跳到主要內容

臺灣博碩士論文加值系統

(3.235.174.99) 您好!臺灣時間:2021/07/24 18:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林志隆
研究生(外文):Chih-Lung Lin
論文名稱:二氫基女性素與腺苷酸A2A接受器促效劑治療蜘蛛膜下腔出血引發的腦血管痙攣與腦損傷之病理機轉與治療探討
論文名稱(外文):Pathogenic and therapeutic perspectives of 17beta-estradiol and adenosine AR2AR receptor agonist in the treatment of subarachnoid hemorrhage-induced vasospasm and brain injury
指導教授:洪純隆洪純隆引用關係關皚麗關皚麗引用關係
指導教授(外文):Shen-Long Hwong,Aij-Lie Kwan
學位類別:博士
校院名稱:高雄醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:207
中文關鍵詞:二氫基女性素腺苷酸AR2AR接受器蜘蛛膜下腔出血細胞凋亡
外文關鍵詞:17b-estradiol(E2)adenosine AR2AR receptorsubarachnoid hemorrhage(SAH)apoptosis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雖然蜘蛛膜下腔出血後之腦血管痙攣已被認定超過半世紀,它仍舊是顱內動脈瘤破裂蜘蛛膜下腔出血後病人一個常見且極可能造成殘疾的併發症。雖然極力的研究,造成蜘蛛膜下腔出血後腦血管痙攣的機轉仍未明,以致於要發展出有效的治療方法有所困難。目前臨床上仍無確定治療與預防的有效對策。雖然一般認為血液代謝物尤其是氧化血紅素(oxyhemoglobin)導致蜘蛛膜下腔出血後之腦血管痙攣(蜘蛛膜下腔出血後1-3天的急性腦血管痙攣與接著的延遲性腦血管痙攣),但真正的原因仍不確定。引發腦血管痙攣的病理原因與多種病理變化有關包括內皮的損傷、平滑肌因蜘蛛膜下腔血塊溶解所釋放出的收縮物質而收縮、血管的反應改變及血管壁對發炎或免疫的反應。
近十年來致力於以二氫基女性素(17beta-estradiol)減緩蜘蛛膜下腔出血後腦血管痙攣與續發性腦損傷機轉與治療之研究。不像其他的腦血管疾病,顱內動脈瘤的蜘蛛膜下腔出血較多發生於女性。性別不同是否對蜘蛛膜下腔出血的預設不同仍未有定論,女性賀爾蒙對蜘蛛膜下腔出血的影響也不清楚。研究的結果發現持續性全身給予二氫基女性素可以減緩蜘蛛膜下腔出血後的腦血管痙攣於大鼠的兩次蜘蛛膜下腔出血模式,二氫基女性素之保護作用可能為回復蜘蛛膜下腔出血引發的eNOS表現下降及減低蜘蛛膜下腔出血引發的iNOS表現增加。而後者之機轉是經由增加p65/ER的結合,接著抑制p65結合至iNOS DNA。接著我們證實二氫基女性素可經由調控apoptotic signals包括 tumor necrosis factor-a (TNF-a), caspase-3, Bcl-2, 與 Bax to prevent來減緩蜘蛛膜下腔出血後引發的續發性腦損傷。因此,二氫基女性素可視為治療蜘蛛膜下腔出血後苦無治療良方的腦血管痙攣一個未來發展的方向。
研究的另一方面著手於以腺苷酸A2A接受器促效劑在治療蜘蛛膜下腔出血引發腦血管痙攣與續發性腦損傷的效果。腺苷酸在所有哺乳類組織裡參與調節生理反應也在許多的病理情況下扮演一個重要的角色。腺苷酸活化血管可產生血管擴張或收縮的反應,至於何種腺苷酸接受器的亞型負責調控特別血管床的反應仍未有定論。本研究就針對腺苷酸之接受器A2A促效劑,來探討其對蜘蛛膜下腔出血後腦血管痙攣的作用,我們的結果發現第一個證據顯示腺苷酸A2A接受器促效劑可以減緩蜘蛛膜下腔出血後的腦血管痙攣,腺苷酸A2A接受器促效劑不只可回復eNOS且可抑制iNOS的過度表現,因此其抗腦血管痙攣是完全的,此結果更顯示出iNOS及eNOS在蜘蛛膜下腔出血後腦血管痙攣所扮演的重要角色,腺苷酸A2A接受器促效劑是將來研究治療蜘蛛膜下腔出血後腦血管痙攣的一個新方向,值得更進一步探討。
接著研究發現二氫基女性素可以經由求偶素接受器依賴機轉在蜘蛛膜下腔出血後增加腺苷酸A2A接受器與ERK的表現,來減緩蜘蛛膜下腔出血後腦血管痙攣與續發性腦損傷。腺苷酸A2A接受器與ERK的表現下降可能在蜘蛛膜下腔出血後引發之腦血管痙攣與續發性腦損傷上扮演重要的角色。也更進一步證明二氫基女性素可視為治療蜘蛛膜下腔出血後腦血管痙攣與續發性腦損傷的一個新治療法。

