跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/22 13:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張瑞宏
研究生(外文):Jui-hung Chang
論文名稱:氮及氧氣作用下動態監控鈦表面反應生成物之研究
論文名稱(外文):A study on dynamic monitoring the chemical reactions of titanium under oxygen and nitrogen gas flow
指導教授:張育斌
指導教授(外文):Chang, Yuh-Ping
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:97
中文關鍵詞:接觸電阻動態監控化學反應
外文關鍵詞:Electrical contact resistanceDynamic monitoringChemical reactions
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於鈦金屬在空氣中之化學反應物至少包括二氧化鈦及氮化鈦等組織,生成機制也相當複雜,至今學理依然不明。且由於鈦金屬在工業上之應用潛力很大,更值得進一步深入研究。本研究團隊過去已成功發展摩擦帶電機制成為動態監控金屬薄膜磨潤特性的新方法,並且發現不管是就靈敏性或判別性之考量,上述此種新方法均優於傳統以摩擦係數監控的方式,但卻因導電特性之限制而只侷限在導體對導體材料之配對。
因此,本研究擬進一步在上述理論基礎上利用往復摩擦試驗機暨量測系統,於動態的摩擦過程中,量測接觸電阻及摩擦係數,以動態監控鈦金屬之化學反應生成物。並且,在摩擦試驗後,使用精密微量天秤量測磨耗損失量,以及利用電子顯微鏡(SEM)觀察其微奈米級材料轉移之結構及組成成份。根據初步評估測試結果可知,同時動態量測接觸電阻及摩擦係數之實驗方法,確實可以動態監控鈦金屬界面之化學反應生成物與變化機制。


The chemical reactions between the frictional interfaces for the titanium specimen in the air include at least two organizations: TiN and TiO2. Moreover, the chemical mechanisms are very complex and still unclear up to now. On the other hand, it is also well known that the titanium is very widely applied in the industry. Therefore, it is worth deeply investigating the dynamic chemical reactions of the titanium specimen in the friction process. Moreover, the variations of the tribo-electrification voltage had been successfully applied to monitor the tribological properties between the metal films by our laboratory members. In fact, the novel method of using continuous tribo-electrification variations for monitoring the tribological properties between the soft metal films is more “sensitive” and “discriminative” than that by the continuous friction coefficient variations as usual. However, this novel method was only suitable for the conduct materials.
Therefore, this study is based on the above results to further develop this novel method for dynamic monitoring the chemical reactions of titanium in the friction process. The experiment was conducted by the self-developed friction tester and its measure system. The dynamic electrical contact resistance and friction coefficient were measured for monitoring the chemical reactions of the titanium in the friction process. Moreover, the wear loss was measured by an accuracy balance and the SEM was used to observe the structures of material transfer after the friction test. According to the experimental results, the method of using dynamic electrical contact resistance and friction coefficient variations to monitor the chemical reactions of titanium is feasible.


中文摘要 --------------------------------------------- i
英文摘要 --------------------------------------------- iii
誌謝 --------------------------------------------- v
目錄 --------------------------------------------- vii
表目錄 --------------------------------------------- x
圖目錄 --------------------------------------------- xi
符號說明 --------------------------------------------- xv
第一章緒論----------------------------------------- 1
1.1前言---------------------------------------- 2
1.2研究動機------------------------------------- 3
1.3研究背景----------------------------------- 2
1.4文獻回顧------------------------------------- 4
1.5本論文重點----------------------------------- 10
1.6本論文架構----------------------------------- 11
第二章 實驗原理與設備------------------------------- 13
2.1實驗原理------------------------------------- 13
2.2往復摩擦試驗機暨量測系統--------------------- 21
2.2.1接觸電阻量測系統-------------------- 24
2.2.2摩擦係數量測系統-------------------- 26
2.3電子訊號與數據擷取處理----------------------- 29
第三章 研究方法------------------------------------- 33
3.1實驗方法------------------------------------- 33
3.2實驗試片材料之幾何形狀與表面處理------------- 35
3.3鈦金屬材料之特性----------------------------- 45
3.4實驗條件與參數------------------------------- 48
3.5實驗步驟------------------------------------- 49
3.6實驗注意事項--------------------------------- 52
第四章 實驗結果與討論------------------------------- 53
以接觸電阻動態監控鈦對鈦氧氣氣流下之磨潤特性 53
4.1大氣中之基礎研究結果------------------------- 44
4.2氧氣氣流下作用下不同往復速度之磨潤特性------- 48
4.2.1接觸電阻、摩擦係數之變化------------ 48
4.2.2鈦對鈦於氧氣氣流中不同往復速率磨耗損失觀察-------52
4.3氧氣氣流不同下作用相同往復速度(低速)之磨潤特性------53
4.3.1接觸電阻、摩擦係數之變化------------ 53
4.3.2鈦對鈦於氧氣氣流中低速往復速度下相同往復速率不同氧氣流量磨耗損失觀察---------54
4.4氧氣氣流不同下相同往復速度(高速)之磨潤特性----55
4.4.1接觸電阻、摩擦係數之變化-------------55
4.4.2鈦對鈦於氧氣氣流中高速往復速度下相同往復速率不同氧氣流量磨耗損失觀察----------56
4.5電子顯微照片(SEM)之分析探討--------------------58
4.6氮氣氣流下作用下不同往復速度之磨潤特性---------76
4.6.1接觸電阻、摩擦係數之變化--------------76
4.6.2鈦對鈦於氧氣氣流中不同往復速率磨耗損失觀察------79
4.7電子顯微照片(SEM)之分析探討-------------------81
第五章 結論與未來展望------------------------------- 89
5.1結論------------------------------------------89
5.2未來展望--------------------------------------90
參考文獻 -----------------------------------------------91
作者簡介 -----------------------------------------------97

[1] J. K. Lancaster, Proc. Roy. Soc. Lond. 273A (1963) 466-483.
