跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/30 19:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊彥文
研究生(外文):Yen-Wen Yang
論文名稱:TTDA-NP-Legumain配位子及其釓金屬錯合物之合成及特性研究
論文名稱(外文):Synthetic and Characteristic Studies of Gd-TTDA-NP-Legumain Complex
指導教授:陳泊余
指導教授(外文):Po-Yu Chen
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:醫藥暨應用化學研究所碩士在職專班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:84
中文關鍵詞:釓金屬錯合物胜肽磁振造影
外文關鍵詞:Gd ComplexLegumain PeptideMRI
相關次數:
  • 被引用被引用:0
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要為合成TTDA (3,6,10-tri(carboxymethyl)-3,6,10- triazadodecanedioic acid)衍生物,2-methyl-4-isothiocynatephenol-3,6,10- tris(methoxycarbonyl)-3,6,10-triazado-decanedioic acid (TTDA-NP-NCS)及其釓金屬錯合物,設計目的是因為苯環上接有NO2官能基可以氫化為NH2官能基,進一步形成isothiocynate官能基,以利於接上特殊的胺基酸序列或具生物活性藥物,增強其專一性。TTDA-NP-NCS利用NMR及LC-MS鑑定,證明成功合成出TTDA-NP-NCS。且本研究開發合成Legumain 胜肽,經過LC-MS鑑定結果(ESI): m/z = 993.65 [M+H]+,得其分子量為993.65 g/ mol,與實際分子量992.58 g/ mol比較結果相符合。而本實驗利用TTDA-NP-NCS與胜肽(Legumain)結合,經過LC-MS鑑定結果(ESI): m/z = 1283.58 [M+H]+,得其分子量為1283.58 g/ mol,與實際分子量1282.67 g/ mol比較結果相符合。未來會將此化合物和釓金屬進行錯合形成釓金屬錯合物,未來將會做到in vitro細胞影像以形成具生物活性釓金屬錯合物,並研究其是否有潛力應用於磁振造影之對比劑。
The synthesis of TTDA (3,6,10-tri(carboxymethyl)-3,6,10- triazadodecanedioic acid) derivative - TTDA-NP-NCS (2-methyl-4- isothiocynatephenol-3,6,10-tris(methoxycarbonyl)-3,6,10-triazadodecanedioic acid) and it’s Gd complex is the goal of this study. The NO2 group of TTDA-NP-4est can be hydrogenated to be a NH2 functional group. Furthermore, The NH2 group can transform isothiocynate functional group to conjugate special amino acid sequence or bio-active drug. The identification of TTDA-NP-NCS was conformed by NMR and LC-MS characterization. The ESI mass of Legumain peptide has a molecular ion peaks at 993.65 [M+H]+, which is similar to the Legumain peptide molecule weight. The ESI mass of TTDA-NP-NCS conjugated with Legumain peptide shows a molecular ion peaks at 1283.58 [M+H]+, which is similar to the actuality molecule weight. In the future, we will synthesize the Gd-TTDA-NP-Legumain complex and study on the Gd complex in vitro cell imaging, and investigate the Gd-TTDA-NP-Legumain as a MRI contrast agent ability.
