跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/24 18:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊景森
研究生(外文):Jing-Sen Yang
論文名稱:單級高功因電力轉換器之分析、研製及強健控制器設計
論文名稱(外文):Analysis, Implementation and Robust Controller Design for A Single-Stage High-Power-Factor Converter
指導教授:陳信助陳信助引用關係
指導教授(外文):Chen Shin-Ju
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:113
中文關鍵詞:單級高功因電力轉換器強健控制mu-合成法
外文關鍵詞:High-Power-Factor Converterrobust controllermu-synthesis
相關次數:
  • 被引用被引用:3
  • 點閱點閱:334
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究由降升壓式與返馳式轉換器合併而成之單級高功因AC/DC電力轉換器,此轉換器之演化過程、操作原理及元件設計均詳細說明。當轉換器操作在DCM+DCM模式時,不需額外的輸入電流控制電路,天生具有高功因特性,而且負載變動時儲能電容沒有高電壓應力問題。
利用雙時間尺度平均化法推導出單級高功因電力轉換器之小信號數學模式,並且利用動態信號分析儀量測轉移函數,驗證理論分析的正確性;接者,設計兩種穩壓控制器:古典和mu-強健控制器。本文將負載的變動視為參數不確定性,輸入電壓振幅的變動視為外來干擾信號,建立一個具有模式不確定性及外來干擾訊號的標準回授控制架構,作為強健控制器設計的基礎,改善古典控制器未考慮強健性的缺點。本文利用mu-合成法中的D-K疊代法設計強健控制器,使轉換器系統達到強健穩定性與強健性能的要求。另外,也利用負載電流注入法的控制架構,改善因負載變動所引起的輸出電壓暫態響應,提升穩壓性能。
在實作成果中,研製了一組輸入電壓110 Vrms,輸出電壓48 V,切換頻率50 kHz,額定輸出功率100 W的單級高功因電力轉換器,由模擬與實作結果可知,利用 -合成法所設計之強健控制器的穩壓效果優於古典控制器,而且此電力轉換器確實具有高功因、低電容電壓應力及穩壓性能。

A single-stage high-power-factor converter composed of the buck-boost and flyback converter is investigated in this thesis. The topology derivation, operation principle and design consideration of the considered converter are presented in detail. The converter inherently exhibits high power-factor when it operates under DCM+DCM mode. Moreover, the high voltage stress of the bulk capacitor does not exist in the variation from light to heavy load.
The small-signal model of the converter is derived by averaging method for two-time scale system, and that is verified by the measurement of dynamic signal analyzer. Based on the model, the classical and mu-based robust controllers are design. With the load variation viewed as the parametric uncertainty, a perturbed system including model uncertainties and exogenous disturbances is established to design a robust controller by the D-K iteration of mu-synthesis. In addition, the load-current-injected control is employed to improve the transient response of output voltage in the load variations.
A prototype of the converter with an input voltage of 110 Vrms, an output voltage of 48 V, operation at a switching frequency of 50 kHz and rated power 100 W is built. Simulations and experimental results show that the -based robust controller is superior to the classical controller in the output voltage regulation. The performances of high power-factor、low voltage stress of bulk capacitor and well output voltage regulation are verified by the experimental measurements.

中文摘要……………………………………………………………………………….I
英文摘要………………………………………………………………………………II
致謝………………………………………………………………………………….. III
目錄………………………………………………………………………………...... IV
圖目錄……………………………………………………………………………….. VI
表目錄……………………………………………………………………………….. XI
第一章 緒論……………………………………………………………………… 1-1
1.1 簡介……………………………………………………………………… 1-1
1.2 研究內容與成果………………………………………………………… 1-4
1.3 相關論文回顧…………………………………………………………… 1-5
1.4 論文大綱………………………………………………………………… 1-7
第二章 功率因數校正…………………………………………………………… 2-1
2.1 功率因數簡介…………………………………………………………… 2-1
2.2 功率因數校正電路之發展……………………………………………… 2-5
2.2.1 被動式功因校正電路……………………………………………… 2-5
2.2.2 主動式功因校正電路……………………………………………… 2-6
第三章 強健控制理論…………………………………………………………… 3-1
3.1 強健控制簡介…………………………………………………………… 3-1
3.2 結構化奇異值分析( -analysis) ……………………………………….. 3-4
3.3 -合成法( -Synthesis) ………………………………………………... 3-5
3.3.1 D-K疊代設計法…………………………………………………… 3-6
