跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/30 05:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳俊欣
研究生(外文):Chun-Hsin Wu
論文名稱:尿素溶液中鈦配對之磨潤特性研究
論文名稱(外文):A study on tribolohical characteristics of self-mated titanium pairs under carbamide lubrication.
指導教授:周煥銘周煥銘引用關係
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:105
中文關鍵詞:動態監控接觸電阻尿素磨潤
外文關鍵詞:Dynamic monitoringEletrical contact resistanceCarbamideTribology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:671
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究團隊過去已成功發展時磨擦帶電機制成為動態監控金屬薄膜磨潤特性的新方法,並且發現不管是就靈敏性或判別性之考量,上述此種新方法均優於傳統以磨擦係數監控的方式,但卻因導電特性之限制而只侷限在導體對導體材料之配對。
因此,本研究係進一步利用往復磨擦試驗機暨量測系統,動態同時量測磨擦界面之接觸電阻與磨擦係數對應於滑動距離之連續變化,以監控尿素溶液中鈦金屬配對之磨潤行為與化學反應物對接觸電阻與磨擦係數之影響,並量測磨耗損失量及以SEM觀察微奈米級材料轉移現象,且利用X光能譜散佈分析儀(Energy Dispersive Spectrometer, EDS)分析做為材料轉移之佐證。
本研究係針對尿素溶液中之實驗結果與純水中之情況作比較,這些動態監控的研究成果,將可提供未來生醫材料及相關磨潤工程研究之依據。


The tribo-electrification mechanisms had been successfully applied to monitor the tribological properties between the metal films by our laboratory members. Moreover, the novel method of using continuous tribo-electrification variations for monitoring the tribological properties between the soft metal films is more “sensitive” and “discriminative” than that by the continuous friction coefficient variations as usual. However, the above novel method is only suitable for the conducted materials.
Therefore, this study is based on the above results to further develop another novel method for dynamic monitoring the tribological properties and chemical reactions by measuring the continuous variations of electrical contact resistance and friction coefficient between the self-mated titanium pairs under carbamide lubrication. The experiment was conducted by the self-developed friction tester and its measure system. Moreover, the wear loss was measured by an accuracy balance and the SEM was used to observe the micro structures of material transfer. Besides, EDS was used to analyze and clarify the material transfer.
Similarly, the experimental results under carbamide lubrication were compared with that under water lubrication. All of the above dynamic monitoring results will be very helpful for the study of the related tribology engineering and the biomaterial materials in the future.


中文摘要 -------------------------------------------------i
英文摘要 -----------------------------------------------iii
誌 謝 -------------------------------------------------v
目 錄 ------------------------------------------------vi
表目錄 ------------------------------------------------ix
圖目錄 -------------------------------------------------x
符號說明 ------------------------------------------------xv
第一章 緒論---------------------------------------------1
1.1 研究動機----------------------------------------------1
第二章 文獻回顧-------------------------------------------3
2.1 文獻回顧----------------------------------------------3
2.2 研究背景----------------------------------------------5
2.3 本論文架構--------------------------------------------5
第三章 實驗設備-------------------------------------------7
3.1 實驗原理----------------------------------------------7
3.2 往復摩擦試驗機暨量測系統------------------------------8
3.2.1 接觸電阻量測系統------------------------------------9