目 錄 I
圖目錄 III
Scheme IV
摘 要 1
英文摘要 2
化學結構式總表 3
胺基酸結構式及縮寫總表 4
一、前言 6
1-1磁振造影(MRI) 6
1-2磁振造影對比劑的原理 7
1-3磁振造影對比劑的特性 8
1-3-1磁振造影對比劑之穩定性質探討 8
1-3-2內層水分子數對弛緩率之影響 10
1-3-3相關時間對弛緩率之影響 12
1-4磁振造影對比劑之種類 13
1-4-1離子性(ionic)對比劑: 13
1-4-2非離子性(nonionic)釓金屬錯合物對比劑: 15
1-4-3肝膽造影對比劑: 17
1-4-4血池造影對比劑: 19
1-4-5具生物活性(bio-activated)之對比劑: 24
1-5固相胜肽合成法(solid phase peptide synthesis) 34
1-6 研究目的與動機 39
二、儀器及試藥 41
2-1 儀器(Instrumentation) 41
2-2 試藥(Reagents) 42
三、實驗方法 44
3-1配置胜肽合成所需之溶劑 44
3-1-1 活化試劑之製備 44
3-1-2 去保護基溶劑之製備 44
3-1-3 Kaiser test所需溶劑之製備 44
3-1-4 TNBS test 及Chloranil test之製備 45
3-1-5 切除試劑及去保護基之溶劑製備 46
3-2 胜肽序列的合成 46
3-3 TTDA-NP-Legumain的合成 49
3-3-1 Legumain peptide的合成 49
3-3-2 TTD-NP-NCS的合成 51
3-3-3 TTDA-NP-Legumain的合成 62
3-3-4 Resin的切除 63
四、結果與討論 64
4-1 製備胜肽合成反應機制之探討 64
4-1-1 Kaiser test的測試 64
4-1-2 resin的去保護 65
4-1-3胺基酸的活化 66
4-1-4 resin與胺基酸的偶合 67
4-1-5 Capping 68
4-1-6胺基酸上Boc與tert-butyl保護基的切除 68
4-2 Legumain peptide之鑑定 70
4-3 TTDA-NP-Legumain之合成探討 70
4-3-1製備TTDA-NP-Legumain合成反應機制 71
4-3-2製備TTDA-NP-Legumain合成酸鹼控制 72
五、結論 75
六. 參考文獻 76
圖目錄
Figure 1. Schematic representation of the three types of hydration layers around a Gd3+ complex and the most relevant parameters of paramagnetic relaxation. 10
Figure 2. Structural formula of the ligands DTPA, DOTA. 14
Figure 3. Structural formula of TTDA and TRITA 15
Figure 4. Structural formula of the ligands DTPA-BMA, HP-DO3A, DO3A-butrol and DTPA-BMEA. 16
Figure 5. (A)Structural formula of the ligands DTPA-BMOPEA. (B)Side view of the [Gd(DTPA-BMOPEA)]. 16
Figure 6. Structural formula of ligands BOPTA, EOB-DTPA and DTPA-BMOBA. 17
Figure 7. Structural formula of the ligand (S)-4-Bz-TTDA. 18
Figure 8. Structural formula of the ligand TTDA-BOM 19
Figure 9. Structural formula of the ligands of MS-325 and MP-2269. 19
Figure 10. Schematic representation of the non-covalent interactions between (A) a hydrophobic side-chain of the ligand and a protein and (B) a negatively charged paramagnetic chelate and a protein. 20
Figure 11. Structural formula of the ligands DTPA(BOM)3, COPTA, DOTA(BOM), DOTA(BOM)3 and TTDA-PY. 21
Figure 12. Structural formula of the ligands TTDA-N’-MA, TTDA-N’-BA , TTDA-N’-MOBA and DIHB-TTDA. 22
Figure 13. Structural formula of the ligands H5DTPA, H5DOTA, H3EPTPA, H5EPTPA-bz-NO2, H5DPTPA, H5DTTA-prop, H4DOTA, H4TRITA, H4TETA 23
Figure 14. Benzyl-substituted derivatives of gadolinium-DTPA complexes. 24
Figure 15. Enzyme-cleavable contrast agent. 26
Figure 16. Schematic representation of the bioactivated Gd3+ contrast agents. 27
Figure 17. The enzymatic cleavage of the hydrophobic moieties yield a soluble Gd(III)-DTPA-like chelate. 28
Figure 18. Structures of Gd-DO3A-CCK8 and Gd-DTPAGlu-CCK8. 29
Figure 19. (C18H37)2NCO(CH2)2CO(AdOO)5-G-CCK8[(C18)2L5CCK8] and (C18H37)2NCO(CH2)2COLys-(DTPAGlu-Gd)CONH2 [(C18)2DTPAGlu(Gd)] monomers. 30
