跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/30 15:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳彥伶
研究生(外文):Yen-Ling Chen
論文名稱:應用毛細管電泳法分析hMSH2及MDM2之基因多型性、K-ras點突變及α型海洋性貧血基因缺失之研究
論文名稱(外文):Study on Single Nucleotide Polymorphism of hMSH2 and MDM2Gene, Point Mutations of K-ras Gene and Gene Deletion of α-thalassemia by Capillary Electrophoresis
指導教授:吳秀梅吳秀梅引用關係
指導教授(外文):Shou-Mei Wu
學位類別:博士
校院名稱:高雄醫學大學
系所名稱:藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:206
中文關鍵詞:毛細管電泳法hMSH2MDM2K-rasα型海洋性貧血基因多型性點突變基因缺失
外文關鍵詞:Capillary ElectrophoresishMSH2MDM2K-rasSingle Nucleotide PolymorphismPoint MutationsGene Deletion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:260
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來於基因體學中,研究特定點突變對於疾病的相關聯性以及判定遺傳性疾病基因型成為一重要的方向。本研究之主要目的為開發毛細管電泳法針對數種特定基因 (hMSH2 基因,MDM2 基因,K-ras 基因) 之單核苷酸基因多型性 (single nucleotide polymorphism, SNP) 進行測定並評估其 SNP 對於數種癌症的相關聯性。另外,利用所開發之毛細管電泳法針對α型海洋性貧血症缺失基因型進行測定,希望此分析法能做為臨床上診斷的依據。而本研究主要的研究成果如下:
首先針對單核苷酸差異之辨別利用構形差異毛細管電泳法
(conformation-sensitive capillary electrophoresis, CSCE) 做為基因多型性之直接分析法,其原理為於分離緩衝溶液中添加適當比例之化學變性試劑造成野生型與突變型DNA 因部分變性而造成構形之差異,以達到分離的效果。本實驗以hMSH2 基因啟動子上之基因多型性 (C/C 同型合子,T/T 同型合子及C/T 異型合子) 為分析對象。hMSH2 基因為人類錯誤配對修復基因,其功用為辨識及修補錯誤配對的核苷酸,此一基因之多型性已知與遺傳性非息肉性大腸癌(hereditary nonpolyposis colorectal cancer, HNPCC)
具有關聯性。經由聚合酶連鎖反應 (polymerase chain reaction, PCR) 所得的PCR 產物,不經前處理直接以電動取樣方式注入毛細管。CE 分析條件為1×TBE (Tris-borate-EDTA) 緩衝液含有3% (w/v) 羥乙基纖維素(hydroxyethyl cellulose, HEC) (MW: 250,000) 和6 M 尿素,分離電壓設定在-5 kV,分離溫度設定於15℃。本CSCE 法應用於204 位健康志願受試者及13 位大腸直腸癌 (colorectal cancer, CRC) 病患之基因型測定,所得
之結果與定序法所得結果一致,可知CSCE 分析法對基因分析具有方便性及準確性,對臨床檢體大量篩檢甚具應用潛力。

有鑑於利用CSCE 分析方法進行基因多型性之測定時,在某些條件上會遭遇限制而導致野生型與突變型DNA 無法區分,故於第二個研究中利用另一分析法-單鏈構象多態性毛細管電泳法 (single strand conformation polymorphism-capillary electrophoresis, SSCP-CE) 進行MDM2 基因多型性測定,先將PCR 產物於注入毛細管電泳儀前進行變性,使雙股DNA 變性成單鏈DNA,並利用突變型與野生型之單鏈DNA 於毛細管電泳中呈現不同的構形,以達到分離效果。Two-in-one PCR 則是利用fluorescence-labeled nonhuman-sequence primer 以及fragment-oriented primer 兩種不同功能之引子於同一試管中進行PCR,所獲得PCR 產物具有螢光基團以利偵測。此一研究利用SSCP-CE 搭配two-in-one PCR 針對MDM2 基因中啟動子309位置上之SNP 進行分析,其所呈現之基因型分為T/T 同型合子,G/G 同型合子及T/G 異型合子三種。Two-in-one PCR 產物,經變性前處理後,以電動取樣的方式注入毛細管。CE 分析條件為1×TBE 緩衝液含有1.5% (w/v)HEC,分離電壓設定在-10 kV,分離溫度設定於25℃。本SSCP-CE 法應用於43 位患有慢性骨髓性白血病 (chronic myeloid leukemia, CML),123位罹患CRC 及138 位健康自願受試進行MDM2 SNP309 之基因型測定,所得之結果與定序法所得結果一致,可知此分析法對基因分析具有方便性及準確性,並經測定結果發現CML 與MDM2 SNP309 之基因多型性具有相關聯性。
由於fluorescence-labeled nonhuman-sequence primer 適用於任何欲研究的基因放大反應,故接下來的研究同樣利用SSCP-CE 搭配two-in-one PCR針對K-ras 基因中codons 12 及13 位置上之點突變進行分析。K-ras 基因為一原致癌基因,其codons 12 及13 中鹼基突變與多種癌症具有相關性。目前常見的突變基因型有七種分別為CGT,GTT,TGT,GCT,AGT,GAT於codon 12 以及GAC 於codon 13。Two-in-one PCR 產物,經變性前處理後,以電動取樣的方式注入毛細管。CE分析條件為1×TBE 緩衝液含有1.5% (w/v) HEC,分離電壓設定在-10 kV。第一階段分析分離溫度設定於15℃,可判定CGT,GTT,TGT,GAC 突變型。第二階段分析分離溫度設定於30℃,可解析出TGT,GCT,AGT,GAT,GAC 突變型。本SSCP-CE 法應用於105 位罹患CRC 病患其K-ras 基因中codons 12 及13 位置上之基因型測定,所得之結果與定序法所得結果一致,並測得之CRC 患者其K-ras基因中codons 12 及13 突變率為25%。