3.2.2 摩擦係數量測系統-----------------------------------10
3.3 電子訊號與數據擷取處理-------------------------------10
3.4 實驗方法---------------------------------------------11
3.5 實驗試片材料之幾何形狀與表面處理---------------------12
3.6 實驗步驟---------------------------------------------12
第四章 以接觸電阻動態監控鈦自配於尿素溶液中之磨潤特性----28
4.1 負荷效應---------------------------------------------28
4.1.1 低負荷條件下鈦自配於尿素溶液中之磨潤行為-----------28
4.1.2 中負荷條件下鈦自配於尿素溶液中之磨潤行為-----------29
4.1.3 高負荷條件下鈦自配於尿素溶液中之磨潤行為-----------31
4.1.4 鈦對鈦於純水及尿素溶液中變化垂直荷重條件下之磨耗量損失
圖-------------------------------------------------32
4.1.5 低負荷下尿素溶液中鈦自配之磨耗面型態圖-------------32
4.1.6 中負荷下尿素溶液中鈦自配之磨耗面型態圖-------------32
4.1.7 高負荷下尿素溶液中鈦自配之磨耗面型態圖-------------33
4.1.8 低負荷下於純水中及尿素溶液中鈦自配之磨耗表面電子顯微照
片觀察---------------------------------------------33
4.1.9 中負荷下於純水中及尿素溶液中鈦自配之磨耗表面電子顯微照
片觀察---------------------------------------------34
4.1.10 高負荷下於純水中及尿素溶液中鈦自配之磨耗表面電子顯微
照片觀察------------------------------------------34
4.2 速度效應---------------------------------------------35
4.2.1 低速率條件下鈦自配於尿素溶液中之磨潤行為-----------35
4.2.2 中速率條件下鈦自配於尿素溶液中之磨潤行為-----------36
4.2.3 高速率條件下鈦自配於尿素溶液中之磨潤行為-----------38
4.2.4 鈦對鈦於純水及尿素溶液中變化往復速率條件下之磨耗量損失
圖-------------------------------------------------40
4.2.5 鈦對鈦於純水及尿素溶液中變化往復速率條件下之磨耗率損失
圖-------------------------------------------------40
4.2.6 低速率下尿素溶液中鈦自配之磨耗面型態圖-------------40
4.2.7 中速率下尿素溶液中鈦自配之磨耗面型態圖-------------41
4.2.8 高速率下尿素溶液中鈦自配之磨耗面型態圖-------------41
4.2.9 低速率下於純水中及尿素溶液中鈦自配之磨耗表面電子顯微照
片觀察---------------------------------------------42
4.2.10 中速率下於純水中及尿素溶液中鈦自配之磨耗表面電子顯微
照片觀察------------------------------------------42
4.2.11 高速率下於純水中及尿素溶液中鈦自配之磨耗表面電子顯微
照片觀察------------------------------------------42
4.3 討論-------------------------------------------------43
4.3.1 鈦自配於添加尿素溶液下之接觸電阻與磨擦係數於變化垂直荷
重之關係-------------------------------------------43
4.3.2 鈦金屬與鈦金屬配對於添加不同尿素百分比之接觸電阻與磨擦
係數於不同往復速率下之關係-------------------------45
4.4 結論-------------------------------------------------46
第五章 總論與未來展望------------------------------------93
5.1 總論-------------------------------------------------93
5.2 未來展望---------------------------------------------94
參考文獻-------------------------------------------------95
作者簡介------------------------------------------------105


[1] A. G. Khurshudov, M. Olsson, and K. Kato, Tribology of unlubricated sliding contact of ceramic materials and amorphous carbon, Wear 205 (1997) 101-111.
[2] A. G. Khurshudov , Y. N. Drozdov, and Koji Kato, Transitional phenomena in the lubricated heavily loaded sliding contact of ceramics and steel, Wear 184 (1995) 179-186.
[3] F. Zhou, K. Adachi, and K. Kato, Sliding friction and wear property of a-C and a-CNx coatings against SiC balls in water, Thin Solid Films 514 (2006) 231–239.
[4] F. Zhou, K. Adachi, and K. Kato, Wear-mechanism map of amorphous carbon nitride coatings sliding against silicon carbide balls in water, Surface & Coatings Technology 200 (2006) 4909 – 4917.
[5] F. Zhou, X. Wang, Koji Kato, and Z. Dai, Friction and wear property of a-CNx coatings sliding against Si3N4 balls in water, Wear 263 (2007) 1253–1258.
[6] F. Zhou, K. Adachi, and K. Kato, Friction and wear property of a-CNx coatings sliding against ceramic and steel balls in water, Diamond & Related Materials 14 (2005) 1711 – 1720.
