跳到主要內容

臺灣博碩士論文加值系統

(3.235.174.99) 您好!臺灣時間:2021/07/24 20:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝俊宇
研究生(外文):Chun-Yu Hsieh
論文名稱:液相層析螢光法對胺基酸相關化合物之藥物監測及疾病指標之分析
論文名稱(外文):Drug Monitoring and Disease Biomarker Analysis of Amino Acid Related Compounds by Fluorescent Liquid Chromatographic Method
指導教授:吳信隆吳信隆引用關係
指導教授(外文):Hsin-Lung Wu
學位類別:博士
校院名稱:高雄醫學大學
系所名稱:藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:162
中文關鍵詞:γ-Amino-n-butyric acidVigabatrinD-serine生物指標生物檢體衍生化液相層析卵巢癌子宮癌阿茲海默症
外文關鍵詞:γ-Amino-n-butyric acidVigabatrinD-serineBiomarkerBiosampleDerivatization liquid chromatographyOvarian cancerUterine cancerAlzheimer''s disease
相關次數:
  • 被引用被引用:0
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文所指胺基酸類化合物包括protein及non-protein胺基酸,常為具生物活性之藥物或指標成分;由於其結構多不具顯著呈色基團,不易以常用檢測器(如UV-Vis)進行生物檢體中該類化合物之微量分析。因此本研究主要以衍生試劑naproxen acyl chloride (NAC)及levofloxacin acyl chloride (LFAC),對不具發色基團的胺基酸待測物加以衍生,所得之衍生物具有螢光性;以螢光偵測器加以檢測可得高感度及選擇性分析。因本研究之樣品皆為生物檢體,在複雜基質中,檢測微量待測物,所用方法須具良好分離功能,故本論文結合高效能液相層析及螢光偵測器,對γ-amino-n-butyric acid (GABA)、vigabatrin (VGB)及D-serine等進行微量分析,所得主要結果摘錄如下:

1. 癌症生物指標性成分 – γ-amino-n-butyric acid (GABA)
在癌症病人的尿液中,GABA的濃度會增加,因此GABA可以當做生物指標(biomarker),作為癌症診斷及治療之參考。本研究開發一個簡單且靈敏的液相層析法,利用螢光衍生試劑NAC對GABA做衍生反應,使原本沒有螢光的GABA轉換為具有螢光性之衍生物,以螢光偵測器檢測(λex = 230 nm, λem = 350 nm)即可分析待測物。本法定量下限為100 nM,檢測極限可達10 nM (S/N = 3,注射量為20 μL);並成功應用於卵巢癌及子宮癌病人尿液中生物指標性成分GABA之分析研究。
2. 抗癲癇藥物 – vigabatrin (VGB)
VGB是一個廣泛被運用的抗癲癇藥,一般市售的劑型是以消旋異構物(racemate)供應,但是其只有(S)-(+)-型異構物[(S)-(+)-VGB]具有藥理活性。本研究開發一個簡單且靈敏的螢光液相層析法(λex = 230 nm, λem = 350 nm),配合具有光學選擇性的螢光衍生試劑NAC對VGB的消旋異構物行衍生反應,分析衍生後的非鏡像異構物(diastereomer)產物。此方法對於(S)-(+)-VGB與(R)-(-)-VGB的偵測,定量下限均為25 nM,檢測極限也都可達2.5 nM (S/N = 3,注射量為10 μL)。此方法也已應用於VGB投藥病人血清中VGB鏡像異構物之分離與檢測。

3. D-serine
長久以來,一直以為人類體內只有左旋胺基酸(L-amino acid)的存在,後來的研究發現,右旋胺基酸(D-amino acid)存在,還與疾病有著某種程度的關連。本研究開發一個具光學選擇性之衍生試劑LFAC搭配螢光液相層析法,對右旋性絲胺酸(D-serine)做衍生分析,並將應用於人類阿茲海默症(Alzheimer''s disease)篩檢上。本法分析D-serine與L-serine之定量下限為50 nM,檢測極限為5 nM。
Amino acids, including protein or non-protein amino acids, are widely used as drugs or disease biomarkers. Most of amino acids lack a chromophore for being detected by common absorption spectrophotometry at practical UV range. In this study, we labeled some amino acids, γ-amino-n-butyric acid, vigabatrin and D-serine, with fluorescent reagent NAC or LFAC and analyzed the resulting derivatives with a fluorescent detector to improve the sensitivity and selectivity of the analytes. Quantification of amino acids in biological fluids such as plasma and urine found important application in biomedical studies. The main results of the study are summarized as follows:

1. GABA as a biomarker of ovarian and uterine cancer
A simple and sensitive liquid chromatographic method is described for the analysis of γ-amino-n-butyric acid (GABA) in human urine. GABA is increased in the urine of cancer patients and could be used as a biomarker in the diagnosis and treatment of related patients. The method is based on derivatizing GABA with a fluorescent reagent (naproxen acyl chloride) for transforming the non-chromophoric GABA to a derivative with chromophoric and fluorophoric properties. The resulting derivative is highly responsive to a fluorimetric detector (λex = 230 nm, λem = 350 nm). The lower quantitation of the method is attainable at 100 nM GABA with a detection limit of about 10 nM (S/N = 3 with 20 μl injected). Application of the method to the analysis of GABA in the urine of patients with ovarian and uterine cancer was demonstrated.