針對基因缺失偵測,本實驗室利用毛細管膠體電泳法 (capillary gel electrophoresis, CGE) 藉由聚合物所形成的分子網篩,以分離不同片段長度之DNA。此研究主要目的為利用不同種類的聚合物,分別為HEC,羥丙基甲基纖維素 (hydroxypropylmethyl cellulose, HPMC) (MW: 90,000) 以及聚環氧乙烷 (poly(ethylene oxide), PEO) (MW: 8,000,000)等聚合物,探討其對於分離200-bp DNA ladder的影響。並經實驗評估後,所得之最佳化條件為1×TBE緩衝液含有0.6% (w/v) PEO和1 μM YO-PRO-1,分離電壓設定在-10
kV,分離溫度設定於25℃。此分析條件搭配多重聚合酶連鎖反應 (multiplex PCR) 應用於分析5種α型海洋性貧血基因缺失型之PCR產物,分別為右端缺失型 (-α3.7 ),左端缺失型 (-α4.2 ),東南亞型 (Southeast Asian, --SEA),菲律賓型 (Filipino, --FIL) 以及泰國型 (Thai, --THAI)。21個α型海洋性貧血DNA檢品經分析後,其基因型與臨床診斷結果一致。
另一分析法, 金奈米填充毛細管電泳法(gold nanoparticle-filled capillary electrophoresis, G-NFCE) 為一添加金奈米粒子於聚合物緩衝溶液中,可改變待測物通過聚合物網篩時的能力,增加待測物間的分離效果。此研究利用G-NFCE 分析法,搭配multiplex PCR 針對5 種α 型海洋性貧血症中缺失基因型進行測定。為了獲得最佳化的CE 分離條件,分別針對使用毛細管的種類,聚合物濃度,金奈米 (gold nanoparticles, GNPs) 粒子大小,GNPs 濃度,緩衝液濃度,緩衝液pH 值,分離溫度及分離電壓針對200-bp DNA ladder (片段長度為0.2 kb-3.0 kb) 進行分析討論。最後,所得
之最佳化條件為利用DB-17 毛細管,於GNP32nm 溶液及glycine (25 mM, pH 9.0) 的金奈米混合溶液 (80:20 v/v) 內含有0.6% (w/v) PEO 和1 μM YO-PRO-1 中進行分析,分離電壓為-10 kV,分離的溫度設定於25℃。將此分析條件應用於5 種α 型海洋性貧血症基因缺失型之PCR 產物,並實際利用G-NFCE 分析法檢測21 位患有α 型海洋性貧血的患者,所測得之基因型與臨床診斷結果一致。
Genomics becomes an important research area in recent years, especially for identifying single nucleotide polymorphism (SNP) of special gene and genotyping of hereditary disease. The aims of our studies were to establish several kinds of DNA analytical methods by capillary electrophoresis (CE) for detecting the SNPs of hMSH2 gene, MDM2 gene and K-ras gene, and exploring the relationship between the SNPs and cancers. Besides, the
genotyping of α-thalassemia deletions by CE was also studied for clinical research. Several works have been done, including:
CE allows for highly reproducible analysis of DNA fragments which can be used to detect point mutations in DNA. We have utilized a simple and direct CE analysis method for SNP analysis called conformation-sensitive capillary electrophoresis (CSCE), based on the principle of single nucleotide difference to produce conformational changes in the mildly denaturing solvent system.This method was applied to analyze the mutation in the promoter region of the hMSH2 gene. This gene belongs to the human DNA mismatch repair system, which is responsible for recognizing and repairing mispaired nucleotides, and
mutations in the hMSH2 gene are known to cause hereditary nonpolyposis colorectal cancer (HNPCC). Polymerase chain reaction (PCR) fragments generated from the promoter region of the hMSH2 gene, displaying either a C/C homozygote, C/T heterozygote, or T/T homozygote genotypes, did not require further pretreatment before electrokinetic injection. The CE separation,using a 1× TBE buffer containing 3% (w/v) hydroxyethyl cellulose (HEC) (MW: 250,000) and 6 M urea, was performed under reverse polarity with a separation temperature of 15°C. The genotypes of 204 healthy volunteers and 13 colorectal cancer (CRC) patients were determined by using this method, and the results were confirmed by DNA sequencing. Those separations were shown
to be highly reproducible and sensitive. After screening our samples, no correlation was observed between cancer patients and this hMSH2 gene polymorphism.