[7] F. Zhou, K. Adachi, and K. Kato, Comparisons of tribological property of a-C, a-CNx and BCN coatings sliding against SiC balls in water, Surface & Coatings Technology 200 (2006) 4471 – 4478.
[8] H. Lin, K. Aizawa, T. Inakuma, R. Yamauchi, and K. Kato, Physical properties of water-soluble pectins in hot- and cold-break tomato pastes, Food Chemistry 93 (2005) 403–408.
[9] H. Lin, X. Qin, K. Aizawa, T. Inakuma, R. Yamauchi, and K. Kato, Chemical properties of water-soluble pectins in hot- and cold-break tomato pastes, Food Chemistry 93 (2005) 409–415.
[10] J. Xu, and Koji Kato, Formation of tribochemical layer of ceramics sliding in water and its role for low friction, Wear 245 (2000) 61–75.
[11] K. Kato, N. Umehara, and K. Adachi, Friction, wear and N2-lubrication of carbon nitride coatings: a review, Wear 254 (2003) 1062–1069.0
[12] M. Chen, K. Kato, and K. Adachi, Friction and wear of self-mated SiC and Si3N4 sliding in water, Wear 250 (2001) 246–255.
[13] M. Chen, K. Kato, and K. Adachi, The comparisons of sliding speed and normal load effect on friction coefficients of self-mated Si3N4 and SiC under water lubrication, Tribology International 35 (2002) 129–135.
[14] S. Kubo, and K. Kato, Effect of arc discharge on wear rate of Cu-impregnated carbon strip in unlubricated sliding against Cu trolley under electric current, Wear 216 (1998) 172-178.
[15] X. Wang , K. Kato, K. Adachi, and K. Aizawa, The effect of laser texturing of SiC surface on the critical load for the transition of water lubrication mode from hydrodynamic to mixed, Tribology International 34 (2001) 703–711.
[16] X. Wang, K. Adachi, K. Otsuka, and K. Kato, Optimization of the surface texture for silicon carbide sliding in water, Applied Surface Science 253 (2006) 1282–1286.
[17] X. Wang, K. Kato, K. Adachi, and K. Aizawa, Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water, Tribology International 36 (2003) 189–197.
[18] H. Liu, and Q. Xue, Wear mechanisms of zirconia/ steel reciprocating sliding couple under water lubrication, Wear 201(1996)51-57.
[19] J. H. Jia, J.M. Chen, H. D. Zhou, J. B. Wang, and H. Zhou, Friction and wear properties of bronze–graphite composite under water lubrication, Tribology International 37 (2004) 423–429.
[20] W. Zhang, W. Liu, and L. Yu, Friction and wear behaviors of a (Ca, g)-sialon/SAE 52100 steel pair under the lubrication of various polyols as water-based lubricating additives, ribology International 33 (2000) 769–775.
[21] M. D. Ger, K.H. Hou, L. M. Wang, and B. J. Hwang, The friction and wear of Ni–P–PTFE composite deposits under water lubrication, Materials Chemistry and Physics 77 (2002) 755–764.
[22] H. Ronkainen, S. Varjus, and K. Holmberg, Tribological performance of different DLC coatings in water-lubricated conditions, Wear 249 (2001) 267–271.
[23] M. Masukoa, A. Suzukia, Y. Sagaea, M. Tokoroa, and K. Yamamoto, Friction characteristics of inorganic or organic thin coatings on solid surfaces under water lubrication, ribology International 39 (2006) 1601–1608.
[24] M. B. Peterson,W. O. Winner主編,汪一麟主譯,磨損控制手冊,機械工業出版社,1994。
[25] 正文書局編譯委員會譯編,表面處理法,正文書局,1996。
[26] S. Wilson, A. T. Alpas, TiN coating wear mechanisms in dry sliding contact against high speed steel, Surface and Coatings Technology, 108-109, (1998) 369-376.
[27] A. K. Butilenko, A.Ya. Vovk, H.R. Khan, Structural and electrical properties of cathodic sputtered thin chromium films, Surface and Coatings Technology, 107, (1998) 197-199.