2. Drug monitoring of active vigabatrin
Vigabatrin is widely used as an anticonvulsant in the treatment of seizures. Vigabatrin is usually supplied as racemate in formulation, but only the (S)-(+)-enantiomer of vigabatrin is pharmacologically active. A simple and sensitive liquid chromatographic method is described for the separation and quantification of vigabatrin enantiomers. The method is based on derivatizing racemic vigabatrin with a fluorescent chiral reagent (naproxen acyl chloride). The resulting diastereomeric derivatives are highly responsive to a fluorimetric detector (λex = 230 nm, λem = 350 nm). The lower quantitation limit of the method is attainable at 25 nM for (S)-(+)-vigabatrin or (R)-(-)-vigabatrin with a detection limit of about 2.5 nM (S/N = 3 with 10 µl injected). Application of the method to the analysis of vigabatrin in serum of dosed patients proved feasible.

3. D-serine as a biomarker for disease
Amino acids (AA) are the building blocks of various peptides and proteins for essential life. In general, natural AA is existed as L-form for their functions. But some D-amino acids at trace levels found to be associated with human diseases such as D-serine in Alzheimer’s; therefore, a fluorimetric liquid chromatographic method (λex = 290 nm, λem = 460 nm) is being developed for the analysis of DL-serine in urine by using a chiral derivatization reagent LFAC. The lower quantitation limit of the method is 50 nM for D-serine or L-serine with a detection limit of about 5 nM (S/N = 3 with 10 µl injected). Application of the method to the analysis of urine in patients of Alzheimer’s is being developed.
目錄
中文摘要---------------------------------------------------------------- i
英文摘要---------------------------------------------------------------- iii
目錄---------------------------------------------------------------------- vii
圖目錄------------------------------------------------------------------- xiii
表目錄------------------------------------------------------------------- xix

第壹章、緒論---------------------------------------------------------- 1
一、研究背景與文獻--------------------------------------------- 1
(Ⅰ) 癌症生物指標性成分 - ??-Amino-n-butyric acid (GABA) --------------------------------------------------- 3
(Ⅱ) 抗癲癇藥物 - Vigabatrin (VGB) ----------------------- 5
(Ⅲ) D-Serine ---------------------------------------------------- 8
二、 研究目的---------------------------------------------------- 10

第貳章、共同實驗器材---------------------------------------------- 12
一、 儀器與設備--------------------------------------------------- 12
二、 試藥及材料--------------------------------------------------- 14

第參章、螢光偵測導向之衍生試劑合成------------------------- 16
一、 Naproxen acyl chloride (NAC) ---------------------------- 17
(Ⅰ) 衍生試劑NAC的合成途徑----------------------------- 18
(Ⅱ) 衍生試劑NAC的合成步驟----------------------------- 18
二、 Levofloxacin acyl chloride (LFAC) ---------------------- 19
(Ⅰ) 衍生試劑LFAC的合成途徑---------------------------- 20
(Ⅱ) 衍生試劑LFAC的合成步驟---------------------------- 21
(Ⅲ) 衍生試劑LFAC之安定性------------------------------- 26

第肆章、利用Naproxen acyl chloride為衍生試劑配合高效能液相層析法對尿液中GABA之分析研究--------------------- 30
一、 前言------------------------------------------------------------ 30
二、 實驗方法------------------------------------------------------ 30
(Ⅰ) GABA衍生物之製備------------------------------------- 30
(Ⅱ) GABA衍生物之HPLC分析條件---------------------- 33
(Ⅲ) GABA尿液樣品的前處理------------------------------- 33
(Ⅳ) 試藥溶液之配製------------------------------------------ 34
(Ⅴ) GABA適當衍生條件之探討---------------------------- 36
(Ⅵ) GABA檢量線的建立與其精密度之測定------------- 39
(Ⅶ) 病人檢品中GABA含量之測定------------------------ 41
三、 結果與討論--------------------------------------------------- 42
(Ⅰ) GABA衍生物之衍生、合成途徑與結構鑑定--------- 42
(Ⅱ) GABA適當衍生條件之探討---------------------------- 46
(Ⅲ) GABA檢量線的建立與其精密度之測定------------- 56
(Ⅳ) 癌症病人尿液中GABA含量之應用分析------------ 59

第伍章、利用Naproxen acyl chloride為衍生試劑配合高效能液相層析法對血清中抗癲癇藥物Vigabatrin光學異構物之分析研究------------------------------------------------------------- 61
一、 前言------------------------------------------------------------ 61
二、 實驗方法------------------------------------------------------ 61
(Ⅰ) Vigabatrin (VGB)衍生物之製備------------------------ 61
(Ⅱ) VGB衍生物之HPLC分析條件------------------------ 64
(Ⅲ) VGB血清樣品的前處理--------------------------------- 64
(Ⅳ) 試藥溶液之配製------------------------------------------ 65
(Ⅴ) VGB適當衍生條件之探討----------------------------- 67
(Ⅵ) VGB檢量線的建立與其精密度之測定--------------- 70
(Ⅶ) 病人檢品中VGB含量之測定-------------------------- 72
三、 結果與討論--------------------------------------------------- 73
(Ⅰ) VGB衍生物之衍生、合成途徑與結構鑑定----------- 73
(Ⅱ) VGB適當衍生條件之探討------------------------------ 79
(Ⅲ) VGB檢量線的建立與其精密度之測定--------------- 89
(Ⅳ) 病人檢品中VGB含量之測定-------------------------- 90

第陸章 利用Levofloxacin acyl chloride為衍生試劑配合高效能液相層析法對尿液中阿茲海默症生物指標性成分D-Serine之分析研究-------------------------------------------------------------- 93
一、 前言------------------------------------------------------------ 93
二、 實驗方法------------------------------------------------------ 93
(Ⅰ) Serine衍生物的製備-------------------------------------- 93
(Ⅱ) Serine衍生物之HPLC分析條件------------------------ 96
(Ⅲ) Serine尿液樣品的前處理-------------------------------- 96
(Ⅳ) 試藥溶液之配製------------------------------------------ 97
(Ⅴ) Serine適當衍生條件之探討---------------------------- 98
(Ⅵ) Serine檢量線的建立與其精密度之測定-------------- 101
三、 結果與討論--------------------------------------------------- 103
(Ⅰ) Serine衍生物之衍生、合成途徑與結構鑑定--------- 103
(Ⅱ) Serine適當衍生條件之探討----------------------------- 108
(Ⅲ) Serine檢量線的建立與其精密度之測定-------------- 118