SNP309 in the promoter region of the murine double minute 2 (MDM2) gene plays an important role in human tumorigenesis. We established a simple and effective CE method for SNP detection in MDM2 gene. We designed one
universal fluorescence-based nonhuman-sequence primer and one fragment-oriented primer, which were combined in one tube, and proceeded the PCR.The amplicons were analyzed by capillary electrophoresis using single strand conformation polymorphism (SSCP) method. PCR fragments generated from
this two-in-one PCR displayed either T/T or G/G homozygote, or T/G heterozygote. Running buffer was 1×TBE buffer containing 1.5% (w/v) HEC ; applied voltage was -10 kV (detector at anode side) and separation temperature
was at 25°C. Total 304 samples were blindly genotyped using this developed method, which included the DNA from 138 healthy volunteers, 43 chronic myeloid leukemia (CML) patients, and 123 CRC patients. The results were confirmed by DNA sequencing and showed good agreement. The SSCP-CE
method was feasible for SNP screening of MDM2 in large populations.
Mutations of K-ras gene in codons 12 and 13 were frequently observed in a variety of cancers. We established a simple and effective CE method for multiple SNPs detection in codons 12 and 13 of K-ras gene. One universal
fluorescence-based nonhuman-sequence primer and one fragment-oriented primer were combined in one tube, and proceeded the PCR. The amplicons were analyzed by CE using SSCP method. PCR fragments generated from this two-in-one PCR displayed wild type (GGT in codon 12,GGC in codon 13) and seven different point mutations at codons 12 (CGT, GTT, TGT, GCT,AGT,GAT) and 13 (GAC) of K-ras gene. Two steps of the CE separation,using a TBE buffer containing 1.5 % (w/v) HEC, was performed under reverse polarity with a separation temperature of 15℃ at first run and 30℃ at second run. Total 105 CRC patients were blindly genotyped using this developed method. All results were confirmed by DNA sequencing and showed good agreement. The SSCP-CE method was feasible for SNPs screening of K-rasgene populations.
Capillary gel electrophoresis (CGE) was the most common analytical method for DNA separation. In order to evaluate the polymer effect, different kinds of polymer were used for analyzing 200-bp DNA ladder. By optimized CE condition, the CE separation was performed by DB-17 capillary. Running
buffer was 1×TBE buffer containing 0.6% (w/v) poly(ethylene oxide) (PEO)(MW: 8,000,000) and 1 μM YO-PRO-1 ; applied voltage was -10 kV (detector at anode side) and separation temperature was at 25°C. Under these optimal conditions, 15 DNA fragments with their sizes ranging from 0.2 kb to 3.0 kb
were resolved within 11.5 min and the RSD of migration time were less than 0.55% (n=3). This method combining with three multiplex PCR was applied in five α-thalassemia deletions detection, including -α 3.7, -α 4.2, --SEA, --FIL and --THAI. Total 21 patients that diagnoses of α-thalassemia were analyzed using this developed method and all results were showed good agreements with clinical diagnosis.
Gold nanoparticle-filled CE (G-NFCE) combining with three multiplex PCR was first established for multiple diagnosis of five common α- thalassemia deletions. Gold anoparticles (GNPs) were used as pseudostationary phase to improve separation resolutions between DNA fragments in a low-viscosity polymer. In order to achieve best CE separation, several parameters were evaluated for optimizing separation condition, such as kinds of coated capillary,the concentrations of polymer sieving matrix, the sizes and concentrations of GNPs, the buffer concentrations and pH values. The CE separation, used for detecting 200-bp DNA ladder and α-thalassemia deletions. Sieving matrix was
0.6% (w/v) PEO prepared in a mixture of GNP32nm solution and glycine (25 mM, pH 9.0) (80:20 v/v) that containing 1 μM YO-PRO-1; applied voltage was -10 kV (detector at anode side) and separation temperature was at 25°C. Under
these optimal conditions, 15 DNA fragments with their sizes ranging from 0.2 kb to 3.0 kb were resolved within 11.5 min and the RSD of migration time were less than 2.81% (n=3). Total 21 patients that diagnosis of α-thalassemia
deletions were analyzed using this developed method and all results were showed good agreements with clinical diagnosis.