[28] M. Viswanathan, E.G. Ramachandran, Electrocodeposited Composites of Graphite, Molybdenum disulfide and tungsten disulfide with copper for tribological applications, Metal Finishing, November, (1980) 55-60.
[29] M. Viswanathan, E.G. Ramachandran, Friction and wear characteristics of electrodeposited nickel-graphic and nickel-MoS2 composites, Metal Finishing, August, (1980) 57-63.
[30] K. Katsuhiro, and A. Masashi, The frictional properties of a spray-bonded MoS2/Sb2O3 film under the fretting in vacuum, Lubrication Engineering, Vol.51, 12, (1995) 943-949.
[31] T. Kayaba, K. Kato and H. Ohsaki, The lubrication properties of friction-coating films of Pb-Sn alloys in high vacuum, Proc. JSLE International Tribology conference, July, 8-10, (1985) 209-214, Tokyo, Japan.
[32] K. Holmberg, H. Ronkainen and A. Matthewst, Tribology of thin coatings, Ceramics International, Vol.26, (2000) 787-795.
[33] Y. C. Chiou, Y. P. Chang, and R. T. Lee, Tribo-electrification mechanism for self-mated metals in dry severe wear process, part I: pure hard metals, Wear, 254 (2003) 606-615.
[34] Y. C. Chiou, Y. P. Chang, and R. T. Lee, Tribo-electrification mechanism for self-mated metals in dry severe wear process, part Ⅱ: pure soft metals, Wear, 254 (2003) 616-624.
[35] Y. P. Chang, A method of using continuous tribo-electrification variations for monitoring the tribological properties between the pure metal films, Part II: Discrimination, Ref. No.: IH-3574,(2005)
[36] Y. P. Chang, J.P. Yur, H. M. Chou and H. M. Chu, Tribo-electrification mechanisms for self-mated carbon steels in dry severe wear process, Wear, 260 (2006) 1209-1216.
[37] Y. P. Chang, H. M. Chu, and H. M. Chou, Effects of mechanical properties on the tribo-electrification mechanisms of iron rubbing with carbon steels, Wear, 262 (2007) 112-120.
[38] Y. P. Chang, A novel method of using continuous tribo-electrification variations for monitoring the tribological properties between the pure metal films, Wear, 262 (2007) 411-423.
[39] Y. P. Chang, H.M. Chou, R.F. Horng and H.M. Chu, Another method of using dynamic tribo-electrification mechanisms for measuring gas flow rate. Proc. IMechE, Part J: J. Engineering Tribology, 2007, 221(J4), 479-487.
[40] Y. P. Chang, Y. C. Chiou, and R. T. Lee, Tribo-electrification mechanism for dissimilar metal pairs in dry severe wear process, part I: speed effect, Wear, 264, 11-12 (2008) 1085-1094.
[41] Y. P. Chang, Y. C. Chiou, and R. T. Lee, Tribo-electrification mechanism for dissimilar metal pairs in dry severe wear process, part Ⅱ: load effect, Wear, 264, 11-12 (2008) 1095-1104.
[42] Y. P. Chang, C.H. Lin, Y.Y. Hung, L.M. Chu, and Y.C. Hwang, Monitoring the dynamics at the contact interfaces of a pair of abrading titanium specimens, (2007), reviewed to Wear. IH-4867.
[43] 王鴻偉,“以純金屬薄膜間微振幅及電位變化監控磨鍍薄層之研究”,崑山科技大學機械工程系,碩士論文(2006)
[44] 王瑞鴻,“類鑽碳與光觸媒薄膜動態乾摩擦時之接觸電阻變化研究”,崑山科技大學機械工程系,碩士論文(2007)
[45] K. Kato, N. Umehara, and K. Adachi, Friction, wear and N2 lubrication of carbon nitride coatings: a review, Wear, 254 (2003) 1062-1069.
[46] D. F. Wang and K. Kato, Coating hardness effect on the critical number of friction cycles for wear particle generation in carbon nitride coatings, Diamond and related Materials, 11 (2002) 1817-1830.
