Roberts, W., Wang, L., et al., 2001. Rho kinases play an obligatory role in vertebrate embryonic organogenesis. Development. 128, 2953-62.
Weiss, S., Frischknecht, K., Greutert, H., et al., 2007. Different migration of vascular smooth muscle cells from human coronary artery bypass vessels. Role of Rho/ROCK pathway. J Vasc Res. 44, 149-56.
Worth, N. F., Rolfe, B. E., Song, J., et al., 2001. Vascular smooth muscle cell phenotypic modulation in culture is associated with reorganisation of contractile and cytoskeletal proteins. Cell Motil Cytoskeleton. 49, 130-45.
Yoshida, T., Yamauchi, H., Fan Sun, G., 2004. Chronic health effects in people exposed to arsenic via the drinking water: dose-response relationships in review. Toxicol Appl Pharmacol. 198, 243-52.
Yu, H. S., Sheu, H. M., Ko, S. S., et al., 1984. Studies on blackfoot disease and chronic arsenism in southern Taiwan: with special reference to skin lesions and fluorescent substances. J Dermatol. 11, 361-70.
Zeidan, A., Sward, K., Nordstrom, I., et al., 2004. Ablation of SM22alpha decreases contractility and actin contents of mouse vascular smooth muscle. FEBS Lett. 562, 141-6.
蔡明憲, 神經性發炎在砷引起的血管傷害中所扮演的角色. 高雄醫學大學醫學研究所碩士論文, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top