3.3.2 -K疊代設計法…………………………………………………... 3-7
第四章 單級高功因電力轉換器之合成與電路分析…………………………… 4-1
4.1 單級高功因電力轉換器之合成………………………………………… 4-1
4.2 單級高功因電力轉換器之電路分析…………………………………… 4-6
附錄 4A DCM+CCM模式下電路動作原理分析…………………………. 4A-1
第五章 單級高功因電力轉換器之穩態分析…………………………………… 5-1
5.1 移動平均………………………………………………………………… 5-1
5.2 DCM+DCM模式下之穩態分析……………………………………….. 5-2
5.2.1 切換週期Ts平均化模式………………………………………….. 5-2
5.2.2 半線電壓週期TL平均化模式…………………………………….. 5-4
5.3 儲能電容電壓 之探討……………………………………………….. 5-6
5.3.1 DCM+DCM模式...………………………………………………… 5-6
5.3.2 DCM+CCM模式…………………………………………………... 5-7
5.4 轉換器元件規格設計………………………………………………….. 5-10
5.5 IsSpice模擬驗證………………………………………………………. 5-15
附錄 5A DCM+CCM模式下之穩態分析…………………………………. 5A-1
第六章 單級高功因電力轉換器之數學模式推導……………………………… 6-1
6.1 雙時間尺度平均化法…………………………………………………… 6-1
6.1.1 切換週期Ts的平均化模式推導………………………………….. 6-1
6.1.2 半線電壓週期 的平均化模式推導……………………………... 6-4
6.2 頻率響應量測與驗證…………………………………………………… 6-7
6.3 標準回授組態之建立………………………………………………….. 6-10
附錄 6A電流注入等效電路法(CIECA) ………………………………….. 6A-1
第七章 控制器設計及實作結果………………………………………………… 7-1
7.1 古典控制器設計………………………………………………………… 7-1
7.2 強健控制器設計………………………………………………………… 7-5
7.3 單級高功因電力轉換器實作…………………………………………… 7-9
7.4 控制器性能比較……………………………………………………….. 7-17
7.5 負載電流注入法……………………………………………………….. 7-21
7.5.1 分析與實現………………………………………………………. .7-21
7.5.2 實作測試…………………………………………………………. 7-23
附錄 7A強健控制器設計………………………………………………….. 7A-1
第八章 結論與未來展望………………………………………………………… 8-1
8.1 結論……………………………………………………………………… 8-1
8.2 未來展望………………………………………………………………… 8-2
參考文獻…………………………………………………………………………. Ref-1
自述


[1]W. M. Lin, J. A. Villarejo, J. Sebastian, A. Fernandez and M. M. Hernando “Designing Single-Stage Power Factor Correctors and LC passive filters to Comply with the New Version of the IEC 1000-3-2 Regulations”. IEEE Trans. Power Electronics, Vol. 4, pp. 2044-2049, 2002.
[2]T. F. Wu and Y. K. Chen, “Analysis and Design of An Isolated Single-Stage Converter Achieving Power-Factor Correction and Fast Regulation,” IEEE Trans. Industrial Electronics, Vol. 46, No. 4, pp. 759-767, 1999.
[3]T. F. Wu, S. A. Liang and Y. K. Chen, “High Power Factor Single-Stage Converter with Robust Controller for Universal Off-Line Applications,” IEEE Trans. Power Electronics, Vol. 14, No. 6, pp. 1078-1085, 1999.
[4]I. Takahasi and R. Y. Igarashi, “A Switching Power Supply of 99% Power Factor by the Dither Rectifier,” IEEE INTELEC, pp. 714-719, 1991.
[5]M. H. Kheraluwala, R. L. Steigerwald and R. Gurumoorthy,“A Fast-Response High Power Factor Converter with a Single Power Stage,” IEEE PESC, pp. 769-779, 1991.
[6]J. L. Lin, M. Z. Chang and S. P. Yang, “Synthesis and Analysis for a Novel Single-Stage Isolated High Power Factor Correction Converter,” IEEE Trans. Circuits and Systems, Vol. 52, No. 9, pp. 1928-1939, 2005.
[7]J. L. Lin, J. C. Hsieh and T. H. Tsai, “Dynamics Analysis of a Single-Stage Isolated High Power Factor Converter with a Magnetic Switch,” IEE Proceeding-Electronics Power Applied, Vol. 152, No. 3, pp. 643-652, 2005.
[8]J. L. Lin, S. P. Yang and P. W. Lin, “Small-Signal and Controller Design for An Isolated Zeta Converter with High Power Factor Correction,” Electric Power Systems Research, Vol. 76, No. 3, pp. 67-76, 2005.
[9]J. L. Lin, W. Y. Yao and S. P. Yang, “Analysis and Design for a Novel Single-Stage High Power Factor Correction Diagonal Half-Bridge Forward AC/DC Converter,” IEEE Trans. Circuits and Systems, Vol. 53, No. 10, pp. 2274-2286, 2006.
[10]Z. Qinglin, W. Yi1, W. Weiyang and C. Zhe, “A Single-Stage Boost-Flyback PFC Converter,” IEEE IPEMC, Vol. 2, pp. 1-5, 2006.