Figure 20. Structure of MP2346 (DOTA-Pro-Gln-Arg-Tyr-Gly-Asn-Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH2) with M corresponding to the chelated 64Cu or 86Y metal. 30
Figure 21. Structures and amino acid sequences of the DOTA-linker-BN(7-14) peptides. 32
Figure 22. General scheme of solid phase peptide synthesis. 36
Figure 23. Flow-chart for selecting cleavage cocktail for Fmoc solid phase peptide synthesis. 38
Figure 24. Solid phase peptide synthesizer. 46
Figure 25. The structure formula of the Legumain peptide substrate. 49
Figure 26. 200MHz 1H NMR spectrum of TTDA-NP-4est at CDCl3. 53
Figure 27. 50MHz 13C NMR spectrum of TTDA-NP-4est at CDCl3. 54
Figure 28. ESI-MS spectrum of TTDA-NP-4est. 55
Figure 29. 200MHz 1H NMR spectrum of TTDA-NP-NH2 at CDCl3. 56
Figure 30. 50MHz 13C NMR spectrum of TTDA-NP-NH2 at CDCl3. 57
Figure 31. 200MHz 1H NMR spectrum of TTDA-NP-NCS at CDCl3 59
Figure 32. 50MHz 13C NMR spectrum of TTDA-NP-NCS at CDCl3. 60
Figure 33. ESI-MS spectrum of TTDA-NP-NCS. 61
Figure 34. The Kaiser test method of ninhydrine mechanism for Fmoc solid phase peptide synthesis. 64
Figure 35. The deprotection step of Fmoc group of solid phase peptide synthesis. 65
Figure 36. The activation step of solid phase peptide synthesis. (R : side chain group of amino acid) 66
Figure 37. LC-MS spectrum of Legumain peptide. 70
Figure 38. LC-MS spectrum of TTDA-NP- Legumain 71
Figure 39. Edman degradation for protein sequencing. 73
Figure 40. Edman chemistry for N-terminal sequencing of polypeptides 74

Scheme
Scheme 1. Synthetic scheme of Legumain peptide. 50
Scheme 2. Synthetic scheme of TTDA-NP-NCS. 51
Scheme 3. Synthetic scheme of TTDA-NP-Legumain 62
Scheme 4. The synthetic scheme of peptide substrate using PS3. (R = side chain group of amino acid) 67
Scheme 5. The deprotection steps of Boc and tert-Bu groups of solid phase peptide synthesis. 69
Scheme 6. The synthetic scheme of Phenyl isothiocynate and peptide of mechanism. 72
Scheme 7. Edman Degradation with generic amino acid peptide chain. 72
1.A. E. Cerbach and E. Toth, The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging. Wiley: New York, 2001.
2.H. Gries, H. Miklautz, Physiol. Chem. Phys. Med. NMR 1984, 16, 105.
3.H. J. Weinmann, R. C. Brasch, W. R. Press and G. E. Wesbey, Am. J. Roentg. 1984, 142, 619.
4.G. Vittadin, E. Felder, P. Tirone and V. B. Lorusso, Invest. Radiol. 1988, 23, 246.
5.R. B. Lauffer, W. F. Grief, D. D. Stark, A. C. Vincent, S. Saini, V. J. Wedden and T. J. Brady, J. Comput. Assist. Tomogra. 1985, 9, 431.
6.K. Micskei, L. Helm, E. Brucher and A. E. Merbach, Inorg. Chem. 1993, 32, 3844.
7.S. Laurent, L. V. Elst, S. Houzé, N. Guérit and R. N. Muller, Helv. Chim. Acta 2000, 83, 394.
8.P. Pavone, G. Patrizio and C. Buoni, Radiology 1990, 176, 61.
9.M. Magerstadt, O. A. Gansow and M. W. Brechbiol, Magn. Reson. Med. 1986, 3, 808.