結論
將持續從藥理學、生物化學及分子生物學探討療蜘蛛膜下腔出血後腦血管痙攣的機轉,二氫基女性素擁有近十多年來治療蜘蛛膜下腔出血後腦血管痙攣藥物的綜合優點,有可能真正成為未來治療顱內動脈瘤破裂蜘蛛膜下腔出血後腦血管痙攣的一個好方法。唯有把以上機轉完全釐清,及更進一步研究治療蜘蛛膜下腔出血後腦血管痙攣的效果與安全性,才可運用到臨床,我希望在既有的基礎上,加快腳步,早日找到治療此一困擾許久,苦無良方的蜘蛛膜下腔出血後腦血管痙攣的良策,達到轉譯醫學的目地。
Although cerebral vasospasm associated subarachnoid hemorrhage (SAH) has been recognized for more than half a century, SAH-induced vasospasm is still a major cause of mortality and neurological morbidity in patients with rupture of intracranial aneurysm. Despite intensive research efforts, cerebral vasospasm remains incompletely understood from both the pathogenic and therapeutic perspectives. At present, no consistently efficacious and ubiquitously applied preventive and therapeutic measures are available in clinical practice. Though it is now widely accepted that blood products, especially oxyhemoglobin, contribute to cerebral vasospasm and that the arterial narrowing appears to be biphasic, with an initial acute phase of 1 to 3 days after SAH and a subsequent delayed phase, however, the agents responsible for the acute and the delayed phases of SAH-induced vasospasm have not been clearly identified. Many pathological processes have been proposed to explain the pathogenesis of delayed cerebral vasospasm after SAH, including endothelial damage, smooth muscle contraction, changes in vascular responsiveness, and inflammatory and/or immunological response of the vascular wall.
The role and mechanisms of 17beta-estradiol (E2) in the treatment of SAH-induced vasospasm and secondary brain injury have been evaluated for more than 10 years. Sex differences in the outcome of aneurysmal SAH are controversial, and the potential influence of estradiol on vasodilation is unclear. These study results demonstrated that continuous treatment with E2 at physiological levels prevents cerebral vasospasm following SAH. The beneficial effect of E2 may be in part related to the prevention of augmentation of inducible nitric oxide synthase (iNOS) expression and the preservation of normal endothelial nitric oxide synthase (eNOS) expression after SAH. The other possible mechanisms responsible for E2-induced vasodilation after SAH is the inhibition of the SAH-induced increase of iNOS by increasing the association of p65/ER, which in turn inhibits the binding of p65 to iNOS DNA. The next study showed that E2 acts at the apoptotic signals including tumor necrosis factor-a (TNF-a), caspase-3, Bcl-2, and Bax to prevent SAH-induced apoptotic death. E2 has an anti-apoptotic effect against brain injury of SAH via ER-dependent mechanisms. These data suggest potential applications of E2 in the treatment of SAH patients. However, the mechanism for E2 in the treatment of SAH-induced vasospasm and/or secondary brain injury is still controversial.
On the other hand, the effect of an adenosine A2A receptor (AR-A2A) agonist in the treatment of SAH-induced cerebrovasospasm was found. Impaired endothelium-dependent relaxation is present in vasospastic cerebral vessels after SAH and may result from deficient production of eNOS or increased production and/or activity of iNOS. Adenosine is a potent vasodilator and an important modulator of cardiovascular function. This was the first evidence that AR-A2A agonist is effective in preventing SAH-induced vasospasm without significant complications. The beneficial effect of AR-A2A agonists may be, at least in part, related to the prevention of augmented expression of iNOS and the preservation of normal eNOS expression following SAH. AR-A2A agonist holds promise in the treatment of cerebral vasospasm following SAH and merits further investigation.
Finally, the effect of E2 on the expression of AR-A2A in the treatment of SAH-induced vasospasm and secondary brain injury was evaluated. E2 was effective in attenuating SAH-induced cerebral vasospasm, decreasing apoptosis and increasing the expression of AR-A2A and ERK in the dentate gyrus after SAH. The down-regulated AR-A2A and ERK may play a role in vasospasm and apoptosis after SAH. The beneficial effect of E2 in attenuating SAH-induced vasospasm and apoptosis may be due to raised expression of AR-A2A and ERK via ER-dependent mechanisms. These data support further investigation of E2 in the treatment of SAH in humans.

Conclusions
In order to develop a safe and effective treatment in managing this devastating complication after aneurysmal rupture, continued investigation of the underlying mechanism of SAH-induced vasospasm from pharmacological, biochemical, and molecular biological studies is needed. The final goal is to translate the basic results to the clinical trial (from bench to bedside) to solve SAH-induced vasospasm; the most troublesome complication after aneurysmal rupture.
Acknowledgements-------------------------------------------------------------------------I

Table of Contents---------------------------------------------------------------------------II

Abstract of Dissertation in Chinese--------------------------------------------------1

Abstract of Dissertation------------------------------------------------------------------4

Chapter 1 Cerebrovasospasm Following an Experimental Subarachnoid Hemorrhage: Treatment and Pathogenesis

1.1. Introduction--------------------------------------------------------------------------------7
1.2. Pathogenic and therapeutic perspectives---------------------------------------------8
1.2.1. Endothelial damage--------------------------------------------------------------8
1.2.2. Smooth muscle contraction-----------------------------------------------------9
1.2.3. Inflammatory and/or immunological response of the vascular wall --10
1.2.4. Neuroprotection----------------------------------------------------------------10
1.2.5. Hormone therapy: The role of 17β-estradiol (E2) in the treatment of SAH-induced vasospasm-------------------------------------------------------12
1.3. The role of estrogen in the treatment of SAH-induced vasospasm and secondary brain injury ----------------------------------------------------------------12
1.3.1. The vasodilative effect of E2-----------------------------------------------12
1.3.2 The neuroprotective effect of E2--------------------------------------------13
1.4. The study design and the main goal of this study---------------------------------14

Chapter 2 The Eeffect of 17β-estradiol in Attenuating Experimental Subarachnoid Hemorrhage-induced Cerebral vasospasm

2.1. Abstract------------------------------------------------------------------------------------17
2.2. Introduction-------------------------------------------------------------------------------19
2.3. Materials and Methods ----------------------------------------------------------------20
2.3.1. Animals----------------------------------------------------------------------------20
2.3.2. Induction of experimental SAH----------------------------------------------21
2.3.2. Tissue morphometry-----------------------------------------------------------22
2.3.3. RT-PCR amplification of eNOS and iNOS mRNA------------------------22
2.3.4. Western blot analysis of eNOS and iNOS---------------------------------22
2.4. Results ------------------------------------------------------------------------------------23
2.4.1. General observations------------------------------------------------------------23
2.4.2. Serum levels of E2---------------------------------------------------------------23
2.4.3. Cross-sectional luminal area measurements-------------------------------24
2.4.4. The expression of eNOS and iNOS-mRNA --------------------------------24
2.4.5. The protein contents of eNOS and iNOS------------------------------------24
2.5. Discussion----------------------------------------------------------------------------------25

Chapter 3 17β-estradiol Protects Subarachnoid Hemorrhage- induced Apoptotic Cell Death

3.1. Abstract------------------------------------------------------------------------------------30
3.2. Introduction------------------------------------------------------------------------------31
3.3. Materials and Methods----------------------------------------------------------------32
3.3.1. Animals----------------------------------------------------------------------------32
3.3.2. Induction of Experimental SAH----------------------------------------------33
3.3.3. Tissue morphometry-----------------------------------------------------------33
3.3.4. Histochemical Analysis. --------------------------------------------------------33
3.3.5. Cell Death Assay. ---------------------------------------------------------------34
3.3.5. Western Blotting-----------------------------------------------------------------34
3.3.6. Measurement of Tumor Neurosis Factor-??---------------------------------35
3.3.7. Statistics ---------------------------------------------------------------------------35
3.4. Results-------------------------------------------------------------------------------------36
3.4.1. E2 exerted its anti-spastic effects on SAH through an ER-mediated pathway---------------------------------------------------------------------------36
3.4.2. Activation of ER is involved in the anti-apoptotic effect of E2 in the dentate gyrus after SAH-------------------------------------------------------37
3.4.3. Activation of ER is involved in the prevention effect of E2 in the SAH-induced up-regulations in activated caspase-3 protein------------38
3.4.4. Activation of ER is involved in the prevention effect of E2 in the SAH-induced down-regulations in Bcl-2 protein------------------------38
3.4.5. SAH with or without E2 and/or ICI 182,780 treatment has no significant change in the protein expression of Bax----------------------39
3.4.6. Activation of ER is involved in the prevention effect of E2 in the SAH-induced up-regulations in TNF-?? protein after SAH------------39
3.5. Discussion----------------------------------------------------------------------------------39
3.6. Conclusions -------------------------------------------------------------------------------44