第柒章、總結---------------------------------------------------------- 120

參考文獻---------------------------------------------------------------- 122

附錄一、縮寫對照表------------------------------------------------- 142
附錄二、發表論文目錄---------------------------------------------- 143
參考文獻

1.J. Koolman, K.H. Röhm, Color atlas of biochemistry, Thieme, Stuttgart, NewYork (1996) pp. 56-59, 154-155, 226-227, 286, 316-317, 326.
2.V.R. Young, Adult amino acid requirements: The case for a major revision in current recommendations, J. Nutr. 124 (1994) 1517S-1523S.
3.V. Young, A. Ajami, Glutamine: The emperor or his clothes, J. Nutr. 131 (2001) 2449S-2459S.
4.A.R. Gennaro (Ed.), Remington: The science and practice of pharmacy 20th ed., Lippincott Williams & Wilkins, Baltimore 2000, pp. 419-426.
5.R.K. Murray, D.K. Granner, P.A. Mayes, V.W. Rodwell, Haper''s biochemistry, Appleton & Lange, Norwalk 1993, pp. 326-336.
6.K.H. Schulpis, J. Tjamouranis, G.A. Karikas, H. Michelakakis, S. Tsakiris, In vivo effects of high phenylalanine blood levels on Na+, K+-ATPase, Mg2+-ATPase activities and biogenic amine concentrations in phenylketonuria, Clin Biochem. 35 (2002) 281-285.
7.G. Fisher, N. Lorenzo, H. Abe, E. Fujita, W.H. Frey, C. Emory, M.M. Di Fiore, A. D''Aniello, Free D- and L-amino acids in ventricular cerebrospinal fluid from Alzheimer and normal subjects, Amino Acids 15 (1998) 263-269.
8.K. Hashimoto, T. Fukushima, E. Shimizu, N. Komatsu, H. Watanabe, N. Shinoda, M. Nakazato, C. Kumakiri, S. Okada, H. Hasegawa, K. Imai, M. Iyo, Decreased serum levels of D-serine in patients with schizophrenia, Arch. Gen. Psychiatry 60 (2003) 572-576.
9.K. Hashimoto, G. Engberg, E. Shimizu, C. Nordin, L.H. Lindstrom, M. lyo, Reduced D-serine to total serine ratio in the cerebrospinal fluid of drug naive schizophrenic patients, Prog. Neuropsychopharmacol. Biol. Psychiatry 29 (2005) 767-769.
10.S.E. Snyderman, P.M. Norton, E. Roitman, Maple syrup urine disease, with particular reference to dietotherapy, Pediatrics 34 (1964) 454-472.
11.P. Castellino, L. Luzi, D.C. Simonson, M. Haymond, R.A. DeFronzo, Effect of insulin and plasma amino acid concentrations on leucine metabolism in man, J. Clin. Invest. 80 (1987) 1784-1793.
12.C.H. Deng, Y.H. Deng, Diagnosis of maple syrup urine disease by determination of L-valine, L-isoleucine, L-leucine and L-phenylalanine in neonatal bood spots by gas chromatography–mass spectrometry, J. Chromatogr. B 792 (2003) 261-268.
13.X. Shen, C. Deng, B. Wang, L. Dong, Quantification of trimethylsilyl derivatives of amino acid disease biomarkers in neonatal blood samples by gas chromatography-mass spectrometry, Anal. Bioanal. Chem. 384 (2006) 931-938.
14.B. Schwahn, U. Wendel, P. Schadewaldt, N. Falkenberg, E. Mönch, Diurnal changes in plasma amino acids in maple syrup urine disease, Acta Paediatr 87 (2007) 1245.
15.S. Tucci, P. Rada, L. Hernandez, Role of glutamate in the amygdala and lateral hypothalamus in conditioned taste aversion, Brain Res. 813 (1998) 44-49.
16.J. Perez, C. Colasante, S. Tucci, L. Hernandez, P. Rada, Effects of feeding on extracellular levels of glutamate in the medial and lateral portion of the globus pallidus of freely moving rats, Brain Res. 877 (2000) 91-94.
17.C.S. Nicholson-Guthrie, G.D. Guthrie, G.P. Sutton, J.C. Baenziger, Urine GABA levels in ovarian cancer patients: Elevated GABA in malignancy, Cancer Lett. 162 (2001) 27-30.
18.O. Boulat, D.G. McLaren, E.A. Arriaga, D.D. Chen, Separation of free amino acids in human plasma by capillary electrophoresis with laser induced fluorescence: Potential for emergency diagnosis of inborn errors of metabolism, J. Chromatogr. B 754 (2001) 217-228.
19.A. Ortega, A new role for GABA: Inhibition of tumor cell migration, Trends Pharmacol. Sci. 24 (2003) 151-154.