中文摘要-----------------------------------------------i
英文摘要-----------------------------------------------v
目錄---------------------------------------------------ix
圖目錄-------------------------------------------------xiv
表目錄------------------------------------------------ xxiii
縮寫表---------- ------------------------------------- xxiv
第一章、緒論------------------------------------------ 1
第一節、基因個論-------------------------------------- 6
1. hMSH2基因--------------------- ------------------- 6
2. MDM2 基因-------------- ------------------------- 7
3. K-ras 基因----------------------------------------- 8
4. α 型海洋性貧血症基因缺失型--------- --------------- 9
第二節、聚合酶連鎖反應-------------------------------- 12
1. PCR------------------------------------------------ 12
2. Two-in-one PCR------------------------------------- 15
3. Multiplex PCR-------------------------------------- 17
第三節、毛細管電泳法 (Capillary electrophoresis, CE)-- 17
1. 構形差異毛細管電泳法------------------------------- 20
2. 單鏈構象多態性毛細管電泳法------------------------- 20
3. 毛細管凝膠電泳分析法------------------------------- 21
4. 金奈米填充毛細管電泳法----------------------------- 22
第二章、實驗器材及方法-------------------------------- 24
第一節、試藥及材料------------------------------------ 24
第二節、使用之主要儀器-------------------------------- 27
第三節、溶液配製-------------------------------------- 28
第四節、DNA 萃取步驟---------------------------------- 28
第五節、毛細管清洗方式-------------------------------- 30
第六節、定序------------------------------------------ 31
第三章、結果與討論-------------------------------------32
一、利用構形差異毛細管電泳法偵測hMSH2 之基因多型性 ----32
第一節、溶液配製-------------------------------------- 32
第二節、檢品來源 ------------------------------------- 33
第三節、PCR------------------------------------------- 33
第四節、 CE 分析條件---------------------------------- 36
第五節、研究結果-------------------------------------- 37
1. C/T 異型合子之定位--------------------------------- 39
2. 聚合物種類之探討----------------------------------- 39
3. HEC 濃度之探討------------------------------------- 43
4. Urea 濃度之探討------------------------------------ 44
5. 分離溫度之探討------------------------------------- 47
6. 最佳化條件----------------------------------------- 47
7. 應用----------------------------------------------- 50
二、利用螢光萬用引子搭配聚合酶連鎖反應及單鏈構象多態
性毛細管電泳法偵測MDM2上之基因多型性-------------------50
第一節、溶液配製-------------------------------------- 50
第二節、檢品來源 ------------------------------------- 51
第三節、PCR------------------------------------------- 51
第四節、SSCP-CE 分析條件------------------------------ 53
第五節、研究結果-------------------------------------- 53
1. Two-in-one PCR------------------------------------- 54
2. SSCP-CE 條件探討----------------------------------- 55
(1) 聚合物種類及濃度之探討---------------------------- 55
(2) 分離溫度之探討------------------------------------ 58
(3) 分離電壓之探討------------------------------------ 59
(4) SSCP-CE 之最佳化條件------------------------------ 61
3. 比較單鏈DNA於不同的樣品溶液中之構形安定性-----------63
4. 應用----------------------------------------------- 65
三、利用螢光萬用引子搭配聚合酶連鎖反應及單鏈構象多態
性毛細管電泳法偵測K-ras 基因中codons 12 及13 之點
突變---------------------------------------------------68
第一節、溶液配製-------------------------------------- 68
第二節、檢品來源 ------------------------------------- 68
第三節、PCR------------------------------------------- 68
第四節、SSCP-CE 分析條件------------------------------ 70
第五節、研究結果-------------------------------------- 71
1. Two-in-one PCR------------------------------------- 71
2. SSCP-CE 條件探討----------------------------------- 72
(1) 分離溫度之探討------------------------------------ 72
(2) 聚合物種類及濃度之探討---------------------------- 79
(3) 分離電壓之探討------------------------------------ 86
(4) SSCP-CE 之最佳化條件------------------------------ 91
3. 比較單鏈DNA於不同的樣品溶液中之構形安定性-----------95
4. 應用----------------------------------------------- 97
四、利用多重聚合酶連鎖反應搭配毛細管膠體電泳法偵測
型海洋性貧血症-----------------------------------------98
第一節、溶液配製-------------------------------------- 98
第二節、檢品來源 ------------------------------------- 99
第三節、PCR------------------------------------------- 100
第四節、CGE 分析條件---------------------------------- 106
第五節、研究結果-------------------------------------- 106
1. 聚合物種類及濃度之探討----------------------------- 106
2. 緩衝溶液濃度之探討--------------------------------- 111
3. 分離溫度之探討------------------------------------- 113
4. 分離電壓之探討------------------------------------- 113
5. CGE 之最佳化條件----------------------------------- 115
6. 應用----------------------------------------------- 118
五、利用多重聚合酶連鎖反應搭配金奈米填充毛細管電泳法
偵測α 型海洋性貧血症-----------------------------------119
第一節、溶液配製---------------------------------------120
第二節、檢品來源 --------------------------------------120
第三節、PCR------------------------------------------- 120
第四節、G-NFCE 分析條件------------------------------- 121
第五節、研究結果-------------------------------------- 121
1. PVP 塗覆毛細管與DB-17 毛細管之比較----------------- 122
2. GNPs 的作用與聚合物濃度之探討---------------------- 123
3. Glycine 緩衝液濃度及pH 值之探討-------------------- 130
4.分離溫度之探討-------------------------------------- 133
5.分離電壓之探討-------------------------------------- 133
6. G-NFCE 之最佳化條件-------------------------------- 136
7. 應用----------------------------------------------- 138
第四章、結論------------------------------------------ 142
參考文獻---------------------------------------------- 143
附錄一、IRB Approval
附錄二、發表之研究成果
[1] C.Y. Chang, S.P. Lin, H.Y. Lin, Y.J. Chen, H.A. Kao, C.Y. Yeung, C.H.Hsu, H. Chi, Acta Paediatr Taiwan 48 (2007) 328.