Chapter 4 Attenuation of Experimental Subarachnoid Hemorrhage – induced Cerebral Vasospasm by the Adenosine A2A Receptor Agonist CGS 21680

4.1. Abstract------------------------------------------------------------------------------------45
4.2. Introduction-------------------------------------------------------------------------------47
4.3. Materials and Methods-----------------------------------------------------------------48
4.3.1. Animal Preparation and General Procedures-----------------------------48
4.3.2. Induction of Experimental SAH -------------------------------------------49
4.3.3. Perfusion–Fixation -----------------------------------------------------------50
4.3.4. Tissue Morphometric Study and Statistical Analysis ------------------50
4.3.5. Reverse Transcriptase–PCR Amplification of eNOS and iNOS mRNA--- --------------------------------------------------------------------------51
4.3.6. Western Blot Analysis of eNOS and iNOS ---------------------------------51
4.4. Results--------------------------------------------------------------------------------------52
4.4.1. General Observations --------------------------------------------------------52
4.4.2. Cross-Sectional Luminal Area Measurements --------------------------52
4.4.3. Expression of iNOS and eNOS mRNA ---------------------------------53
4.4.4. Expression of iNOS and eNOS Protein -------------------------------------53
4.5. Discussion --------------------------------------------------------------------------------54
4.6. Conclusions -------------------------------------------------------------------------------57

Chapter 5 17β-estradiol Activates Adenosine A2a Receptor after Subarachnoid Hemorrhage

5.1. Abstract------------------------------------------------------------------------------------58
5.2. Introduction-------------------------------------------------------------------------------60
5.3. Materials and Methods------------------------------------------------------------61
5.3.1. Animal Preparation-------------------------------------------------------------61
5.3.2. Induction of Experimental SAH----------------------------------------------62
5.3.3. Tissue Morphometry-----------------------------------------------------------63
5.3.4. Terminal dUTP Nick-End Labelling (TUNEL) Staining--------------63
5.3.5. AR-A2A, ERK1/2, Bcl and Bax Western Blotting ----------------------64
5.3.6. Data Analysis --------------------------------------------------------------------65
5.4. Results-------------------------------------------------------------------------------------65
5.4.1. General Observations-----------------------------------------------------------65
5.4.2. Cross-sectional Luminal Area Measurements---------------------------65
5.4.3. Total and TUNEL-positive Cell Quantifications-------------------------66
5.4.4. Bcl-2 and Bax Protein Expression--------------------------------------------66
5.4.5. AR-A2A and ERK Protein Expression-----------------------------------67
5.5. Discussion---------------------------------------------------------------------------------68
5.6. Conclusion--------------------------------------------------------------------------------70

Chapter 6 Conclusion and Further Study

6.1. The role of iNOS and eNOS in SAH-induced vasospasm----------------72
6.2. Estrogen in the treatment of SAH-induced vasospasm ------------------73
6.3. Secondary brain injury after SAH. -----------------------------------------73
6.4. Estrogen in the treatment of SAH-induced secondary brain injury-----74
6.5. Adenosine A2A receptor agonist in the treatment of SAH-induced vasospasm --------------------------------------------------------------------------75
6.6. E2 activates A2A receptor expression and attenulates subarachnoid hemorrhage-induced cerebral vasospasm and secondary brain injury---------------------------------------------------------------------------------75
6.7. Conclusion---------------------------------------------------------------------77
6.8. Further study-----------------------------------------------------------------------77

Reference--------------------------------------------------------------------------------------79

Appendix of Tables and Figures-------------------------------------------- i ~ xxv

Tables------------------------------------------------------------------------- i ~ iv

Figures------------------------------------------------------------------ v ~ xxiv