[11]T. F. Wu and Y. K. Chen, “An Alternative Approach to Systematically Modeling PWM DC/DC Converters in DCM Based on The Graft Scheme,” IEEE PESC, pp. 453-459, 1997.
[12]T. F. Wu, T. H. Yu and Y. C. Liu, “Generation of Power Converter with Graft Technique,” Proceedings of EPE’95, pp. 370-376, 1995.
[13]M. H. L. Chow, Y. S. Lee and C. K. Tse, “Single-Stage Single-Switch Isolated PFC Regulator with Unity Power Factor, Fast Transient Response and Low Voltage Stress,” IEEE PESC, pp. 1422-1428, 1998.
[14]M. H. L. Chow, K. W. Siu,C. K. Tse and Y. S. Lee, “A Novel Method for Elimination of Line-Current Harmonics in Single-Stage PFC Switching Regulators,” IEEE Trans. Power Electronics, Vol. 13, pp. 75-83, 1998.
[15]Y. S. Lee and K. W. Siu, “Single-Switch Fast-Response Switching Regulators with Unity Power Factor,” IEEE APEC, pp.791-796, 1996.
[16]F. S. Tsai, P. Markowski and E. Whitcomb, “Off-Line Flyback Converter with Input Harmonic Correction,” IEEE INTELEC, pp. 120-124, 1996.
[17]M. Qiu, G. Moschopoulos, H. Pinheiro and P. Jain,“Analysis and Design of a Single Stage Power Factor Corrected Full-Bridge Converter,” IEEE APEC, pp. 119-125, 1999.
[18]R. Red and L. Balogh, “Design Consideration for Single Stage Isolated Power Factor Corrected Power Supplies with Fast Regualtion of the Output Voltage,” IEEE PESC, pp. 454-458, 1995.
[19]S. Buso, “Design of a Robust Control for Buck-Boost Converters using μ-synthesis,” IEEE Trans. Control Systems Technology, Vol. 7, No.9, pp. 965-977, 1999.
[20]J. L. Ramos, J. A. M. Saldana, M. M. Cruz, “Robust Stability Analysis for Current-Programmed Regulators,” IEEE Trans. Industrial Electronics, Vol. 49, No. 5, pp. 205-214, 2002.
[21]J. L. Lin and H. Y. Hsieh, “Dynamics Analysis and Controller Synthesis for Zero-Voltage-Transition PWM Power Converters,” IEEE Trans. Power Electronics,Vol. 15, No. 2, pp.205-214, 2000.
[22]G. F. Wallis, R. Tymerski, “Generalized Approach for μ-Synthesis of Robust Switching Regulators,” IEEE Trans. Aerospace and Electronic Systems, Vol. 36, pp. 422-431, 2000.
[23]G. Garcera, A. Abellan, and E. Figueres, “Sensitivity Study of the Control Loops of DC-DC Converters by Means of Robust Parametric Control Theory,” IEEE Trans. Industrial Electronics, Vol. 49, No. 3, pp. 524-535, 2002.
[24]J. Leyva-Ramos, J. A., Morales-Saldana “Uncertainty Models for Switch-Mode DC-DC Converters,” IEEE Trans. Circuits and Systems, Vol. 47, No.2, pp. 200-203, 2000.
[25]R. Naim, G. Weiss, and S. Ben-Yaakov, “H∞ Control Applied to Boost Power Converters,” IEEE Trans. Power Electronics, Vol. 12, No.4, pp.677-683, 1997.
[26]J. Bu, M. Sznaier, Z. Wang, and I. Batarseh, “Robust Controller Design for a Parallel Resonant Converter using μ-synthesis,” IEEE Trans. Power Electronics, Vol. 12, pp. 837-853, 1997.
[27]T. F. Wu and Y. K. Chen, “Modeling of Single-Stage Converters with High Power Factor and Fast Regulation,” IEEE Trans. Industrial Electronics, Vol. 46, No. 3, pp. 585-593, 1999.
[28]E. Figures, J. M. Benavent, G. Garcer’a, and M. Pascual, “A Control Circuit with Load-Current Injection for Single-Phase Power-Factor-Correction Rectifiers,” IEEE Trans. Industrial Electronics, Vol. 54, No. 3, pp.1272-1281, 2007.
[29]P. R. K. Chetty, “Current Injected Equivalent Circuit Approach to Modeling Switching DC-DC Converter,” IEEE Trans. Aerospace and Electronic System, Vol. 17, Issue 6, pp. 802-808, 1981.
[30]J. Rajagopalan, F. C. Lee and P. Nora, “A Generalized Technique for Derivation of Average Current Mode Control Laws for Power Factor Correction Without Input Voltage Sensing,” IEEE Trans. Industry Applications, Vol. 26, No. 5, pp. 881-885, 1990.