[2] D. Swanepoel, Clin Genet 72 (2007) 369.
[3] J.F. Moss, C. Oliver, K. Berg, G. Kaur, L. Jephcott, K. Cornish, Am J Ment Retard 113 (2008) 278.
[4] T. Fujita, J. Igarashi, E.R. Okawa, T. Gotoh, J. Manne, V. Kolla, J. Kim,H. Zhao, B.R. Pawel, W.B. London, J.M. Maris, P.S. White, G.M.Brodeur, J Natl Cancer Inst 100 (2008) 940.
[5] B. Isidor, M. Le Cunff, M. Boceno, P. Boisseau, C. Thomas, J.M. Rival,A. David, C. Le Caignec, Eur J Med Genet (2008). doi:10.1016/j.ejmg.2008.06.004
[6] S.Ottolenghi, W.G. Lanyon, J. Paul, R. Williamson, D.J. Weatherall, J.B.Clegg, J. Pritchard, S. Pootrakul, W.H. Boon, Nature 251 (1974) 389.
[7] Z.Danilevicius, Jama 230 (1974) 1437.
[8] César Paz-y-Miňo, J.Chrisrian Pérez, B.Fernanda Fiallo, P.E. Leone,Cancer Genet Cytogenet 133 (2002) 29.
[9] Y. Iwahashi, E. Ito, Y. Yanagisawa, Y. Akiyama, Y. Yuasa, T. Onodera, K.Maruyama, Gene 213 (1998) 141.
[10] E. Holinski-Feder, Y. Müller-Koch, W. Friedl, G. Moeslein, G. Keller, J Biochem Biophys Methods 47 (2001) 21.
[11] H. F.A.Vasen, P. Watson, J.P. Mecklin, H.T. Lynch, Gastroenterology 116 (1999) 1453.
[12] R. Fishel, M. K. Lescoe, M. Kane, R. Kolodner, Cell 75 (1993) 1027.
[13] X. L. Wang, Y. Yuan, S.Z. Zhang, S. R. Cai, Y. Q. Huang, Q. Jiang, S. Zheng, World J Gastroenterol 12 (2006) 4047.
[14] Y. Yuan, H. J. Han, S. Zheng, J.G. Park, Dis Colon Rectum 41 (1998) 434.
[15] Y. Yuan, Y. Q. Huang, S. R. Cai, Y. M. Song, S. Zheng, S. Z. Zhang, Jpn J Clin Oncol 34 (2004) 660.
[16] Z. Yuan, B. Legendre, P. Sreeramoju, C. Lowes, D. Reynolds, A. Bennett, T.S. Kent, A. Miller, J. Zhu, T.K. Weber, Cancer Detect Prev 30 (2006) 333.
[17] G.L. Bond, K.M. Hirshfield, T. Kirchhoff, G. Alexe, E.E. Bond, H. Robins, F. Bartel, H. Taubert, P. Wuerl, W. Hait, D. Toppmeyer, K. Offit, A.J. Levine, Cancer Res 66 (2006) 5104.
[18] T. Iwakuma, G. Lozano, Mol Cancer Res 1 (2003) 993.
[19] G. Winchester, Nature 303 (1983) 660.
[20] S.M. Picksley, D.P. Lane, Bioessays 15 (1993) 689.
[21] G.L. Bond, W. Hu, E.E. Bond, H. Robins, S.G. Lutzker, N.C. Arva, J. Bargonetti, F. Bartel, H. Taubert, P. Wuerl, K. Onel, L. Yip, S.J. Hwang, L.C. Strong, G. Lozano, A. J.Levine, Cell 119 (2004) 591.
[22] X. Zhang, X. Miao, Y. Guo, W. Tan, Y. Zhou, T. Sun, Y. Wang, D. Lin, Hum Mutat 27 (2006) 110.
[23] C.S. Walsh, C.W. Miller, B.Y. Karlan, H.P. Koeffler, Gynecol Oncol 104 (2007) 660.
[24] B.A. Talseth, C. Meldrum, J. Suchy, G. Kurzawski, J. Lubinski, R.J. Scott, Int J Cancer 120 ( 2006) 563.
[25] S. Kahn, F. Yamamoto, C. Almoguera, E. Winter, K. Forrester, J. Jordano, M. Perucho, Anticancer Res 7 (1987) 639.
[26] R. Schneider-Stock, A. Poehlmann, D. Kuester, F. Meyer, H. Lippert, A. Roessner, R. Schneider-Stock, Pathol Res Pract 203 (2007) 489.