Publication List----------------------------------------------------------------------- xxv
1.Kassell, N. F., Sasaki, T., Colohan, A. R., and Nazar, G. Cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Stroke; a journal of cerebral circulation 16: 562-572, 1985.
2.Cook, D. A. Mechanisms of cerebral vasospasm in subarachnoid haemorrhage. Pharmacology & therapeutics 66: 259-284, 1995.
3.Kwan, A. L., Lin, C. L., Wu, C. S., Chen, E. F., Howng, S. L., Kassell, N. F., and Lee, K. S. Delayed administration of the K+ channel activator cromakalim attenuates cerebral vasospasm after experimental subarachnoid hemorrhage. Acta Neurochir (Wien) 142: 193-197, 2000.
4.Kwan, A. L., Lin, C. L., Chang, C. Z., Wu, H. J., Hwong, S. L., Jeng, A. Y., and Lee, K. S. Continuous intravenous infusion of CGS 26303, an endothelin-converting enzyme inhibitor, prevents and reverses cerebral vasospasm after experimental subarachnoid hemorrhage. Neurosurgery 49: 422-427; discussion 427-429, 2001.
5.Dietrich, H. H., and Dacey, R. G., Jr. Molecular keys to the problems of cerebral vasospasm. Neurosurgery 46: 517-530, 2000.
6.Grasso, G. An overview of new pharmacological treatments for cerebrovascular dysfunction after experimental subarachnoid hemorrhage. Brain Res Brain Res Rev 44: 49-63, 2004.
7.Zuccarello, M., Lewis, A. I., and Rapoport, R. M. Endothelin ETA and ETB receptors in subarachnoid hemorrhage-induced cerebral vasospasm. European journal of pharmacology 259: R1-2, 1994.
8.Lin, C. L., Shih, H. C., Dumont, A. S., Kassell, N. F., Lieu, A. S., Su, Y. F., Hwong, S. L., and Hsu, C. The effect of 17beta-estradiol in attenuating experimental subarachnoid hemorrhage-induced cerebral vasospasm. Journal of neurosurgery 104: 298-304, 2006.
9.Caulin-Glaser, T., Garcia-Cardena, G., Sarrel, P., Sessa, W. C., and Bender, J. R. 17 beta-estradiol regulation of human endothelial cell basal nitric oxide release, independent of cytosolic Ca2+ mobilization. Circulation research 81: 885-892, 1997.
10.Darkow, D. J., Lu, L., and White, R. E. Estrogen relaxation of coronary artery smooth muscle is mediated by nitric oxide and cGMP. The American journal of physiology 272: H2765-2773, 1997.
11.Dubey, R. K., and Jackson, E. K. Estrogen-induced cardiorenal protection: potential cellular, biochemical, and molecular mechanisms. American journal of physiology 280: F365-388, 2001.
12.Chen, Z., Yuhanna, I. S., Galcheva-Gargova, Z., Karas, R. H., Mendelsohn, M. E., and Shaul, P. W. Estrogen receptor alpha mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen. The Journal of clinical investigation 103: 401-406, 1999.
13.Hayashi, T., Yamada, K., Esaki, T., Kuzuya, M., Satake, S., Ishikawa, T., Hidaka, H., and Iguchi, A. Estrogen increases endothelial nitric oxide by a receptor-mediated system. Biochemical and biophysical research communications 214: 847-855, 1995.
14.Zancan, V., Santagati, S., Bolego, C., Vegeto, E., Maggi, A., and Puglisi, L. 17Beta-estradiol decreases nitric oxide synthase II synthesis in vascular smooth muscle cells. Endocrinology 140: 2004-2009, 1999.
15.Hutter, B. O., Kreitschmann-Andermahr, I., Mayfrank, L., Rohde, V., Spetzger, U., and Gilsbach, J. M. Functional outcome after aneurysmal subarachnoid hemorrhage. Acta neurochirurgica 72: 157-174, 1999.
16.Buchanan, K. M., Elias, L. J., and Goplen, G. B. Differing perspectives on outcome after subarachnoid hemorrhage: the patient, the relative, the neurosurgeon. Neurosurgery 46: 831-838; discussion 838-840, 2000.
17.Cahill, J., Calvert, J. W., and Zhang, J. H. Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 26: 1341-1353, 2006.
18.Zhou, C., Yamaguchi, M., Kusaka, G., Schonholz, C., Nanda, A., and Zhang, J. H. Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 24: 419-431, 2004.
19.Zubkov, A. Y., Ogihara, K., Bernanke, D. H., Parent, A. D., and Zhang, J. Apoptosis of endothelial cells in vessels affected by cerebral vasospasm. Surgical neurology 53: 260-266, 2000.
20.Hara, A., Yoshimi, N., and Mori, H. Evidence for apoptosis in human intracranial aneurysms. Neurological research 20: 127-130, 1998.
21.Kondo, S., Hashimoto, N., Kikuchi, H., Hazama, F., Nagata, I., and Kataoka, H. Apoptosis of medial smooth muscle cells in the development of saccular cerebral aneurysms in rats. Stroke; a journal of cerebral circulation 29: 181-188; discussion 189, 1998.
22.Nau, R., Haase, S., Bunkowski, S., and Bruck, W. Neuronal apoptosis in the dentate gyrus in humans with subarachnoid hemorrhage and cerebral hypoxia. Brain pathology (Zurich, Switzerland) 12: 329-336, 2002.
23.Schievink, W. I., Riedinger, M., Jhutty, T. K., and Simon, P. Racial disparities in subarachnoid hemorrhage mortality: Los Angeles County, California, 1985-1998. Neuroepidemiology 23: 299-305, 2004.
24.Dubal, D. B., Kashon, M. L., Pettigrew, L. C., Ren, J. M., Finklestein, S. P., Rau, S. W., and Wise, P. M. Estradiol protects against ischemic injury. J Cereb Blood Flow Metab 18: 1253-1258, 1998.
25.Toung, T. J., Traystman, R. J., and Hurn, P. D. Estrogen-mediated neuroprotection after experimental stroke in male rats. Stroke; a journal of cerebral circulation 29: 1666-1670, 1998.
26.Kawas, C., Resnick, S., Morrison, A., Brookmeyer, R., Corrada, M., Zonderman, A., Bacal, C., Lingle, D. D., and Metter, E. A prospective study of estrogen replacement therapy and the risk of developing Alzheimer''s disease: the Baltimore Longitudinal Study of Aging. Neurology 48: 1517-1521, 1997.
27.Shih, H. C., Lin, C. L., Lee, T. Y., Lee, W. S., and Hsu, C. 17beta-Estradiol inhibits subarachnoid hemorrhage-induced inducible nitric oxide synthase gene expression by interfering with the nuclear factor kappa B transactivation. Stroke; a journal of cerebral circulation 37: 3025-3031, 2006.
28.Lee, S. Y., Andoh, T., Murphy, D. L., and Chiueh, C. C. 17beta-estradiol activates ICI 182,780-sensitive estrogen receptors and cyclic GMP-dependent thioredoxin expression for neuroprotection. Faseb J 17: 947-948, 2003.
29.Yang, S. H., He, Z., Wu, S. S., He, Y. J., Cutright, J., Millard, W. J., Day, A. L., and Simpkins, J. W. 17-beta estradiol can reduce secondary ischemic damage and mortality of subarachnoid hemorrhage. J Cereb Blood Flow Metab 21: 174-181, 2001.