10.N. Graeppi, D. H. Powell, G. Laurenczy, L. Zékány and A. E. Merbach, Inorg. Chim. Acta 1994, 235, 311.
11.P. Pavone, G. Patrizio and C. Buoni, Radiology 1990, 176, 61.
12.L.Ehnebom and B. Fjaertoft Pedersen, Acta Chem. Scand 1992, 46, 126.
13.F. Uggeri, S. Aime, P. L. Anelli, M. Botta, M. Brocchetta, C. de Haën, G. Ermondi, M. Grondi and P. Paoli, Inorg. Chem. 1995, 34, 633.
14.L. Vander Elst, F. Chapelle, S. Laurent, R and N. Muller, J. Biol. Inorg. Chem. 2001, 6, 196.
15.E. N. Rizkalla and R. C. Gregory, Inorg. Chem. 1993, 32, 582.
16.Y. M. Wang, C. H. Lee, G. C. Liu and R. S. Sheu, J. Chem. Soc., Dalton Trans. 1998, 4113
17.P. Caravan, C. Comuzzi, W. Crooks, T. J. McMurry, G. R. Choppin, S and R. Woulfe, Inorg. Chem. 2001, 40, 2170.
18.F. Me, P. L Uggeri, S. Ai. Anelli, M. Botta, M. Brocchetta, C. de Haën, G. Ermondi, M. Grondi and P. Paoli, Inorg. Chem. 1995, 34, 633.
19.J. Platzek, P. Blaszkiewicz, H. Gries, P. Luger, G. Michl, A. Müller-Fahrnow, B. Radüchel and D. Sülzle Inorg. Chem. 1997, 36, 6086.
20.C. F. G. C. Geraldes, A. M. Urbano, M. C. Alpoim, A. D. Sherry, K. –T. Kuan, R. Rajagopalan, F. Maton, R and N. Muller Magn. Reson. Imag. 1995, 13, 401
21.Y. M. Wang, Y. J. Wang, R. S. Sheu, G. C. Liu, W. C. Lin and J. H. Liao, Polyhedron 1999, 18, 1147.
22.S Aime, A.Barge, M. Botta, D. Parker, and De Sousa, A. S., J. Am. Chem. Soc. 1997, 119, 4767
23.F. Uggeri, S. Aime, P. L. Anelli, M. Botta, M. Brocchetta, C. Haën, G.Ermondi,; M. Grandi and P. Paoli, Inorg. Chem. 1995, 34, 633
24.H. S. Willich, M. Brehm, C. L. J. Ewers, G. Michel, A. M. Fahrnow, O. Petrov, J. Platzek, B. Radüchel and D. Sülzle, Inorg. Chem. 1999, 38, 1134.
25.M. C. Alpoim, A. M. Urbano, C. F. G. C. Geraldes and J. A. Peter, J. Chem. Soc., Dalton Trans., 1992, 463.
26.T. H. Cheng, T. M. Lee, M. H. Ou, C. R. Li, G. C. Liu and Y. M. Wang, Helv. Chim. Acta 2002, 85, 1033.
27.蔡素卿碩士論文,”DIHB-TTDA及TTDA-BOM配位子及其金屬
錯合物之合成及物化性探討”,高雄醫學大學化學研究所,高雄,台灣,2003.
28.C.A. Chang, Invest. Radiol. 1993, 28, S21.
29.K. Adzamli, E. Tóth, M. P.Periasamy, S. H. Koenig, A. E.Merbach and M. D. Adams, Magn. Reson. Mater. Phys., Biol. Med. 1999, 8, 163.
30.É. Tóth, F. Connac, L. Helm, K. Adzamli and A. E. Merbach, J. Biol. Inorg. Chem. 1998, 3, 606.
31.S. Aime, M. Botta, S. G. Crich, G. Giovenzana, R. Pagliarin, M. Piccinini, M. Sisti, and E. Terreno, J. Biol. Inorg. Chem. 1997, 2, 470.