[27] B.B. Friday, A.A. Adjei, Biochim Biophys Acta 1756 (2005) 127.
[28] D. Shibata, G. Capella, M. Perucho, Baillieres Clin Gastroenterol 4 (1990) 151.
[29] N.S. Pellegata, M. Losekoot, R. Fodde, V. Pugliese, S. Saccomanno, B. Renault, L.F. Bernini, G.N. Ranzani, Anticancer Res 12 (1992) 1731.
[30] H. Hirai, T. Okabe, Y. Anraku, M. Fujisawa, A. Urabe, F. Takaku, Biochem Biophys Res Commun 127 (1985) 168.
[31] N.F. Gonzalez-Cadavid, D. Zhou, H. Battifora, M. Bar-Eli, M.J. Cline, Oncogene 4 (1989) 1137.
[32] M. Khanna, P. Park, M. Zirvi, W. Cao, A. Picon, J. Day, P. Paty, F. Barany, Oncogene 18 (1999) 27.
[33] D. Kislitsin, A. Lerner, G. Rennert, Z. Lev, Dig Dis Sci 47 (2002) 1073.
[34] T. Nishikawa, K. Maemura, I. Hirata, R. Matsuse, H. Morikawa, K. Toshina, M. Murano, K. Hashimoto, Y. Nakagawa, O. Saitoh, K. Uchida, K. Katsu, Clin Chim Acta 318 (2002) 107.
[35] H. Zhang, B. Nordenskjold, M. Dufmats, P. Soderkvist, X.F. Sun, Eur J Cancer 34 (1998) 2053.
[36] M. Ridanpaa, K. Husgafvel-Pursiainen, Hum Mol Genet 2 (1993) 639.
[37] S. Rodenhuis, R.J. Slebos, Am Rev Respir Dis 142 (1990) S27.
[38] V.A. Somers, A.M. Pietersen, P.H. Theunissen, F.B. Thunnissen, J Clin Oncol 16 (1998) 3061.
[39] Y.C. Wang, H.S. Lee, S.K. Chen, S.C. Yang, C.Y. Chen, J Cancer Res Clin Oncol 124 (1998) 517.
[40] A.P. Garrett, K.R. Lee, C.R. Colitti, M.G. Muto, R.S. Berkowitz, S.C. Mok, Int J Gynecol Pathol 20 (2001) 244.
[41] A. Semczuk, K. Postawski, D. Przadka, K. Rozynska, A. Wrobel, E. Korobowicz, Eur J Gynaecol Oncol 25 (2004) 484.
[42] C.M. Wu, R. Tang, J.Y. Wang, C.R. Changchien, L.L. Hsieh, Cancer Genet Cytogenet 158 (2005) 55.
[43] M.C. Kraus, M.H. Seelig, U. Linnemann, M.R. Berger, Int J Oncol 29 (2006) 957.
[44] G. Capella, S. Cronauer-Mitra, M.A. Pienado, M. Perucho, Environ Health Perspect 93 (1991) 125.
[45] S. Levi, A. Urbano-Ispizua, R. Gill, D.M. Thomas, J. Gilbertson, C. Foster, C.J. Marshall, Cancer Res 51 (1991) 3497.
[46] G. Curigliano, G. Ferretti, M. Mandala, T. De Pas, M.G. Calabro, P. Solli, C. Noberasc, F. de Braud, Anticancer Res 21 (2001) 3461.
[47] M. Imai, T. Hoshi, K. Ogawa, Cancer 73 (1994) 2727.
[48] E.L.R. Barry, J.A. Baron, M.V. Grau, K. Wallace, R.W. Haile, Cancer 106 (2006) 1036.
[49] K. Alsop, L. Mead, L.D. Smith, S.G. Royce, A.A. Tesoriero, J.P. Young,A. Haydon, G. Grubb, G.G. Giles, M.A. Jenkins, J.L. Hopper, M.C.Southey, Eur J Cancer 42 (2006) 1357.
[50] C.C. Hung, C.N. Lee, C.P. Chen, Y.J. Jong, W.S. Hsieh, W.L. Lin, Y.N.Su, S.M. Hsu, Clin Biochem 40 (2007) 817.
[51] Y.T. Liu, J.M. Old, K. Miles, C.A. Fisher, D.J. Weatherall, J.B. Clegg,Br J Haematol 108 (2000) 295.
[52] T.P. Chen, T.C. Liu, C.S. Chang, J.G. Chang, H.J. Tsai, S.F. Lin, Int J Hematol 75 (2002) 277.
[53] R.V. Shaji, A. Srivastava, M. Chandy, R. Krishnamoorthy, Blood 95 (2000) 1879.
[54] K. Sanchaisuriya, S. Chunpanich, S. Fucharoen, G. Fucharoen, P.Sanchaisuriya, Y. Changtrakun, Eur J Haematol 74 (2005) 221.
[55] D.C. Tang, S. Fucharoen, I. Ding, G.P. Rodgers, J Lab Clin Med 137 (2001) 290.