30.Liu, Z., Gastard, M., Verina, T., Bora, S., Mouton, P. R., and Koliatsos, V. E. Estrogens modulate experimentally induced apoptosis of granule cells in the adult hippocampus. The Journal of comparative neurology 441: 1-8, 2001.
31.Nunes, M. L., Liptakova, S., Veliskova, J., Sperber, E. F., and Moshe, S. L. Malnutrition increases dentate granule cell proliferation in immature rats after status epilepticus. Epilepsia 41 Suppl 6: S48-52, 2000.
32.Culmsee, C., Vedder, H., Ravati, A., Junker, V., Otto, D., Ahlemeyer, B., Krieg, J. C., and Krieglstein, J. Neuroprotection by estrogens in a mouse model of focal cerebral ischemia and in cultured neurons: evidence for a receptor-independent antioxidative mechanism. J Cereb Blood Flow Metab 19: 1263-1269, 1999.
33.Green, P. S., and Simpkins, J. W. Neuroprotective effects of estrogens: potential mechanisms of action. Int J Dev Neurosci 18: 347-358, 2000.
34.Jover, T., Tanaka, H., Calderone, A., Oguro, K., Bennett, M. V., Etgen, A. M., and Zukin, R. S. Estrogen protects against global ischemia-induced neuronal death and prevents activation of apoptotic signaling cascades in the hippocampal CA1. J Neurosci 22: 2115-2124, 2002.
35.Miller, N. R., Jover, T., Cohen, H. W., Zukin, R. S., and Etgen, A. M. Estrogen can act via estrogen receptor alpha and beta to protect hippocampal neurons against global ischemia-induced cell death. Endocrinology 146: 3070-3079, 2005.
36.Ostrowski, R. P., Colohan, A. R., and Zhang, J. H. Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab 25: 554-571, 2005.
37.Ferreri, N. R. Estrogen-TNF interactions and vascular inflammation. Am J Physiol Heart Circ Physiol 292: H2566-2569, 2007.
38.Srivastava, S., Weitzmann, M. N., Cenci, S., Ross, F. P., Adler, S., and Pacifici, R. Estrogen decreases TNF gene expression by blocking JNK activity and the resulting production of c-Jun and JunD. The Journal of clinical investigation 104: 503-513, 1999.
39.Xing, D., Feng, W., Miller, A. P., Weathington, N. M., Chen, Y. F., Novak, L., Blalock, J. E., and Oparil, S. Estrogen modulates TNF-alpha-induced inflammatory responses in rat aortic smooth muscle cells through estrogen receptor-beta activation. Am J Physiol Heart Circ Physiol 292: H2607-2612, 2007.
40.Davis, P. Stroke in women. Current opinion in neurology 7: 36-40, 1994.
41.Kongable, G. L., Lanzino, G., Germanson, T. P., Truskowski, L. L., Alves, W. M., Torner, J. C., and Kassell, N. F. Gender-related differences in aneurysmal subarachnoid hemorrhage. Journal of neurosurgery 84: 43-48, 1996.
42.Hino, A., Tokuyama, Y., Weir, B., Takeda, J., Yano, H., Bell, G. I., and Macdonald, R. L. Changes in endothelial nitric oxide synthase mRNA during vasospasm after subarachnoid hemorrhage in monkeys. Neurosurgery 39: 562-567; discussion 567-568, 1996.
43.Hirose, H., Ide, K., Sasaki, T., Takahashi, R., Kobayashi, M., Ikemoto, F., Yano, M., and Nishikibe, M. The role of endothelin and nitric oxide in modulation of normal and spastic cerebral vascular tone in the dog. European journal of pharmacology 277: 77-87, 1995.
44.Kim, P., Schini, V. B., Sundt, T. M., Jr., and Vanhoutte, P. M. Reduced production of cGMP underlies the loss of endothelium-dependent relaxations in the canine basilar artery after subarachnoid hemorrhage. Circulation research 70: 248-256, 1992.
45.Hatake, K., Wakabayashi, I., Kakishita, E., and Hishida, S. Impairment of endothelium-dependent relaxation in human basilar artery after subarachnoid hemorrhage. Stroke; a journal of cerebral circulation 23: 1111-1116; discussion 1116-1117, 1992.
46.Medele, R. J., Stummer, W., Reulen, H. J., and Steiger, H. J. Evidence for peroxidative damage by nitric oxide in experimental chronic cerebral vasospasm. Neurological research 18: 277-280, 1996.
47.Widenka, D. C., Medele, R. J., Stummer, W., Bise, K., and Steiger, H. J. Inducible nitric oxide synthase: a possible key factor in the pathogenesis of chronic vasospasm after experimental subarachnoid hemorrhage. Journal of neurosurgery 90: 1098-1104, 1999.
48.Sayama, T., Suzuki, S., and Fukui, M. Role of inducible nitric oxide synthase in the cerebral vasospasm after subarachnoid hemorrhage in rats. Neurological research 21: 293-298, 1999.
49.Grodstein, F., Stampfer, M. J., Manson, J. E., Colditz, G. A., Willett, W. C., Rosner, B., Speizer, F. E., and Hennekens, C. H. Postmenopausal estrogen and progestin use and the risk of cardiovascular disease. The New England journal of medicine 335: 453-461, 1996.
50.Geerts, A., Niki, T., Hellemans, K., De Craemer, D., Van Den Berg, K., Lazou, J. M., Stange, G., Van De Winkel, M., and De Bleser, P. Purification of rat hepatic stellate cells by side scatter-activated cell sorting. Hepatology (Baltimore, Md 27: 590-598, 1998.
51.Satta, M. A., Jacobs, R. A., Kaltsas, G. A., and Grossman, A. B. Endotoxin induces interleukin-1beta and nitric oxide synthase mRNA in rat hypothalamus and pituitary. Neuroendocrinology 67: 109-116, 1998.
52.Yamakawa, H., Jezova, M., Ando, H., and Saavedra, J. M. Normalization of endothelial and inducible nitric oxide synthase expression in brain microvessels of spontaneously hypertensive rats by angiotensin II AT1 receptor inhibition. J Cereb Blood Flow Metab 23: 371-380, 2003.
53.Sarrel, P. M. The differential effects of oestrogens and progestins on vascular tone. Human reproduction update 5: 205-209, 1999.
54.Butcher, R. L., Collins, W. E., and Fugo, N. W. Plasma concentration of LH, FSH, prolactin, progesterone and estradiol-17beta throughout the 4-day estrous cycle of the rat. Endocrinology 94: 1704-1708, 1974.
55.Khurana, V. G., Smith, L. A., Baker, T. A., Eguchi, D., O''Brien, T., and Katusic, Z. S. Protective vasomotor effects of in vivo recombinant endothelial nitric oxide synthase gene expression in a canine model of cerebral vasospasm. Stroke; a journal of cerebral circulation 33: 782-789, 2002.
56.McNeill, A. M., Zhang, C., Stanczyk, F. Z., Duckles, S. P., and Krause, D. N. Estrogen increases endothelial nitric oxide synthase via estrogen receptors in rat cerebral blood vessels: effect preserved after concurrent treatment with medroxyprogesterone acetate or progesterone. Stroke; a journal of cerebral circulation 33: 1685-1691, 2002.
57.Kuo, P. C., Abe, K., and Schroeder, R. A. Superoxide enhances interleukin 1beta-mediated transcription of the hepatocyte-inducible nitric oxide synthase gene. Gastroenterology 118: 608-618, 2000.