[2] Yuh-Ping Chang, A novel method of using continuous tribo-electrification variations for monitoring the tribological properties between the pure metal films, Wear, 262(2007), 411-423
[3] T. R. Beck, D. W. Mahaffey & J. H. Olsen : Trans. ASME, J. Basic Eng. 92 (1970) 782.
[4] T. Katafuchi, and N. Takano, Electrical characteristics between lubricated frictional surfaces (1): measurement of voltage-current characteristics between friction surfaces, J. Jpn. Soc. Lubr. Eng., (in Japanese), 25, 6 (1980) 395-399.
[5] T. Katafuchi, and N. Takano, Electrical characteristics between lubricated frictional surfaces (2): the effects of viscosity and degree of refinement of lubricating oils on the voltage-current characteristrics, J. Jpn. Soc. Lubr. Eng., (in Japanese), 25, 6 (1980) 400-404.
[6] T. Katafuchi, and N. Takano, Electrical characteristics between lubricated frictional surfaces (3): the effects of load sliding speed and oil temperature on the voltage-current characteristics, J. Jpn. Soc. Lubr. Eng.,(in Japanese), 25, 7 (1980) 444-449.
[7] T. Katafuchi, and N. Takano, Electrical characteristics between lubricated frictional surfaces (4): the effects of atmosphere and EP-additives on the electrical rectification, J. Jpn. Soc. Lubr. Eng.,(in Japanese), 27, 2 (1982) 129-134.
[8] T. Katafuchi, and N. Takano, Electrical characteristics between lubricated frictional surfaces (5): the effects of oiliness agents on the voltage-current characteristrics, J. Jpn. Soc. Lubr. Eng.,(in Japanese), 28, 7 (1983) 524-528.
[9] B. D. Terris, J. E. Stern, D. Ruggr, and H. J. Mamin, Contact electrification using force microscopy, Physical Review Letters, 63, 24 (1989) 2669-2672.
[10] A. Sasaki and T. Yamamoto, Free redicals and oil auto-oxidation due to spark discharges of static electricity, Lubr. Eng., Sept, (1999) 14-21.
[11] A. Sasaki and T. Yamamoto, Generation of static electricity during oil filtration, Lubr. Eng., Sept, (1999) 24-27.
[12] 工研院電子所微系統技術中心
http://www.itri.org.tw/MEMS/chinese/result/result9.htm
[13] 李國賓,下一波之生物晶片-微流體生醫晶片之應用及研發,《科學發展》月刊,(2002).
[14] Che-Hsin Lin, Gwo-Bin Lee, and Guan-Liang Chang, Micro Flow Cytometers Integrated with Buried SU-8/SOG Optical Waveguides for On-line Cell Detection, Special issue, The International Journal of Non-linear Scie nces and Numerical Simulations, 3 (3-4) (2002) 215-218,.
[15] Gwo-Bin Lee, Che-Hsin Lin and Guan-Liang Chang, Micro Flow Cytometers With Buried Su-8/Sog Optical Waveguides, accepted for publishing, Sensors and Actuators A, (2002).
[16] K. Kato, N. Umehara, and K. Adachi, Friction wear and N2- lubrication of carbon nitride coatings: a review, Wear, 254 (2003) 1062-1069.
[17] J. C. Jaeger, Moving sources of heat and the temperature at sliding contacts, J. R. Soc. N. S. W., 56 (1942) 203-224.
[18] J. W. Peterson, Contact charging between a borosilicate glass and nickel, J. of Applied Physics, 25, 4 (1954) 501-505.
[19] J. W. Peterson, Contact charging between nonconductors and metal, J. of Applied Physics, 25, 7 (1954) 907-915.
[20] W. R. Harper, Contact and frictional electrification, Oxford University Press., London (1967) 44-51, 73-75, 223-225.