[56] M. McPherson, P.Quirke, G.R.Taylor, PCR A practional approach, Oxford University, England, 1991, pp.1-4.
[57] 張建裕, 張建國, 基礎PCR, 藝軒出版社, 台灣, 2004, p5.
[58] A. Aydin, F.C. Luft, S. Bahring, Anal Biochem 324 (2004) 16.
[59] A. Aydin, S. Bahring, S. Dahm, U.P. Guenther, R. Uhlmann, A. Busjahn,F.C. Luft, J Mol Med 83 (2005) 159.
[60] 張建裕, 張建國, 基礎PCR, 藝軒出版社, 台灣, 2004, p122.
[61] J.S. Chamberlain, R.A. Gibbs, J.E. Ranier, C.T. Caskey, In PCR Protocols: A Guide to Methods and Applications, San Diego, USA, 1990,pp. 272-281.
[62] A. Tiselius, Biochem J 31 (1937) 313.
[63] R. Virtanen, Acta Polytechnica Scand 123 (1974) 1.
[64] J.W. Jorgenson, K.D. Lukacs, Clin Chem 27 (1981) 1551.
[65] A.G. Ogston, Trans Faraday Soc 54 (1958) 1754.
[66] C.J.O.R. Morris, Protides of the biological Fluids, Elsevier, New York,1966, p531.
[67] P.G. de Gennes, J Chem Phys 55 (1971) 572.
[68] J. Hofman-Bang, E.R. Behr, P. Hedley, J. Tfelt-Hansen, J.K. Kanters, S.Haunsoe, W.J. McKenna, M. Christiansen, Clin Genet 69 (2006) 504.
[69] C. Jespersgaard, L.A. Larsen, S. Baba, Y. Kukita, T. Tahira, M. Christiansen, J. Vuust, K. Hayashi, P.S. Andersen, Electrophoresis 27 (2006) 3816.
[70] L.A. Larsen, M. Christiansen, J. Vuust, P.S. Andersen, Curr Protoc Hum Genet 7 (2003) 7.
[71] L.A. Larsen, C. Jespersgaard, P.S. Andersen, Nat Protoc 2 (2007) 1458.
[72] A. Susca, G. Stea, G. Perrone, Food Addit Contam 24 (2007) 1148.
[73] L. Zinger, J. Gury, F. Giraud, S. Krivobok, L. Gielly, P. Taberlet, R.A. Geremia, Microb Ecol 54 (2007) 203.
[74] B. Iacopetta, R. Hamelin, Hum Mutat 12 (1998) 355.
[75] P.S. Andersen, C. Jespersgaard, J. Vuust, M. Christiansen, L.A. Larsen, Hum Mutat 21 (2003) 116.
[76] H. Arakawa, S. Nakashiro, M. Maeda, A. Tsuji, J Chromatogr A 722 (1996) 359.
[77] M.J. Bair, C.L. Chen, C.K. Chiang, M.F. Huang, C.C. Hu, H.T. Chang, Electrophoresis 29 (2008) 3964.
[78] H.T. Ho, P.L. Chang, C.C. Hung, H.T. Chang, J Clin Microbiol 42 (2004) 3525.
[79] N.S. Lai, M.C. Lu, M.C. Lee, T.Y. Lin, W.Y. Yin, J Formos Med Assoc 107 (2008) 239.
[80] S. Spaniolas, S.T. May, M.J. Bennett, G.A. Tucker, J Agric Food Chem 54 (2006) 7466.
[81] J.M. Butler, M.R. Wilson, D.J. Reeder, Electrophoresis 19 (1998) 119.
[82] Y. Sun, N. Fang, D.D. Chen, Electrophoresis 29 (2008) 3333.
[83] T. Tedeschi, M. Chiar, G. Galaverna, S. Sforza, M. Cretich, R. Corradini,R. Marchelli, Electrophoresis 26 (2005) 4310.
[84] T. Anada, T. Arisawa, Y. Ozaki, T. Takarada, Y. Katayama, M. Maeda,Electrophoresis 23 (2002) 2267.
[85] K. Sato, A. Inoue, K. Hosokawa, M. Maeda, Electrophoresis 26 (2005) 3076.
[86] K. Sato, M. Onoguchi, K. Hosokawa, M. Maeda, J Chromatogr A 1111 (2006) 120.
[87] J. Bjørhiem, S. Lystad, A. Lindblom, U. Kressner, S. Westring, S.Wahlberg, G. Lindmark, G. Gaudernack, P. Ekstrøm, J. Røe, W.G. Thilly, A.L. Børresen-Dale, Mutat Res 403 (1998) 103.
[88] F. Sang, H. Ren, J. Ren, Electrophoresis 27 (2006) 3846.
[89] J. Bjørheim, S. Lystad, A. Lindblom, U. Kressner, S. Westring, S. Wahlberg, G. Lindmark, G. Gaudernack, P. Ekstrom, J. Roe, W.G. Thilly,A.L. Borresen-Dale, Mutat Res 403 (1998) 103.