58.Handa, Y., Kaneko, M., Takeuchi, H., Tsuchida, A., Kobayashi, H., and Kubota, T. Effect of an antioxidant, ebselen, on development of chronic cerebral vasospasm after subarachnoid hemorrhage in primates. Surgical neurology 53: 323-329, 2000.
59.Saito, A., Kamii, H., Kato, I., Takasawa, S., Kondo, T., Chan, P. H., Okamoto, H., and Yoshimoto, T. Transgenic CuZn-superoxide dismutase inhibits NO synthase induction in experimental subarachnoid hemorrhage. Stroke; a journal of cerebral circulation 32: 1652-1657, 2001.
60.Park, K. W., Metais, C., Dai, H. B., Comunale, M. E., and Sellke, F. W. Microvascular endothelial dysfunction and its mechanism in a rat model of subarachnoid hemorrhage. Anesthesia and analgesia 92: 990-996, 2001.
61.Draeger, A., Amos, W. B., Ikebe, M., and Small, J. V. The cytoskeletal and contractile apparatus of smooth muscle: contraction bands and segmentation of the contractile elements. The Journal of cell biology 111: 2463-2473, 1990.
62.Longstreth, W. T., Jr., Koepsell, T. D., Yerby, M. S., and van Belle, G. Risk factors for subarachnoid hemorrhage. Stroke; a journal of cerebral circulation 16: 377-385, 1985.
63.Longstreth, W. T., Nelson, L. M., Koepsell, T. D., and van Belle, G. Subarachnoid hemorrhage and hormonal factors in women. A population-based case-control study. Annals of internal medicine 121: 168-173, 1994.
64.Johnston, S. C., Colford, J. M., Jr., and Gress, D. R. Oral contraceptives and the risk of subarachnoid hemorrhage: a meta-analysis. Neurology 51: 411-418, 1998.
65.Okamoto, K., Horisawa, R., Kawamura, T., Asai, A., Ogino, M., Takagi, T., and Ohno, Y. Menstrual and reproductive factors for subarachnoid hemorrhage risk in women: a case-control study in nagoya, Japan. Stroke; a journal of cerebral circulation 32: 2841-2844, 2001.
66.Hall, E. D., Pazara, K. E., and Linseman, K. L. Sex differences in postischemic neuronal necrosis in gerbils. J Cereb Blood Flow Metab 11: 292-298, 1991.
67.Simpkins, J. W., Rajakumar, G., Zhang, Y. Q., Simpkins, C. E., Greenwald, D., Yu, C. J., Bodor, N., and Day, A. L. Estrogens may reduce mortality and ischemic damage caused by middle cerebral artery occlusion in the female rat. Journal of neurosurgery 87: 724-730, 1997.
68.Simpson, R. K., Jr., Contant, C. F., Fischer, D. K., Cech, D. A., Robertson, C. S., and Narayan, R. K. Epidemiological characteristics of subarachnoid hemorrhage in an urban population. Journal of clinical epidemiology 44: 641-648, 1991.
69.Johnston, S. C., Selvin, S., and Gress, D. R. The burden, trends, and demographics of mortality from subarachnoid hemorrhage. Neurology 50: 1413-1418, 1998.
70.Thorogood, M., Mann, J., Murphy, M., and Vessey, M. Fatal stroke and use of oral contraceptives: findings from a case-control study. American journal of epidemiology 136: 35-45, 1992.
71.Matz, P. G., Fujimura, M., and Chan, P. H. Subarachnoid hemolysate produces DNA fragmentation in a pattern similar to apoptosis in mouse brain. Brain research 858: 312-319, 2000.
72.Prunell, G. F., Mathiesen, T., Diemer, N. H., and Svendgaard, N. A. Experimental subarachnoid hemorrhage: subarachnoid blood volume, mortality rate, neuronal death, cerebral blood flow, and perfusion pressure in three different rat models. Neurosurgery 52: 165-175; discussion 175-166, 2003.
73.Prunell, G. F., Svendgaard, N. A., Alkass, K., and Mathiesen, T. Delayed cell death related to acute cerebral blood flow changes following subarachnoid hemorrhage in the rat brain. Journal of neurosurgery 102: 1046-1054, 2005.
74.Matz, P., Weinstein, P., States, B., Honkaniemi, J., and Sharp, F. R. Subarachnoid injections of lysed blood induce the hsp70 stress gene and produce DNA fragmentation in focal areas of the rat brain. Stroke; a journal of cerebral circulation 27: 504-512; discussion 513, 1996.
75.Zhou, C., Yamaguchi, M., Colohan, A. R., and Zhang, J. H. Role of p53 and apoptosis in cerebral vasospasm after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 25: 572-582, 2005.
76.Hicks, R. R., Smith, D. H., Lowenstein, D. H., Saint Marie, R., and McIntosh, T. K. Mild experimental brain injury in the rat induces cognitive deficits associated with regional neuronal loss in the hippocampus. Journal of neurotrauma 10: 405-414, 1993.
77.Conrad, C. D., and Roy, E. J. Dentate gyrus destruction and spatial learning impairment after corticosteroid removal in young and middle-aged rats. Hippocampus 5: 1-15, 1995.
78.Richardson, J. T. Cognitive performance following rupture and repair of intracranial aneurysm. Acta neurologica Scandinavica 83: 110-122, 1991.
79.Amantea, G., Cammarano, M., Zefferino, L., Martin, A., Romito, G., Piccirillo, M., and Gentile, V. Molecular mechanisms responsible for the involvement of tissue transglutaminase in human diseases: Celiac Disease. Front Biosci 11: 249-255, 2006.
80.Maggi, A., Ciana, P., Belcredito, S., and Vegeto, E. Estrogens in the nervous system: mechanisms and nonreproductive functions. Annual review of physiology 66: 291-313, 2004.
81.Wise, P. M. Estrogens: protective or risk factors in brain function? Progress in neurobiology 69: 181-191, 2003.
82.Levin, E. R. Cellular functions of plasma membrane estrogen receptors. Steroids 67: 471-475, 2002.
83.Toran-Allerand, C. D. Estrogen and the brain: beyond ER-alpha and ER-beta. Experimental gerontology 39: 1579-1586, 2004.
84.Dhandapani, K. M., and Brann, D. W. Role of astrocytes in estrogen-mediated neuroprotection. Experimental gerontology 42: 70-75, 2007.
85.Li, J., Wu, M., Que, L., Wang, Y., Xu, X., Hu, Y., Ha, T., Li, C., Chen, Q., and Li, Y. 17beta-estradiol attenuates cardiac dysfunction and decreases NF-kappaB binding activity in mechanically stretched rat hearts. Steroids 73: 720-726, 2008.
86.Graham, S. H., Chen, J., and Clark, R. S. Bcl-2 family gene products in cerebral ischemia and traumatic brain injury. Journal of neurotrauma 17: 831-841, 2000.
87.Merry, D. E., and Korsmeyer, S. J. Bcl-2 gene family in the nervous system. Annual review of neuroscience 20: 245-267, 1997.
88.Springer, J. E., Nottingham, S. A., McEwen, M. L., Azbill, R. D., and Jin, Y. Caspase-3 apoptotic signaling following injury to the central nervous system. Clin Chem Lab Med 39: 299-307, 2001.
89.Linden, J. Molecular approach to adenosine receptors: receptor-mediated mechanisms of tissue protection. Annual review of pharmacology and toxicology 41: 775-787, 2001.