20.M.Y. Khuhawara, G.A. Qureshib, Polyamines as cancer markers: applicable separation methods, J. Chromatogr. B 764 (2001) 385-407.
21.R. Chanda, A.K. Ganguly, Diamine-oxidase activity and tissue di- and poly-amine contents of human ovarian, cervical and endometrial carcinoma, Cancer Lett. 89 (1995) 23-28.
22.T. Nishiyama, I. Hayashi, I. Inoue, C.W. Lin, G. Akagi, T. Sano, Distribution of histaminase in human tumor tissues. An immunohistochemical study, Oncodev. Biol. Med. 4 (1983) 197-207.
23.A.C. Andersson, S. Henningsson, J. Jarhult, Diamine oxidase activity and γ-aminobutyric acid formation in medullary carcinoma of the thyroid, Agents Actions 10 (1980) 299-301.
24.A.C. Andersson, S. Henningsson, C. von Scheele, Formation of GABA via oxidative deamination of putrescine in ovaries of immature Rats after gonadotrophin stimulation, Agents Actions 10 (1980) 106-107.
25.M. Watanabe, K. Maemura, K. Oki, N. Shiraishi, Y. Shibayama, K. Katsu, Gamma-aminobutyric acid (GABA) and cell proliferation: focus on cancer cells, Histol. Histopathol. 21 (2006) 1135-1141.
26.M. Mazurkiewicz, A. Opolski, J. Wietrzyk, C. Radzikowski, Z. Kleinrok, GABA level and GAD activity in human and mouse normal and neoplastic mammary gland, J. Exp. Clin. Cancer Res. 18 (1999) 247-253.
27.S. Henningsson, E. Rosengren, The effect of nandrolone, an anabolic steroid on putrescine metabolism in the mouse, Br. J. Pharmacol. 58 (1976) 401-406.
28.C.K. Zacharis, G.A. Theodoridis, A.N. Voulgaropoulos, On-line coupling of sequential injection with liquid chromatography for the automated derivatization and determination of [gamma]-aminobutyric acid in human biological fluids, J. Chromatogr. B 808 (2004) 169-175.
29.T.P. Piepponen, A. Skujins, rapid and sensitive step gradient assays of glutamate, glycine, taurine and gamma-aminobutyric acid by HPLC-fluorescence detection with o-phthalaldehyde / mercaptoethanol derivatization with an emphasis on microdialysis samples, J. Chromatogr. B 757 (2001) 277-283.
30.J. Kehr, Determination of γ-aminobutyric acid in microdialysis samples by microbore column liquid chromatography and fluorescence detection, J. Chromatogr. B 708 (1998) 49-54.
31.I. Molnar-Perl, I. Bozor, Comparison of the stability and UV and fluorescence characteristics of the o-phthaldialdehyde / 3-mercaptopropionic acid and o-phthaldialdehyde / N-acetyl-L-cysteine reagents and those of their amino acid derivatives, J. Chromatogr. A 798 (1998) 37-46.
32.Y. Kamisaki, Y. Takao, T. Itoh, Determination of gamma-aminobutyric acid in human cerebrospinal fluid by isocratic high-performance liquid chromatography, J. Chromatogr. 529 (1990) 417-423.
33.H. Liu, M. Sanuda-Pena, J.D. Harvey-White, S. Kalra, S.A. Cohen, Determination of submicromolar concentrations of neurotransmitter amino acids by fluorescence detection using a modification of the 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate method for amino acid analysis, J. Chromatogr. A 828 (1998) 383-395.
34.C. Cann-Moisan, J. Caroff, E. Girin, Rapid high-performance liquid chromatographic determination of gamma-aminobutyric acid and some other amino acids: application to rat brain, J. Chromatogr. 532 (1990) 438-441.
35.T. Abe, Y. Kurozumi, W.B. Yao, T. Ubuka, High-performance liquid chromatographic determination of β-alanine, β-aminoisobutyric acid and γ-aminobutyric acid in tissue extracts and urine of normal and (aminooxy)acetate-treated rats, J. Chromatogr. B 712 (1998) 43-49.
36.M.Y. Khuhawar, A.D. Rajper, Liquid chromatographic determination of γ-aminobutyric acid in cerebrospinal fluid using 2-hydroxynaphthaldehyde as derivatizing reagent, J. Chromatogr. B 788 (2003) 413-418.
37.B.W. Boyd, S.R. Witowski, R.T. Kennedy, Trace-level amino acid analysis by capillary liquid chromatography and application to in vivo microdialysis sampling with 10-s temporal resolution, Anal. Chem. 72 (2000) 865-871.