[90] J. Weber, V. Barbier, S. Pages-Berhouet, V. Caux-Moncoutier, D. Stoppa-Lyonnet, J.L. Viovy, Anal Chem 76 (2004) 4839.
[91] Rozycka M, Collins N, Stratton MR, W. R., Genomics 70 (2000) 34.
[92] P. Kozlowski, W.J. Krzyzosiak, Electrophoresis 26 ( 2005) 71.
[93] M. Orita, Y. Suzuki, T. Sekiya, K. Hayashi, Genomics 5 (1989) 874.
[94] R.A. Wallingford, A.G. Ewing, Adv Chromatogr 29 (1989) 1.
[95] C. Nilsson, S. Birnbaum, S. Nilsson, J Chromatogr A 1168 (2007) 212.
[96] B. Neiman, E. Grushka, O. Lev, Anal Chem 73 (2001) 5220.
[97] M. Pumera, J. Wang, E. Grushka, R. Polsky, Anal Chem 73 (2001) 5625.
[98] M.F. Huang, Y.C. Kuo, C.C. Huang, H.T. Chang, Anal Chem 76 (2004) 192.
[99] S.H. Chiou, M.F. Huang, H.T. Chang, Electrophoresis 25 (2004) 2186.
[100] Y.W. Lin, M.J. Huang, H.T. Chang, J Chromatogr A 1014 (2003) 47.
[101] M.F. Huang, C.C. Huang, H.T. Chang, Electrophoresis 24 (2003) 2896.
[102] C.J. Yu, C.L. Su, W.L. Tseng, Anal Chem 78 (2006) 8004.
[103] F. Xu, Y. Baba, Electrophoresis 25 (2004) 2332.
[104] B. Chu, D. Liang, J Chromatogr A 966 (2002) 1.
[105] S. Ferree, H.W. Blanch, Biophys J 87(2004) 468.
[106] H. Davies, E. Dicks, P. Stephens, C. Cox, J. Teague, C. Greenman, G.Bignell, S. O''Meara, S. Edkins, A. Parker, C. Stevens, A. Menzies, M.
Blow, B. Bottomley, M. Dronsfield, P.A. Futreal, M.R. Stratton, R.Wooster, Genomics 87 (2006) 427.
[107] T. Ganguly, R. Dhulipala, L. Godmilow, A. Ganguly, Hum Genet 102 (1998) 549.
[108] M. Rozycka, N. Collins, M.R. Stratton, R. Wooster, Genomics 70 (2000) 34.
[109] S.H. Park, J.E. Choi, E.J. Kim, J.S. Jang, H.S. Han, W.K. Lee, Y.M.Kang, J.Y. Park, Lung cancer 54 (2006) 19.
[110] K. Katsuragi, K. Kitagishi, W. Chiba, S. Ikeda, M. Kinoshita, J Chromatogr A 744 (1996) 311.
[111] J. Ren, A. Ulvik, P.M. Ueland, H. Refsum, Anal Biochem 245 (1997) 79.
[112] C. Gelfi, A. Vigano, S. De Palma, P.G. Righetti, S.C. Righetti, E. Corna,F. Zunino, Electrophoresis 23 (2002) 1517.
[113] Y. Endo, L. Zhang, R. Katashima, M. Itakura, E.A.S. Doherty, A.E.Barron, Y. Baba, Electrophoresis 26 (2005) 3380.
[114] M. Bernat, E. Titos, J. Claria, Genet Mol Res 1 (2002) 72.
[115] P. Kringen, S. Egedal, J.C. Pedersen, T.B. Harbitz, K.M. Tveit, K. Berg, A.L. Borresen-Dale, T.I. Andersen, Electrophoresis 23 (2002) 4085.
[116] P.S. Andersen, C. Jespersgaard, J. Vuust, M. Christiansen, L.A. Larsen,Hum Mutat 21 (2003) 116.
[117] J. Geisel, T. Walz, M. Bodis, M. Nauck, K. Oette, W. Herrmann, J Chromatogr B 724 (1999) 239.
[118] D. Glavac, U. Potocnik, D. Podpecnik, T. Zizek, S. Smerkolj, M.Ravnik-Glavac, Hum Mutat 19 (2002) 384.
[119] J. Ren, P.M. Ueland, Hum Mutat 13 (1999) 458.
[120] I.V. Kourkine, C.N. Hestekin, A.E. Barron, Electrophoresis 23 (2002) 1375.
[121] S.S. Chong, C.D. Boehm, D.R. Higgs, G.R. Cutting, Blood 95 (2000) 360.
[122] M. Strege, A. Lagu, Anal Chem 63 (1991) 1233.
[123] K. Kleparnik, D. Grochova, Z. Skopkova, T. Adam, Electrophoresis 25 (2004) 57.
[124] Y. Baba, N. Ishimaru, K. Samata, M. Tsuhako, J Chromatogr A 653 (1993) 329.
[125] K. Bchmann, B. Göttlicher, Chromatographia 45 (1997) 249.
[126] J.M. Treubig, Jr., P.R. Brown, J Chromatogr A 873 (2000) 257.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top