[21] S. W. Earles, M. G. Hayler and D. G. Powell, A comparison of surface temperature theories and experimental results for high speed dry sliding, ASME-ASLE Lubrication Conference, Cincinnati, 14 (1970) 135-143.
[22] D. G. Powell and S. W. Earles, An assessment of surface temperature predictions in the high speed sliding of unlubricated SAE 1113 steel surfaces, ASME-ASLE Lubrication Conference, Pittsburgh, 15, 2 (1971) 103-112.
[23] D. Landheer and J. H. Zaat, The mechanism of metal transfer in sliding friction, Wear 27 (1974) 129-145.
[24] D. A. Rigney, Fundamentals of friction and wear of materials, ASM, (1980) 8-10.
[25] D. A. Rigney, L. H. Chen, M. G. S. Naylor and A. R. Rosenfield, Wear processes in sliding systems, Wear 100 (1984) 195-219.
[26] D. A. Rigney, Sliding wear of metals, Ann. Rev. Mater. Sci., 18 (1988) 141-163.
[27] S. Sasaki, Effects of tribo-electrification on wear behavior of ceramics, J. of Mechanical Engineering Laboratory, 44, 4 (1990) 140-147.
[28] K. Nakayama, N. Suzuki, and H. Hashimoto, Triboemission of charged photons from solid surfaces during friction damage, J. of Physics D: Applied Physics., 25 (1992) 303-308.
[29] K. Nakayama, and H. Hashimoto, Triboemission from various materials in atmosphere, Wear, 147 (1991) 335-343.
[30] K. Nakayama, Triboemission of charged particles from various solids under boundary lubrication conditions, Wear, 178 (1994) 61-67.
[31] K. Nakayama, and H. Hashimoto, Triboemission of charged particles and photons from wearing ceramic surfaces in various gases, STLE, 35, 4 (1992) 643-650.
[32] K. Nakayama, and H. Hashimoto, Triboemission of charged particles and photons from wearing ceramic surfaces in various hydrocarbon gases, Wear, 185 (1995) 183-188.
[33] K. Nakayama, and H. Hashimoto, Effect of surrounding gas pressure on triboemission of charged particles and photons from wearing ceramic surfaces, STLE, 38, 1 (1995) 35-42.
[34] K. Nakayama, Tribophysical phenomena and tribochemical reaction, J. Jpn. of Tribologists., 42, 9 (1997) 712-717.
[35] I. M. Hutchings, Tribology: Friction and wear of engineering materials, CRC Press, (1992) 205-210.
[36] Y. C. Chiou, Y. P. Chang, and R. T. Lee, Tribo-electrification mechanism for self-mated metals in dry severe wear process, part I: pure hard metals, Wear, 254 (2003) 606-615.
[37] Y. C. Chiou, Y. P. Chang, and R. T. Lee, Tribo-electrification mechanism for self-mated metals in dry severe wear process, part II: pure soft metals, Wear, 254 (2003) 616-624.
[38] Y. P. Chang, Y. C. Chiou, and R. T. Lee, The transition mechanisms of tribo-electrification for self-mated metals in dry severe wear process. (2004), Wear, 257 (2004) 347-358.
[39] 王鴻偉,”以純金屬薄膜間微振幅及電位變化監控磨鍍薄層之研究”,碩士論文,崑山科技大學,2006。
[40] 蔡齊峻,”以連續摩擦帶電變化監控純金屬薄膜間磨潤行為的新穎方法”,碩士論文,崑山科技大學,2006。
[41] Y. P. Chang, Y. C. Chiou, and R. T. Lee, Tribo-electrification mechanism for dissimilar metal pairs in dry severe wear process, part I: speed effect, Ref. No.: IH-3279, (2007), accepted to Wear.
[42] Y. P. Chang, Y. C. Chiou, and R. T. Lee, Tribo-electrification mechanism for dissimilar metal pairs in dry severe wear process, part Ⅱ: load effect, Ref. No.: IH-3280, (2007), accepted to Wear.
[43] Y. P. Chang, H. M. Chou, R. F. Horng and H. M. Chu, Another method of using dynamic tribo-electrification mechanisms for measuring gas flow rate, (2007), accepted to Proc. Instn Mech. Engrs, Part J: Journal of Engineering Tribology.
[44] K. H. Zum Gahr, Microstructure and Wear of Materials, Elsevier, Amsterdam, (1987), p, 80.
[45] K. G, Budinski, Surface Engineering for Wear Resistance, Prentice Hall, New Jersey, (1988), p,16.
[46] 楊春美,”濺鍍氮化鋯擴散阻礙層特性之研究”,碩士論文,國立中山大學,材料科學研究所,2001。
[47] 傅泀翰,”以改質光觸媒處理二氯甲烷之研究”,碩士論文,國立成功大學,環境工程學系,2004。
[48] 呂宗昕 吳偉宏,奈米科技與二氧化鈦光觸媒,《科學發展》月刊,(2004).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top