[47] D. F. Wang and K. Kato, Coating thickness effects on initial wear of nitrogen-doped amorphous carbon in nano-scale sliding contact: part I – in situ examination, Tribology International, 36 (2003) 649-658.
[48] D. F. Wang, N. Hu and K. Kato, Coating thickness effects on initial wear of nitrogen-doped amorphous carbon in nano-scale sliding contact: part II – theoretical modeling, Tribology International, 36 (2003) 659-665.
[49] D. F. Wang and K. Kato, Critical load for wear particle generation in carbon nitride coatings by single sliding against a spherical diamond, Tribology International, 34 (2001) 407-418.
[50] D. F. Wang and K. Kato, Effect of friction cycles on wear particle generation of carbon nitride coatings against a spherical diamond, Tribology International, 33 (2000) 115-122.
[51] D. F. Wang and K. Kato, Humidity effect on the critical number of friction cycles for wear particle generation in carbon nitride coatings, Wear, 254 (2003) 10-22.
[52] D. F. Wang and K. Kato, In situ examination of wear particle generation in carbon nitride coatings by repeated sliding contact against a spherical diamond, Wear, 253 (2002) 519-526.
[53] D. F. Wang and K. Kato, Tribology evaluation of carbon coatings with and without nitrogen incorporation applicable to Micro-Electro-Mechanical systems (MEMS), Sensors and Actuators A 93 (2001) 251-257.
[54] M. Chen, K. Kato and K. Adachi, Friction and wear of self-mated SiC and Si3N4 sliding in water, Wear, 250 (2001) 246-255.
[55] V. S. R. Murthy, H. Kobayashi, S. Tsurekawa, N. Tamari, T. Watanabe, and K. Kato, Influence of humidity and doping elements on the friction and wear of SiC in unlubricated sliding, Tribology International, 37 (2004) 353-364.
[56] K. Kato, Wear in relation to friction – a review, Wear, 241 (2000) 151-157.
[57] T. Yamaguchi, K. Adachi, Y. Ishimine, and K. Kato, Wear mode control of drive tip of ultrasonic motor for precision positioning, Wear, 256 (2004) 145-152.
[58] J. K. Lancaster, Proc. Roy. Soc. Lond. 273A (1963) 466-483.
[59] M. Hutchings, Tribology: Friction and wear of engineering materials, CRC Press, (1992) 205-210.
[60] Y. C. Chiou, and K. Kato, Effect of normal stiffness in loading system on wear of carbon steel, part 2: dynamic normal load and effective sliding distance, ASME Journal of Tribology, 108 (1986) 321-325.
[61] Y. C. Chiou, K. Kato, and H. Abé, The effect of normal damping in the loading system on the wear of low carbon steel, Wear, 114 (1987) 73-84.
[62] 汪建民,材料分析,中國材料科學學會出版,新竹市,1999.
[63] 鄭振東,化學鍵的透析與圖解,建宏出版社,台北,1998.
[64] 于樹貞,晶體之結構與性質,渤海堂文化公司,台北,1993.
[65] W. D. Kingerv, .H. K. Bowen, and D. R. Hhlmann, Introduction to ceramics, Ch. 2, John Wiley & Sons, Canada, 1991.
[66] C. Z. Wang, and K. M. Ho, Physical review, B71, 1993, 1148.
[67] J. Robertson, Surf. Coatings Technol., 50, 1992, 185.
[68] C. D. Martion, F. Demichelis and A. Tagliaferro, Diamond relat. Mater., 4, 1995, 1210.
[69] A. Grill, Diam. Relat. Mater., 8, 1999, 428
[70] J. Robertson, Diamond Relat. Mater., 2 ,1993, 984.
[71] J. W. Zou, K. Schmidt, K. Reichelt, and B. Dischler, J. Appl.Phys., 67, 1990, 487.
[72] J. C. Phillips, Phys. Rev. Lett., 51, 1979, 1355.
[73] J. C. Phillips, and F. Jansen, J. Vac. Sci. Technol., A6, 1988, 1778.
[74] P. Reinke, W. Jansen, J. Appl. Phys., 74, 1993, 1354.