90.O''Regan, M. Adenosine and the regulation of cerebral blood flow. Neurological research 27: 175-181, 2005.
91.Phillis, J. W., and O''Regan, M. H. Effects of adenosine receptor antagonists on pial arteriolar dilation during carbon dioxide inhalation. European journal of pharmacology 476: 211-219, 2003.
92.Ralevic, V., and Burnstock, G. Receptors for purines and pyrimidines. Pharmacological reviews 50: 413-492, 1998.
93.Szentmiklosi, A. J., Ujfalusi, A., Cseppento, A., Nosztray, K., Kovacs, P., and Szabo, J. Z. Adenosine receptors mediate both contractile and relaxant effects of adenosine in main pulmonary artery of guinea pigs. Naunyn-Schmiedeberg''s archives of pharmacology 351: 417-425, 1995.
94.Vials, A., and Burnstock, G. A2-purinoceptor-mediated relaxation in the guinea-pig coronary vasculature: a role for nitric oxide. British journal of pharmacology 109: 424-429, 1993.
95.Tabrizchi, R., and Bedi, S. Pharmacology of adenosine receptors in the vasculature. Pharmacology & therapeutics 91: 133-147, 2001.
96.Abebe, W., Makujina, S. R., and Mustafa, S. J. Adenosine receptor-mediated relaxation of porcine coronary artery in presence and absence of endothelium. The American journal of physiology 266: H2018-2025, 1994.
97.Beckman, J. S., and Koppenol, W. H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. The American journal of physiology 271: C1424-1437, 1996.
98.Des Rosiers, C., and Nees, S. Functional evidence for the presence of adenosine A2-receptors in cultured coronary endothelial cells. Naunyn-Schmiedeberg''s archives of pharmacology 336: 94-98, 1987.
99.Abebe, W., Hussain, T., Olanrewaju, H., and Mustafa, S. J. Role of nitric oxide in adenosine receptor-mediated relaxation of porcine coronary artery. The American journal of physiology 269: H1672-1678, 1995.
100.Sobrevia, L., Yudilevich, D. L., and Mann, G. E. Activation of A2-purinoceptors by adenosine stimulates L-arginine transport (system y+) and nitric oxide synthesis in human fetal endothelial cells. The Journal of physiology 499 ( Pt 1): 135-140, 1997.
101.Li, J., Fenton, R. A., Wheeler, H. B., Powell, C. C., Peyton, B. D., Cutler, B. S., and Dobson, J. G., Jr. Adenosine A2a receptors increase arterial endothelial cell nitric oxide. The Journal of surgical research 80: 357-364, 1998.
102.Conti, A., Monopoli, A., Gamba, M., Borea, P. A., and Ongini, E. Effects of selective A1 and A2 adenosine receptor agonists on cardiovascular tissues. Naunyn-Schmiedeberg''s archives of pharmacology 348: 108-112, 1993.
103.Rubino, A., Ralevic, V., and Burnstock, G. Contribution of P1-(A2b subtype) and P2-purinoceptors to the control of vascular tone in the rat isolated mesenteric arterial bed. British journal of pharmacology 115: 648-652, 1995.
104.Gao, Z., Li, Z., Baker, S. P., Lasley, R. D., Meyer, S., Elzein, E., Palle, V., Zablocki, J. A., Blackburn, B., and Belardinelli, L. Novel short-acting A2A adenosine receptor agonists for coronary vasodilation: inverse relationship between affinity and duration of action of A2A agonists. The Journal of pharmacology and experimental therapeutics 298: 209-218, 2001.
105.Jarvis, M. F., Schulz, R., Hutchison, A. J., Do, U. H., Sills, M. A., and Williams, M. [3H]CGS 21680, a selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain. The Journal of pharmacology and experimental therapeutics 251: 888-893, 1989.
106.Levens, N., Beil, M., and Jarvis, M. Renal actions of a new adenosine agonist, CGS 21680A selective for the A2 receptor. The Journal of pharmacology and experimental therapeutics 257: 1005-1012, 1991.
107.Tuccinardi, T., Ortore, G., Manera, C., Saccomanni, G., and Martinelli, A. Adenosine receptor modelling. A1/A2a selectivity. European journal of medicinal chemistry 41: 321-329, 2006.
108.Day, Y. J., Marshall, M. A., Huang, L., McDuffie, M. J., Okusa, M. D., and Linden, J. Protection from ischemic liver injury by activation of A2A adenosine receptors during reperfusion: inhibition of chemokine induction. Am J Physiol Gastrointest Liver Physiol 286: G285-293, 2004.
109.Osuka, K., Watanabe, Y., Yamauchi, K., Nakazawa, A., Usuda, N., Tokuda, M., and Yoshida, J. Activation of the JAK-STAT signaling pathway in the rat basilar artery after subarachnoid hemorrhage. Brain research 1072: 1-7, 2006.
110.Suzuki, H., Kanamaru, K., Tsunoda, H., Inada, H., Kuroki, M., Sun, H., Waga, S., and Tanaka, T. Heme oxygenase-1 gene induction as an intrinsic regulation against delayed cerebral vasospasm in rats. The Journal of clinical investigation 104: 59-66, 1999.
111.Ecker, A., and Riemenschneider, P. A. Arteriographic demonstration of spasm of the intracranial arteries, with special reference to saccular arterial aneurysms. Journal of neurosurgery 8: 660-667, 1951.
112.Furchgott, R. F., and Zawadzki, J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373-376, 1980.
113.Feelisch, M., te Poel, M., Zamora, R., Deussen, A., and Moncada, S. Understanding the controversy over the identity of EDRF. Nature 368: 62-65, 1994.
114.Forstermann, U., Closs, E. I., Pollock, J. S., Nakane, M., Schwarz, P., Gath, I., and Kleinert, H. Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23: 1121-1131, 1994.
115.Faraci, F. M., and Heistad, D. D. Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiological reviews 78: 53-97, 1998.
116.Geller, D. A., Nussler, A. K., Di Silvio, M., Lowenstein, C. J., Shapiro, R. A., Wang, S. C., Simmons, R. L., and Billiar, T. R. Cytokines, endotoxin, and glucocorticoids regulate the expression of inducible nitric oxide synthase in hepatocytes. Proceedings of the National Academy of Sciences of the United States of America 90: 522-526, 1993.
117.Knowles, R. G., and Moncada, S. Nitric oxide synthases in mammals. The Biochemical journal 298 ( Pt 2): 249-258, 1994.
118.Moncada, S., and Higgs, E. A. Molecular mechanisms and therapeutic strategies related to nitric oxide. Faseb J 9: 1319-1330, 1995.
119.Edwards, D. H., Byrne, J. V., and Griffith, T. M. The effect of chronic subarachnoid hemorrhage on basal endothelium-derived relaxing factor activity in intrathecal cerebral arteries. Journal of neurosurgery 76: 830-837, 1992.
120.Hongo, K., Kassell, N. F., Nakagomi, T., Sasaki, T., Tsukahara, T., Ogawa, H., Vollmer, D. G., and Lehman, R. M. Subarachnoid hemorrhage inhibition of endothelium-derived relaxing factor in rabbit basilar artery. Journal of neurosurgery 69: 247-253, 1988.
