(3.236.118.225) 您好!臺灣時間:2021/05/16 11:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐嘉吟
研究生(外文):JIA-YIN, SHIU
論文名稱:應用改良的最大最小螞蟻系統於旅行推銷員問題
論文名稱(外文):Applying Modified Max-Min Ant System To The Traveling Salesman Problem
指導教授:黃士滔黃士滔引用關係
指導教授(外文):Shih-Tao Huang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:工業工程與管理系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:93
中文關鍵詞:螞蟻系統最大最小螞蟻系統旅行推銷員問題改良的最大最小螞蟻系統
外文關鍵詞:ant systemmax-min ant systemtraveling salesman problemmodified max-min ant system
相關次數:
  • 被引用被引用:6
  • 點閱點閱:529
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
螞蟻演算法為近年來被廣泛討論的一種啟發式演算法,也成功應用於求解許多複雜的組合最佳化問題上,自1991年Dorigo提出第一個螞蟻系統(ant system, AS)至今,已有多位學者針對第一個模型衍生出多種不同的改良方法,來提升求解品質。本研究提出改良的最大最小螞蟻系統(modified max-min ant system, MMMAS)來求解旅行推銷員問題,除在費洛蒙更新規則上作改良,並採用螞蟻系統(ant system, AS)、螞蟻群落系統(ant colony system, ACS)、最大最小螞蟻系統(max-min ant system, MMAS)和最優最差螞蟻系統( best-worst ant system, BWAS)之文獻例題最佳解來比較改良的最大最小螞蟻系統之求解品質;然後利用電腦產生亂數座標位置,模擬測試改良的最大最小螞蟻系統較之傳統最大最小螞蟻系統的求解效率。研究結果發現MMMAS在與螞蟻系統相較之下,皆優於其他螞蟻系統,在與傳統最大最小螞蟻系統比較求解效率上,改良的最大最小螞蟻系統的表現,不論是在運算效率,甚至在求解的品質上,均來的更好。
The ant algorithm, also named as ant colony optimization, is recently a famous meta-heuristic approach that has been successfully applied to solve many complicated combinatorial optimization problems. Since Ant System was developed in 1991, there were many scholars devoted to improve the robustness and efficiency of ant system (AS). This study developed a new improved AS algorithm named modified max-min ant system (MMMAS).
The comparisons show that MMMAS provides better solution than the other algorithms. The study compare the performance of MMMAS to that obtained with Ant System(AS), ant colony system(ACS), max-min ant system (MMAS) and best-worst ant system(BWAS). The computational results was that generally MMMAS achieves the best performance. According to the experiment results the MMMAS can provide greater efficiency and satisfactory accuracy than MMAS.
摘 要 i
Abstract ii
誌 謝 iii
目 錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
1-3 研究假設 3
1-4 研究限制 3
1-5 研究流程 3
1-6 論文章節概要 6
第二章 文獻探討 7
2-1 旅行推銷員問題 7
2-1-1 旅行推銷員定義 7
2-1-2 旅行推銷員問題之數學模式 8
2-1-3 旅行推銷員問題之求解方法 9
2-1-4 旅行推銷員問題之相關應用及研究 16
2-2 螞蟻系統 17
2-2-1 螞蟻系統簡介 17
2-2-2 螞蟻系統流程架構 20
2-2-3 國內外螞蟻系統之相關應用及研究 22
2-2-4 最大最小螞蟻系統相關文獻 28
第三章 研究方法 32
3-1 螞蟻系統 32
3-2 最大最小螞蟻系統 35
3-3 改良的最大最小螞蟻系統 36
3-3-1 MMMAS演算操作步驟 38
3-3-2 MMMAS演算流程 40
第四章 結果與分析 42
4-1 測試例題 42
4-2 測試環境 42
4-3 參數設定 43
4-3-1 螞蟻數量(m) 44
4-3-2 費洛蒙濃度參數(α) 46
4-3-3 能見度參數(β) 47
4-3-4 費洛蒙蒸發係數(ρ) 49
4-4 與其他螞蟻系統比較之結果 50
4-5 例題測試與比較分析 54
第五章 結論與建議 60
5.1 結論 60
5.2 建議 61
參考文獻 62
附錄A 模擬測試例題-1 75
附錄B 模擬測試例題-2 76
附錄C 重要參數實驗結果 86
1.Ahn, S. H., Lee, S. G., and Chung, T. C., 2003, “Modified ant colony system for coloring graphs”, Proceedings of the 2003 Joint Conference of the 4th International Conference in Information Communications and signal Processing and the 4th Pacific Rim Conference on Multimedia, vol.3, pp.1849-1853.