38.I. Smolders, S. Sarre, Y. Michotte, G. Ebinger, The analysis of excitatory, inhibitory and other amino acids in rat brain microdialysates using microbore liquid chromatography, J. Neurosci. Methods 57 (1995) 47-53.
39.J.A.M. McKenzie, C.J. Watson, R.D. Rostand, I. German, S.R. Witowski, R.T. Kennedy, Automated capillary liquid chromatography for simultaneous determination of neuroactive amines and amino acids, J. Chromatogr. A 962 (2002) 105-115.
40.H.L. Rowley, K.F. Martin, C.A. Marsden, Determination of in vivo amino acid neurotransmitters by high-performance liquid chromatography with o-phthalaldehyde-sulphite derivatisation, J. Neurosci. Methods 57 (1995) 93-99.
41.S. Smith, T. Sharp, Measurement of GABA in rat brain microdialysates using o-phthaldialdehyde - sulphite derivatization and high-performance liquid chromatography with electrochemical detection, J. Chromatogr. B 652 (1994) 228-233.
42.T.H. Champney, W.H. Hanneman, M.A. Nichols, gamma - Aminobutyric acid, catecholamine and indoleamine determinations from the same brain region by high-performance liquid chromatography with electrochemical detection, J. Chromatogr. 579 (1992) 334-339.
43.V. Sauvinet, S. Parrot, N. Benturquia, E. Bravo-Moraton, B. Renaud, L. Denoroy, In vivo simultaneous monitoring of gamma-aminobutyric acid, glutamate, and L-aspartate using brain microdialysis and capillary electrophoresis with laser-induced fluorescence detection: analytical developments and in vitro/in vivo validations, Electrophoresis 24 (2003) 3187-3196.
44.S. Parrot, V. Sauvinet, J.M. Xavier, D. Chavagnac, L. Mouly-Badina, L. Garcia-Larrea, P. Mertens, B. Renaud, Capillary electrophoresis combined with microdialysis in the human spinal cord: A new tool for monitoring rapid peroperative changes in amino acid neurotransmitters within the dorsal horn, Electrophoresis 25 (2004) 1511-1517.
45.M.T. Bowser, R.T. Kennedy, In vivomonitoring of amine neurotransmitters using microdialysis with on-line capillary electrophoresis, Electrophoresis 22 (2001) 3668-3676.
46.M.C.G. Alvarez-Coque, M.J.M. Hernandez, R.M.V. Camanas, C.M. Fernandez, Formation and instability of o-phthalaldehyde derivatives of amino acids, Anal. Biochem. 178 (1989) 1-7.
47.D. Ma, J. Zhang, K. Sugahara, T. Ageta, K. Nakayama, H. Kodama, Simultaneous determination of γ-aminobutyric acid and glutamic acid in the brain of 3-mercaptopropionic acid-treated rats using liquid chromatography-atmospheric pressure chemical ionization mass spectrometry, J. Chromatogr. B 726 (1999) 285-290.
48.E.M.J. Hoyes, U. Bondesson, D. Westerlund, P.E. Andren, Simultaneous analysis of endogenous neurotransmitters and neuropeptides in brain tissue using capillary electrophoresis - microelectrospray–tandem mass spectrometry, Electrophoresis 20 (1999) 1527-1532.
49.Y.T. Lin, H.L. Wu, H.S. Kou, S.M. Wu, S. H. Chen, Enantiomeric analysis of (+)-menthol and (-)-menthol by fluorogenic derivatization and liquid chromatography, J. Chromatogr. A 1087 (2005) 223-228.
50.R.S. Fisher, In Gamma-Vinyl GABA (Vigabatrin): An update on a new treatment for epilepsy, Epilepsia 33 (1992) S1-S2.
51.K.L. Weiss, C.E. Schroeder, S.J. Kastin, J.P. Gibson, J.T. Yarrington, W.E. Heydorn, R.G. Mcbride, N.M. Sussman, J.C. Arezzo, MRI monitoring of vigabatrin-induced intramyelinic edema in dogs, Neurology 44 (1994) 1944-1949.
52.P.G. Peyster, N.M. Sussman, B.L. Hershey, W.E. Heydorn, L.R. Meyerson, J.T. Yarrington, J.P. Gibson, Use of ex vivo magnetic resonance imaging to detect onset of vigabatrin-induced intramyelinic edema in canine brain, Epilepsia 36 (1995) 93-100.
53.P. Kwan, G.J. Sills, M.J. Brodie, The mechanisms of action of commonly used antiepileptic drugs, Pharmacol. Ther. 90 (2001) 21-34.
54.B.S. Meldrum, K. Murugaiah, Anticonvulsant action in mice with sound-induced seizures of the optical isomers of gamma-vinyl GABA, Eur. J. Pharmacol. 89 (1983) 149-152.
55.I.E. Leppik, Antiepileptic drugs in development: prospects for the. near future, Epilepsia 34 (1994) S29-S40.
56.N.E. Preece, G.D. Jackson, J.A. Houseman, J.S. Duncan, S.R. Williams, Nuclear magnetic resonance detection of increased cortical GABA in vigabatrin-treated rats in vivo, Epilepsia, Epilepsia 35 (1994) 431-436.
57.S.M. Grant, R.C. Heel, Vigabatrin: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in epilepsy and disorders of motor control, Drugs 41 (1991) 889-926.
58.E. Rey, G. Pons, G. Olive, Vigabatrin: clinical pharmacokinetics, Clin. Pharmacokinet. 23 (1992) 267-278.
59.W.K. Schiffer, M.R. Gerasimov, R.A. Bermel, J.D. Brodie, S.L. Dewey, Stereoselective inhibition of dopaminergic activity by gamma vinyl-GABA following a nicotine or cocaine challenge: a PET/microdialysis study, Life Sci. 66 (2000) PL169-PL173.
60.R.E. Appleton, Vigabatrin in the management of generalized seizures in children, Seizure 4 (1995) 45-48.