32.G. R. Choppin, P. A. Baisden and S. A. Khan, Inorg. Chem. 1979, 18, 1330.
33.S. Aime, S. G. Crich, E. Gianolio, E. Terreno, A. Beltrami and F. Uggeri, Eur. J. Inorg. Chem. 1998, 1283.
34.J. Carvalho, A. D. J Watson, J. D. J Fellmann and M. D. J Koo, Macrocyclic polyaza dichelates linked through ring nitrogens via an amide or ester functionality. United States Patent 5650133.
35.X. Zhang, C. Allen Chang, G. Harry Brittain, Mark Garrison, Joshua Tesler and Michael F. Tweedle, Inorg. Chem.1992, 31, 5597.
36.P. Caravan, C. Comuzzi, W. Crooks, T. J. McMurry, G. R. Choppin and S. R. Woulfe, Inorg. Chem. 2001, 40, 2170.
37.Y. M. Wang, C. R. Li, Y. C. Huang, M. H. Ou and G. C. Liu, Inorg. Chem.2005, 44, 382.
38. S. Laus, R. Ruloff, E. Toth and A. E. Merbach, Chem. Eur. J. 2003, 9,
3555.
39. S. Laurent, F. Botteman, L. V. Elst and R. N. Muller, Helv. Chem. Acta. 2004, 87, 1077.
40. M. Botta, Eur. J. Inorg. Chem. 2000, 399.
41. J. Reuben, J. Phys. Chem. 1971, 75, 3164.
42. A. L. Nivorozhkin, A. F. Kolodziej, P. Caravan, M. T.Greenfield,
R. B. Lauffer and T. J. McMurry, Angew. Chem. Int. Ed. 2001, 15, 2903.
43. S. Aime, W. Dastru, S. G.. Crich, E. Gianolio and V. Mainero,
Biopolymers, 2002, 66, 419.
44. S. Aime, E. Gianolio and E. Terreno. J. Biol. Inorg. Chem. 2000, 5, 488.
45. A. Accardo, D. Tesauro, E. Gianolio, G. Morelli, S. Aime, M. Vaccaro, G. Mangiapia, L. Paduano and K. Schillén, JBIC. 2007, 12, 267.
46. G. B. Biddlecombe, B. E. Rogers, M. d. Visser, J. J. Parry, M. d. Jong, J. L. Erion and J. S. Lewis, Bioconjugate Chem. 2007, 18, 724.
47. J. J. Parry, T. S. Kelly, R. Andrews and B. E. Rogers, Bioconjugate Chem. 2007 18, 1110.
48. W. Pham, W. F. Lai, R. Weissleder and C. H. Tung, Bioconjugate Chem. 2003, 14, 1048.
49. R. B. Merrifield, J. Am. Chem. Soc 1963, 85, 2149.
50. M. J. O''Donnell, C. Zhou and W. L. Scott, J. Am. Chem. Soc. 1996, 118, 6070.
51. B. D. Larsen, D. H. Christensen, A. Holm, R. Zillmer and O. F. Nielsen, J. Am. Chem. Soc. 1993, 115, 6247.
52. J. D. Wade, J. Y. Synth and K. Mensler, Pept. Res 1991, 4, 194.
53. T. Vojkovsky and J. Rouse, Pept. Res. 1995, 8, 236.
54.簡哲弘碩士論文,” TTDA-NP、TTDA-TMBS及TTDA-TIPBS配位子之合成及TTDA-NP釓金屬錯合物、物化特性研究”,高雄醫學大學醫藥暨應用化學研究所,高雄,台灣,2008.
55. C. Liu, C. Sun, H. Huang, K. Janda and T. Edgington, Cancer Res. 2003, 63, 2957.
56. P. Edman, Acta Chimica Scandinavica 1950, 4, 283.
57. P. Edman and G. Begg, European Journal of Biochemistry 1967, 1, 80.
58. G. Solomons and C. Toth, Organic Chemistry. Wiley: New York, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