[31]J. P. Gegner and C. Q. Lee, “Linear Peak Current Mode Control: A Simple Active Power Factor Correction Control Technique for Continuous Conduction Mode,” IEEE PESC, pp. 196-202, 1996.
[32]J. Spangler and A. Behera, “A Comparison Between Hysteretic and Fixed Frequency Boost Converter Used for Power Factor Correction,” IEEE APEC, pp. 281-286, 1993.
[33]L. Dixon, “Average Current Mode Control of Switching Power Supplies,” Unitrode Power Supply Design Seminar, pp. 5.1-5.14, 1990.
[34]D. Maksimovic, “Design of The Clamped Current High-Power-Factor Boost Rectifier,” IEEE APEC, pp. 584-590, 1994.
[35]R. Redl and B. Erisman, “Reducing Distortion in Peak Current Controlled Boost Power Factor Correctors,” IEEE APEC, pp. 576-583, 1994.
[36]C. Zhou, R. B. Ridley, and F. C. Lee, “Design and Analysis of A Hysteretic Boost Power Factor Correction Circuit,” IEEE PESC, pp. 800-807, 1990.
[37]J. Lai and D. Chen, “Design Considerations for Power Factor Correction Boost Converter Operating at The Boundary of Continuous Conduction Mode and Discontinuous Conduction Mode,” IEEE APEC, pp. 267-273, 1993.
[38]R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, Kluwer Academic Publishers, Second Edition, 2001.
[39]N. S. Nice, Control System Engineering, Fourth Edition, 2004.
[40]J. Sun and H. Grotstollen, “Averaged Modeling of Switching Power Converters: Reformulation and Theoretical Basis,” IEEE PESC, pp. 1162-1172, 1992.
[41]J. Sun and H. Grotstollen, “Averaged Modeling and Analysis of Resonant Converters,” IEEE PESC, pp. 707-713, 1993.
[42]葉怡君,新型零電流零電壓轉移柔切式高功因AC/DC整流器,碩士論文,國立成功大學工程科學系,2003。
[43]陳建仰,嶄新單級高功因對角半橋型返馳式電力轉換器之LFR動態模式分析與設計,碩士論文,國立成功大學工程科學系,2006。
[44]陳學展,新型順向式單級高功因電力轉換器之分析與控制器設計,碩士論文,國立成功大學工程科學系,2004。
[45]劉智豪,單級隔離式高功因電力轉換器之模式分析及控制器設計,碩士論文,國立成功大學工程科學系,2000。
[46]施奕丞,低電壓應力之嶄新單級隔離式高功因電力轉換器之模式分析與控制器設計,碩士論文,國立成功大學工程科學系,2003。
[47]姚偉凱,嶄新單級高功因混橋型順向式電力轉換器之分析與設計,碩士論文,國立成功大學工程科學系,2005。
[48]王郁凱,新型低電壓應力之單級高功因AC/DC電力轉換器之分析與設計,碩士論文,國立成功大學工程科學系,2007。
[49]楊宗憲,具柔切技術之高功因電力轉換器:新型零電壓轉移單級高功因返馳式AC/DC電力轉換器,碩士論文,國立成功大學工程科學系,2007。
[50]陳俊宏,柔切技術在高功因電力轉換器上之應用:新型零電壓轉移單級高功因順向式AC/DC整流器,碩士論文,國立成功大學工程科學系,2007。
[51]張銘智,嶄新單級隔離式高功因電力轉換器之分析與控制器之設計,碩士論文,國立成功大學工程科學系,2002。
[52]劉君上, 共振式DC-DC電源轉換器之分析與強健控制器設計,碩士論文,國立成功大學工程科學系,1996。
[53]謝新穎,零電壓轉移柔性切換電源轉換器之動態模式分析及控制器之研製,碩士論文,國立成功大學工程科學系,1998。
[54]陳建榮,以返馳式轉換器為基礎之高功因整流器研製,碩士論文,崑山科技大學電機工程系,2004。
[55]黃彥彰,單級高功因電力轉換器分析與研製,碩士論文,崑山科技大學電機工程系,2007。
[56]莫清賢,“功因修正電路”,電子月刊,第三卷,第十一期,1997年11月,第76-86頁。
[57]謝冠群、王見銘,“高頻式電源系統的發展演進”,電子月刊,第三卷,第十一期,1997年11月,第67-75頁。
[58]梁從主、陳建富、吳登和、陳奉殷、曾國鏡,“單級高功因充電器之研究”,電子月刊,第七卷,第二期,2001年2月,第106-119頁。
[59]鄭培璿,IsSpice在電力電子與電源轉換器上的應用,全華科技圖書股份有限公司,台北,1999。
[60]張義和,主流電腦輔助電路設計Protel 99 SE,全華科技圖書股份有限公司,台北,2005。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top