61.D. Buti, M. Rota, M. Lini, M.R. Bardini, M. Guarnieri, I. Marvulli, First-line monotherapy with vigabatrin in infantile spasms: long-term clinical and EEG evolution in 12 patients, Epilepsia 36 (1995) S102.
62.M. Feucht, S. Brantner-Inthaler, γ-Vinyl-GABA (Vigabatrin) in the Therapy of Lennox-Gastaut Syndrome: An Open Study, Epilepsia 35 (1994) 993-998.
63.R.S. Sidhu, M.R.D. Bigio, U.I. Tuor, S.S. Seshia, Low-dose vigabatrin (gamma-vinyl GABA)-induced damage in the immature rat brain, Exp. Neurol. 144 (1997) 400-405.
64.G. Rebolleda, J.L. García Pérez, F.J. Muñoz Negrete, R.A. Tang, Vigabatrin toxicity in children, Ophthalmology 112 (2005) 1322-1323.
65.J.R. Buncic, C.A. Westall, C.M. Panton, J R. Munn, L.D. MacKeen, W.J. Logan, Characteristic retinal atrophy with secondary "inverse" optic atrophy identifies vigabatrin toxicity in children, Ophthalmology 111 (2004) 1935-1942.
66.J.M. Gibbs, R.E. Appleton, L. Rosenbloom, Vigabatrin in intractable childhood epilepsy: a retrospective study, Pediatr. Neurol. 8 (1992) 338-340.
67.L. Gram, O.M. Larsson, A. Johnsoen, A. Schousboe, Experimental studies of the influence of vigabatrin on the GABA system, Br. J.Clin. Pharmacol. 27 (1989) 13S-17S.
68.M.C. Walker, P.N. Patsalos, Clinical pharmacokinetics of new antiepileptic drugs, Pharmac. Ther. 67 (1995) 351-384.
69.K.D. Haegele, P.J. Schechter, Kinetics of the enantiomers of vigabatrin after an oral dose of the racemate or the active S-enantiomer, Clin. Pharmacol. Ther. 40 (1986) 581-586.
70.F. Vauzelle-Kervroedan, E. Rey, G. Pons, Ph. D''Athis, C. Chiron, O. Dulac, C. Dumas, G. Olive, Pharmacokinetics of the individual enantiomers of vigabatrin in neonates with uncontrolled seizures, Br. J. Clin. Pharmacol. 42 (1996) 779-781.
71.E. Rey, G. Pons, M.O. Richard, F. Vauzelle, Ph. D''Athis, C. Chiron, O. Dulac, D. Beaumont, G. Olive, Pharmacokinetics of the individual enantiomers of vigabat,rin (gamma-vinyl GABA) in epileptic children, Br. J. Clin. Pharmacol. 30 (1990) 253-257.
72.S.I. Johannessen, D. Battino, D.J. Berry, M. Bialer, G. Kramer, T. Tomson, P.N. Patsalos, Therapeutic drug monitoring of the newer antiepileptic drugs, Ther. Drug Monit. 25 (2003) 347-364.
73.B. Saletu, J. Grünberger, L. Linzmayer, J.J. Schwartz, K.D. Haegele, P.J. Schechter, Psychophysiological and psychometric studies after manipulating the GABA system by vigabatrin, a GABA-transaminase inhibitor, Int. J. Psychophysiol. 4 (1986) 63-80.
74.M. Frisk-Holmberg, P. Kerth, Effect of food on the absorption of vigabatrin, Br. J. Clin. Pharmacol. 27 (1989) 23S-25S.
75.E. Jacqz-Aigrain, M. Guillonneau, E. Rey, M.A. Macher, C. Montes, C. Chiron, C. Loirat, Pharmacokinetics of the S(+) and R(−) enantiomers of vigabatrin during chronic dosing in a patient with renal failure, Br. J. Clin. Pharmacol. 44 (1997) 183-185.
76.K.D. Haegele, N.D. Huebert, M. Ebel, G.P. Tell, P.J. Schechter, Pharmacokinetics of vigabatrin implications of creatinine clearance, Clin. Pharmacol. Ther. 44 (1988) 558-565.
77.T.M. Schramm, G.E. McKinnon, M.J. Eadie, Gas chromatographic assay of vigabatrin enantiomers in plasma, J. Chromatogr. 616 (1993) 39-44.
78.T.A.C. Vermeij, P.M. Edelbroek, High-performance liquid chromatographic analysis of vigabatrin enantiomers in human serum by precolumn derivatization with o-phthaldialdehyde- N-acetyl-l-cysteine and fluorescence detection, J. Chromatogr. B 716 (1998) 233-238.
79.V. Franco, I. Mazzucchelli, C. Fattore, R. Marchiselli, G. Gatti, E. Perucca, Stereoselective determination of vigabatrin enantiomers in human plasma by high performance liquid chromatography using UV detection, J. Chromatogr. B 854 (-672007) 63-67.
80.S. Zhao, R. Zhang, H. Wang, L. Tang, Y. Pan, Capillary electrophoresis enantioselective separation of vigabatrin enantiomers by precolumn derivatization with dehydroabietylisothiocyante and UV–vis detection, J. Chromatogr. B 833 (2006) 186-190.
81.K.D. Haegele, J. Schoun, R.G. Alken, N.D. Huebert, Determination of the R(-)- and S(+)-enantiomers of γ-vinyl-γ-aminobutyric acid in human body fluids by gas chromatography-mass spectrometry, J. Chromatogr. 274 (1983) 103-110.
82.P.J. Schechter, Clinical pharmacology of vigabatrin, Br. J. Clin. Pharmacol. 27 (1989) 19S-22S.
83.J.J. Corrigan, D-Amino Acids in Animals, Science 164 (1969) 142-149.
84.E.H. Man, J.L. Bada, Dietary D-amino acids, Annu. Rev. Nutr. 7 (1987) 209-225.
85.K. Hamase, A. Morikawa, K. Zaitsu, D-Amino acids in mammals and their diagnostic value, J. Chromatogr. B 781 (2002) 73-91.
86.P.M. Helfman, J.L. Bada, M.Y. Shou, Considerations on the role of aspartic acid racemization. in the aging process, Gerontology 23 (1977) 419-425.
87.A. Hashimoto, S. Kumashiro, T. Nishikawa, T. Oka, K. Takahashi, T. Mito, S. Takashima, N. Doi, Y. Mizutani, T. Yamazaki, Embryonic development and postnatal changes in free D-aspartate and D-serine in the human prefrontal cortex, J. Neurochem. 61 (1993) 348-351.
88.S.H. Oliet, J.P. Mothet, Molecular determinants of D-serine-mediated gliotransmission: From release to function, Glia 54 (2006) 726-737.