121.Kim, P., Lorenz, R. R., Sundt, T. M., Jr., and Vanhoutte, P. M. Release of endothelium-derived relaxing factor after subarachnoid hemorrhage. Journal of neurosurgery 70: 108-114, 1989.
122.Kim, P., Sundt, T. M., Jr., and Vanhoutte, P. M. Alterations in endothelium-dependent responsiveness of the canine basilar artery subarachnoid hemorrhage. Journal of neurosurgery 69: 239-246, 1988.
123.Onoue, H., Kaito, N., Akiyama, M., Tomii, M., Tokudome, S., and Abe, T. Altered reactivity of human cerebral arteries after subarachnoid hemorrhage. Journal of neurosurgery 83: 510-515, 1995.
124.Kasuya, H., Weir, B. K., Nakane, M., Pollock, J. S., Johns, L., Marton, L. S., and Stefansson, K. Nitric oxide synthase and guanylate cyclase levels in canine basilar artery after subarachnoid hemorrhage. Journal of neurosurgery 82: 250-255, 1995.
125.Naveri, L., Stromberg, C., and Saavedra, J. M. Angiotensin IV reverses the acute cerebral blood flow reduction after experimental subarachnoid hemorrhage in the rat. J Cereb Blood Flow Metab 14: 1096-1099, 1994.
126.Macdonald, R. L., and Weir, B. K. A review of hemoglobin and the pathogenesis of cerebral vasospasm. Stroke; a journal of cerebral circulation 22: 971-982, 1991.
127.Schmidt, R., Fazekas, F., Reinhart, B., Kapeller, P., Fazekas, G., Offenbacher, H., Eber, B., Schumacher, M., and Freidl, W. Estrogen replacement therapy in older women: a neuropsychological and brain MRI study. Journal of the American Geriatrics Society 44: 1307-1313, 1996.
128.Lin, C. L., Dumont, A. S., Wu, S. C., Wang, C. J., Howng, S. L., Huang, Y. F., Wong, W. Y., Kassell, N. F., Jeng, A. Y., and Kwan, A. L. 17beta-estradiol inhibits endothelin-1 production and attenuates cerebral vasospasm after experimental subarachnoid hemorrhage. Exp Biol Med (Maywood) 231: 1054-1057, 2006.
129.Lin, C. L., Shih, H. C., Lieu, A. S., Lee, K. S., Dumont, A. S., Kassell, N. F., Howng, S. L., and Kwan, A. L. Attenuation of experimental subarachnoid hemorrhage--induced cerebral vasospasm by the adenosine A2A receptor agonist CGS 21680. Journal of neurosurgery 106: 436-441, 2007.
130.Cassada, D. C., Tribble, C. G., Long, S. M., Laubach, V. E., Kaza, A. K., Linden, J., Nguyen, B. N., Rieger, J. M., Fiser, S. M., Kron, I. L., and Kern, J. A. Adenosine A2A analogue ATL-146e reduces systemic tumor necrosing factor-alpha and spinal cord capillary platelet-endothelial cell adhesion molecule-1 expression after spinal cord ischemia. J Vasc Surg 35: 994-998, 2002.
131.Lee, H. T., and Emala, C. W. Systemic adenosine given after ischemia protects renal function via A(2a) adenosine receptor activation. Am J Kidney Dis 38: 610-618, 2001.
132.Rivo, J., Zeira, E., Galun, E., Einav, S., Linden, J., and Matot, I. Attenuation of reperfusion lung injury and apoptosis by A2A adenosine receptor activation is associated with modulation of Bcl-2 and Bax expression and activation of extracellular signal-regulated kinases. Shock (Augusta, Ga 27: 266-273, 2007.
133.Walker, B. A., Rocchini, C., Boone, R. H., Ip, S., and Jacobson, M. A. Adenosine A2a receptor activation delays apoptosis in human neutrophils. J Immunol 158: 2926-2931, 1997.
134.Yasui, K., Agematsu, K., Shinozaki, K., Hokibara, S., Nagumo, H., Nakazawa, T., and Komiyama, A. Theophylline induces neutrophil apoptosis through adenosine A2A receptor antagonism. Journal of leukocyte biology 67: 529-535, 2000.
135.Strickler, J., Jacobson, K. A., and Liang, B. T. Direct preconditioning of cultured chick ventricular myocytes. Novel functions of cardiac adenosine A2a and A3 receptors. The Journal of clinical investigation 98: 1773-1779, 1996.
136.Lai, E. W., Toledo-Pereyra, L. H., Walsh, J., Lopez-Neblina, F., and Anaya-Prado, R. The role of MAP kinases in trauma and ischemia-reperfusion. J Invest Surg 17: 45-53, 2004.
137.Sexl, V., Mancusi, G., Holler, C., Gloria-Maercker, E., Schutz, W., and Freissmuth, M. Stimulation of the mitogen-activated protein kinase via the A2A-adenosine receptor in primary human endothelial cells. The Journal of biological chemistry 272: 5792-5799, 1997.
138.Andine, P. Involvement of adenosine in ischemic and postischemic calcium regulation. Mol Chem Neuropathol 18: 35-49, 1993.
139.Bonita, R., and Thomson, S. Subarachnoid hemorrhage: epidemiology, diagnosis, management, and outcome. Stroke; a journal of cerebral circulation 16: 591-594, 1985.
140.Rivo, J., Zeira, E., Galun, E., and Matot, I. Activation of A3 adenosine receptors attenuates lung injury after in vivo reperfusion. Anesthesiology 101: 1153-1159, 2004.
141.Khan, T. A., Bianchi, C., Ruel, M., Voisine, P., and Sellke, F. W. Mitogen-activated protein kinase pathways and cardiac surgery. The Journal of thoracic and cardiovascular surgery 127: 806-811, 2004.
142.Schulte, G., and Fredholm, B. B. Human adenosine A(1), A(2A), A(2B), and A(3) receptors expressed in Chinese hamster ovary cells all mediate the phosphorylation of extracellular-regulated kinase 1/2. Molecular pharmacology 58: 477-482, 2000.
143.Seidel, M. G., Klinger, M., Freissmuth, M., and Holler, C. Activation of mitogen-activated protein kinase by the A(2A)-adenosine receptor via a rap1-dependent and via a p21(ras)-dependent pathway. The Journal of biological chemistry 274: 25833-25841, 1999.
144.Cheng, H. C., Shih, H. M., and Chern, Y. Essential role of cAMP-response element-binding protein activation by A2A adenosine receptors in rescuing the nerve growth factor-induced neurite outgrowth impaired by blockage of the MAPK cascade. The Journal of biological chemistry 277: 33930-33942, 2002.
145.Lin, C. L., Dumont, A. S., Su, Y. F., Tsai, Y. J., Huang, J. H., Chang, K. P., Howng, S. L., Kwan, A. L., Kassell, N. F., and Kao, C. H. Attenuation of cerebral vasospasm and secondary injury by 17Beta-estradiol following experimental subarachnoid hemorrhage. Journal of neurosurgery, 2009.
146.Belardinelli, L., Linden, J., and Berne, R. M. The cardiac effects of adenosine. Progress in cardiovascular diseases 32: 73-97, 1989.
147.Lin, C. L., Dumont, A. S., Tsai, Y. J., Huang, J. H., Chang, K. P., Kwan, A. L., Hong, Y. R., and Howng, S. L. 17β-estradiol activates adenosine A2a receptor after subarachnoid hemorrhage. Journal of Surgical Research 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