[75] 郭秋廷,“類鑽碳材料之特性與應用”,博士論文,國立中山大學,電機工程學系,2004。
[76] 張振福,“微波化學氣相沉積及磁控濺鍍成長類鑽石之研究”,博士論文,國立中山大學,電機工程學系,2002。
[77] 蘇志偉,”利用電弧離子鍍製備二氧化鈦光觸媒薄膜之研究” ,碩士論文,逢甲大學,材料科學所,2002。
[78] 傅泀翰,”以改質光觸媒處理二氯甲烷之研究”, 碩士論文,國立成功大學,環境工程學系,2004。
[79] 徐清彬,“二氧化鈦薄膜的性質和結構分析與其光觸媒行為” ,碩士論文,東華大學,材料科學與工程學系,2002。
[80] A. Grall, V. Patel and B. S. Meyerson, Surf. Coat. Technol., 49, 1991, 530.
[81] J. P. Hirvonen, R. Lappalainen, J. Koskinen, A. Anttlia, T. R. Jervis and MTukula, J. Mater. Res., 5, 1990, 2524.
[82] J. Roberston, Adv. Phy., 35, 1986, 317.
[83] A. Vanhulsel, B. Blanpain, J. P. Celis, J. Root, E. Dekempeneer and J. Smeets, Surf. Coat. Technol., 98, 1998, 1047.
[84] B. D. Terris, J. E. Stern, D. Ruggr, and H. J. Mamin, Contact electrification using force microscopy, Physical Review Letters, 63, 24 (1989) 2669-2672.
[85] S. Sasaki, Effects of tribo-electrification on wear behavior of ceramics, J. of Mechanical Engineering Laboratory, 44, 4 (1990) 140-147.
[86] K. Nakayama, and H. Hashimoto, Triboemission of charged particles and photons from wearing ceramic surfaces in various gases, STLE, 35, 4 (1992) 643-650.
[87] K. Nakayama, and H. Hashimoto, Triboemission of charged particles and photons from wearing ceramic surfaces in various hydrocarbon gases, Wear, 185 (1995) 183-188.
[88] K. Nakayama, and H. Hashimoto, Effect of surrounding gas pressure on triboemission of charged particles and photons from wearing ceramic surfaces, STLE, 38, 1 (1995) 35-42.
[89] K. Nakayama, and H. Hashimoto, Triboemission, tribochemical reaction, and friction and wear in ceramics under various n-butane gas pressures, Tribology International, 29, 5 (1996) 385-393.
[90] K. Nakayama, N. Suzuki, and H. Hashimoto, Triboemission of charged photons from solid surfaces during friction damage, J. of Physics D: Applied Physics., 25 (1992) 303-308.
[91] K. Nakayama, and H. Hashimoto, Triboemission from various materials in atmosphere, Wear, 147 (1991) 335-343.
[92] K. Nakayama, Triboemission of charged particles from various solids under boundary lubrication conditions, Wear, 178 (1994) 61-67.
[93] E. Rabinowicz, Friction and wear of materials, Wiley, New York, (1995) 62, 82-88, 286-288.
[94] I. M. Hutchings, Tribology: Friction and wear of engineering materials, CRC Press, (1992) 205-210.
[95] K. Nakayama, Tribophysical phenomena and tribochemical reaction, J. Jpn. of Tribologists., 42, 9 (1997) 712-717.
[96] 陳建佑,”水潤滑下金屬配對之磨潤特性研究” ,碩士論文, 崑山科技大學機械工程系,2008。
[97] 蔡憲忠,”銅鉻電極及尿素加工液對放電加工表面改質效果之研究”,博士論文,中央大學,2005。
[98] 陳耀明,”TiN鍍膜微結構與性質之研究”,博士論文,國立清華大學, 2001。
[99] 蘇明德,”鈦的自述”,科學發展,2008年6月,426期,66 -71。
[100] 吳重文、廖大鵬,”尿素樹脂與三聚氰胺樹脂-加工與應用-“,高立圖書,台北,1980。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top