89.T. Nishikawa, Metabolism and functional roles of endogenous D-serine in mammalian brains, Biol. Pharm. Bull. 28 (2005) 1561-1565.
90.S. A. Fuchs, R. Berger, L.W.J. Klomp, T.J. de Koning, D-Amino acids in the central nervous system in health and disease, Mol. Genet. Metab. 85 (2005) 168-180.
91.E. Kartvelishvily, M. Shleper, L. Balan, E. Dumin, H. Wolosker, Neuron-derived D-serine release provides a novel means to activate N-methyl-D-aspartate receptors, J. Biol. Chem. 281 (2006) 14151-14162.
92.W. Danysz, A.C. Parsons, Glycine and N-methyl-D-aspartate receptors: Physiological significance and possible therapeutic applications, Pharmacol. Rev. 50 (1998) 597-664.
93.A. D''Aniello, J.M. Lee, L. Petrucelli, M.M. Di Fiore, Regional decrease of free D-aspartate levels in Alzheimer’s disease, Neurosci. Lett. 250 (1998) 131-134.
94.Y. Nagata, R. Masui, T. Akino, The presence of free D-serine, D-alanine and D-proline in human plasma, Experientia 48 (1992) 986-988.
95.R. Sethuraman, M.G. Krishnamoorthy, T.L. Lee, E.H.C. Liu, S. Chiang, W. Nishimura, M. Sakai, T. Minami, S. Tachibana, Simultaneous analysis of D- and L-serine in cerebrospinal fluid by use of HPLC, Clin. Chem. 53 (2007) 1489-1494.
96.Y. Huang, T. Nishikawa, K. Satoh, T. Iwata, T. Fukushima, T. Santa, H. Homma, K. Imai, Urinary excretion of D-serine in human : Comparison of different ages and species, Biol. Pharm. Bull. 21 (1998) 156-162.
97.K. Hamase, R. Konno, A. Morikawa, K. Zaitsu, Sensitive determination of D-amino acids in mammals and the effect of D-amino-acid oxidase activity on their amounts, Biol. Pharm. Bull. 28 (2006) 1578-1584.
98.T. Fukushima, J. Kawai, K. Imai, T. Toyo''oka, Simultaneous determination of D- and L-serine in rat brain microdialysis sample using a column-switching HPLC with fluorimetric detection, Biomed. Chromatogr. 18 (2004) 813-819.
99.D. Koval, J. Jirásková, K. Strísovský, J. Konvalinka, V. Kasicka, Capillary electrophoresis method for determination of D-serine and its application for monitoring of serine racemase activity, Electrophoresis 27 (2006) 2558-2566.
100.K. Uchikura, M. Kirisawa, Electrochemiluminescence determination of d-tryptophan, l-tryptophan using ligand-exchange highperformance liquid chromatography, Anal. Sci. 7 (1991) 971-993.
101.A.M. Rizzi, P. Briza, M. Breitenbach, Determination of D-alanine and D-glutamic acid in biological samples by coupled-column chromatography using β-cyclodextrin as mobile phase additive, J. Chromatogr. 582 (1992) 35-40.
102.W.H. Pirkle, J.M. Finn, J.L. Schreiner, B.C. Hamper, A widely useful chiral stationary phase for the high-performance liquid chromatography separation of enantiomers, J. Am. Chem. SOC. 103 (1981) 3964-3966.
103.C.J. Welch, Evolution of chiral stationary phase design in the Pirkle laboratories, J. Chromatogr. A 666 (1994) 3-26.
104.K. Fujirnura, T. Ueda, T. Ando, Retention behavior of some aromatic compounds on chemically bonded cyclodextrin silica stationary phase in liquid chromatography, Anal. Chem. 55 (1983) 446-450.
105.D.W. Armstrong, X. Yang, S.M. Han, R.A. Menges, Direct liquid chromatographic separation of racemates with an α-cyclodextrin bonded phase, Anal. Chem. 59 (1987) 2594-2596.
106.S. Einarsson, B. Josefsson, P. Moller, D. Sanchez, Separation of amino acid enantiomers and chiral amines using precolumn derivatization with (+)-1-(9-fluorenyl)ethyl chloroformate and reversed-phase liquid chromatography, Anal. Chem. 59 (1987) 1191.
107.E. Okuma, H. Abe, Simultaneous determination of D- and L-amino acids in the nervous tissues of crustaceans using precolumn derivatization with (+)-1-(9-fluorenyl)ethyl chloroformate and reversed-phase ion-pair high-performance liquid chromatography, J. Chromatogr. B 660 (1994) 243-250.
108.T. Toyo''oka, M. Ishibashi, T. Terao, K. Imai, 4-(N,N-Dimethylaminosulfonyl)-7-(2-chloroformylpyrrolidin-1-yl)-2,1,3-benzoxadiazole: novel fluorescent chiral derivatization reagents for the resolution of alcohol enantiomers by high-performance liquid chromatography, Analyst 118 (1993) 759-763.
109.T. Toyo''oka, Y. Liu, N. Hanioka, H. Jinno, M. Ando, K. Imai, Resolution of enantiomers of alcohols and amines by high-performance liquid chromatography after derivatization with a novel fluorescent chiral reagent, J. Chromatogr. A 675 (1994) 79-88.
110.P. Marfey, Determination of D-amino acids. II. Use of a bifunctional reagent, 1, 5-difluoro-2, 4-dinitrobenzene, Carlsberg Res. Commun. 49 (1984) 591-596.
111.H. Brückner, C. Gah, High-performance liquid chromatographic separation of DL-amino acids derivatized with chiral variants of Sanger''s reagent, J. Chromatogr. 555 (1991) 81-95.
112.Y. Nagata, K. Yamamoto, T. Shimojo, Determination of D- and L- amino acids in mouse kidney by high-performance liquid chromatography, J. Chromatogr. 575 (1992) 147-152.
113.M.J. Berna, B.L. Ackermann, Quantification of serine enantiomers in rat brain microdialysate using Marfey''s reagent and LC/MS/MS, J. Chromatogr. B 846 (2007) 359-363.
114.W.C. Chan, R. Micklewright, D.A. Barrett, Porous graphitic carbon for the chromatographic separation of O-tetraacetyl-β-d-glucopyranosyl isothiocyanate-derivatised amino acid enantiomers, J. Chromatogr. A 697 (1995) 213-217.
115.D.W. Aswad, Determination of D- and L-aspartate in amino acid mixtures by high-performance liquid chromatography after derivatization with a chiral adduct of o-phthaldialdehyde, Anal. Biochem. 137 (1984) 405-409.
116.R.H. Buck, K. Krummen, Resolution of amino acid enantiomers by high-performance liquid chromatography using automated pre-column derivatisation with a chiral reagent, J. Chromatogr. 315 (1984) 279-285.
117.N. Nimura, T. Kinoshita, o-Phthalaldehyde-N-acetyl-L-cysteine as a chiral derivatization reagent for liquid chromatographic optical resolution of amino acid ernantiomers and its application to conventional amino acid analysis, J. Chromatogr. 352 (1986) 169-177.
118.H. Brükner, R. Wittner, Automated enantioseparation of amino acids by derivatization with o-phthaldialdehyde and N-acylated cysteines, J. Chromatogr. 476 (1989) 73-82.
119.A. Jegorov, J. Triska, T. Trnka, 1-Thio-β-D-galactose as a chiral derivatization agent for the resolution of D, L-amino acid enantiomers, J. Chromatogr. A 673 (1994) 286-290.
120.J.F. Stobaugh, A.J. Repta, L.A. Sternson, K.W. Garren, Factors affecting the stability of fluorescent isoindoles derived from reaction of o-phthalaldehyde and hydroxyalkylthiols with primary amines, Anal. Biochem. 135 (1983) 495-504.
121.E.J.F. Franssen, J. Koiter, C.A.M. Kuipers, A.P. Bruins, F. Moolenaar, D. de Zeeuw, W.H. Kruizinga, R.M. Kellogg, K.F. Meijer, Low molecular weight proteins as carriers for renal drug targeting. Preparation of drug-protein conjugates and drug-spacer derivatives and their catabolism in renal cortex homogenates and lysosomal lysates, J. Med. Chem. 35 (1992) 1246-1259.
122.Y.T. Lin, S.S. Wu, H.L. Wu, Highly sensitive analysis of cholesterol and sitosterol in foods and human biosamples by liquid chromatography with fluorescence detection, J. Chromatogr. A 1156 (2007) 280-287.
123.J. Barbosa, R. Bergés, V. Sanz-Nebot, Solvatochromic parameter values and pH in aqueous-organic mixtures used in liquid chromatography Prediction of retention of a series of quinolones, J. Chromatogr. A, 719 (1996) 27-36.
124.C.C. Cester, P.L. Toutain, A comprehensive model for enrofloxacin to ciprofloxacin transformation and disposition in dog, J. Pharm. Sic. 86 (1997) 1148-1155.
125.D.H. Wright, V.K. Herman, F.N. Konstantinides, J.C. Rotschafer, Determination of quinolone antibiotics in growth media by reversed-phase high-performance liquid chromatography, J. Chromatogr. B 709 (1998) 97-104.
126.J.E. Roybal, A.P. Pfenning, S.B. Turnipseed, C.C. Walker, J.A. Hurlbut, Determination of four fluoroquinolones in milk by liquid chromatography, JAOAC Int. 80 (1997) 982-987.
127.C. Colino, A.G. Turiño, A.S. Navarro, J.M. Lanao, A comparative study of ofloxacin and ciprofloxacin erythrocyte distribution, Biopharm. Drug Dispos. 19 (1998) 71-77.
128.J.A. Hernández-Arteseros, J. Barbosa, R. Compañó, M.D. Prat, Optimisation of mobile phase pH in liquid chromatography. Application to fluorimetric detection of series of quinolones, Chromatographia 48 (1998) 251-257.
129.J.G. Möller, H. Stass, R. Heinig, G. Blaschke, Capillary electrophoresis with laser-induced fluorescence: a routine method to determine moxifloxacin in human body fluids in very small sample volumes, J. Chromatogr. B 716 (1998) 325-334.
130.C. Immanuel, A.K. Hemanth Kumar, Simple and rapid high-performance liquid chromatography method for the determination of ofloxacin concentrations in plasma and urine, J. Chromatogr. B 760 (2001) 91-95.
131.F.M. Lin, H.S. Kou, S.M. Wu, S.H. Chen, A.L. Kwan, H.L. Wu, An ionizable chromophoric reagent for the analysis of primary amine-containing drugs by capillary electrophoresis, Electrophoresis 26 (2005) 621-626.
132.C. Horstkötter, G. Blaschke, Stereoselective determination of ofloxacin and its metabolites in human urine by capillary electrophoresis using laser-induced fluorescence detection, J. Chromatogr. B 754 (2001) 169-178.
133.C. Dass, Fundamentals of contemporary mass spectrometry, A John & Sons, Inc., Hoboken, New Jersey (2007) pp. 317.
134.T. Toyo''oka (Ed.), Modern Derivatization Methods for Separation Sciences, John Wiley & Sons Ltd., New York, 1999, pp. 121.
135.H. Lingeman, W.J.M. Underberg (Eds.), Detection-oriented Derivatization Techniques in Liquid Chromatography, Marcel Dekicer, New York, 1990, p.323.
136.D.A. Skoog, F.J. Holler, T.A. Hieman (Eds.), Principles of Instrumental Analysis, 5th, Sauders College, Philadelphia, 1998, pp. 15-18.
137.USP 31 / NF 26, United States Pharmacopeial Convention, Rockville, MD, 2008, pp. 1482.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top