2.Anily, S and Federgruen A., 1987,“Ergodicity in parameter nonstationary markov chains: an application to simulated annealing methods”, Operations Rsearch, vol. 35, pp. 867-874.
3.Althofer, I. And Koschnick, K. U., 1991, “On the convergence of threshold accepting”, Applied Mathematics and Optimization, vol.24, pp.183-195.
4.Bauer, A., Bullnheimer, B., Hartl, R. F., and Strauss, C., 1999, “An ant colony optimization approach for the single machine total tardiness problem”, Proceedings of the 1999 Congress on Evolutionary Computation (CEC’99), IEEE Press, Piscataway, NJ, pp.1445-1450.
5.Besten, M.den, Stutzle, T., and Dorigo, M., 1999, “Scheduling Single Machines by Ants”, Technical Report IRIDIA/99-16, IRIDIA, Universite libre de Bruxelles, Belgium.
6.Bonabeau,E., Henaux, F., Guérin, S., Snyers, D., Kuntz, P., and Theraulaz, G., 1998, “Routing in telecommunication networks with “Smart” ant-like agents”, Proceedings of IATA’98, Second Int. Workshop on Intelligent Agents for Telecommunication Applications, Lectures Notes in AI, vol.1437, Springer Verlag.
7.Bullnheimer, B., Hartl, R. F., and Strauss, C., 1997a, “A new rank-based version of the Ant System: A computational study”, Central European Journal for Operations Research and Economics, vol. 7, no. 1, pp.25-38.
8.Bullnheimer, B., Hartl, R. F., and Strauss, C., 1997b, “Applying the ant system to the vehicle routing problem”, Proceedings of the 2nd Metaheuristic International Conference, Sophia-Antipolis, France.
9.Camara, D. and Loureiro, A. A. F., 2000, “A GPS/ant-like routing algorithm for ad hoc networks”, Proceedings of the IEEE Wireless Communications and Networking Conference, Chicago, IL, USA, pp.1232-1236.
10.Carlton, W. and Barners, J., 1996, “Solving the traveling-salesman problem with time windows using tabu search”, IIE Transaction, pp.617-629.
11.Caro, G. D., and Dorigo, M., 1997, “AntNet: A mobile agents approach to adaptive routing”, Technical Report IRIDIA/97-12, IRIDIA, Université Libre de Bruxelles, Belgium.
12.Caro, G. D., and Dorigo, M., 1998a, “Extending AntNet for best-effort Quality-of-Service routing”, ANTS’98 - From Ant Colonies to Artificial Ants: First International Workshop on Ant Colony Optimization, vol.8, pp.15-16.
13.Caro, G. D. and Dorigo, M., 1998b, “Two ant colony algorithms for best-effort routing in datagram networks”, Proceedings of the 10th IASTED International Conference on Parallel and Distributed Computing and Systems, pp.541-546.
14.Chen, C. H. and Ting, C. J., 2006, "An improved ant colony system algorithm for the vehicle routing problem", Journal of the Chinese Institute of Industrial Engineers, vol.23, pp.115-126.
15.Chen, F., Xu, L., Cui, Z., and Chen, X., 2006, "Optimization of electrostatic detecting ground array", 2006 IEEE International Conference on Information Acquisition, icia, pp.737-741.
16.Chu, S. C., Roddick, J. F. and Pan, J. S., 2004, “Ant colony system with communication strategies”, Information Sciences, vol.167, pp.63-76.
17.Colorni, A., Dorigo, M., Maniezzo, V., and Trubian, M., 1994, “Ant system for jobshop scheduling”, JORBEL-Belgian Journal of Operations Research, Statistics and Computer Science, vol.34, no.1, pp.39-53.
18.Cordón, O., Fernández de Viana, I., Herrera, F., and Moreno, L., 2000, “A new ACO model integrating evolutionary computation concepts: The best-worst ant system,” In Dorigo, M., Middendorf, M., and Stützle, T., editors, Abstract proceedings of ANTS2000 - From Ant Colonies to Artificial Ants: A Series of International Workshops on Ant Algorithms, Université Librede Bruxelles, pp.22-29.
19.Costa, D., and Hertz, A., 1997, “Ants can colour graphs”, Journal of the Operational Research Society, vol. 48, pp.295-305.
20.Dorigo, M., 1991, Optimization, Learning and Natural Algorithms (in Italian), Ph.D. Dissertation, Dipartimento di Elettronica, Politecnico di Milano, Italy.
21.Dorigo, M., Maniezzo, V. and Colorni, A., 1991, “The ant system: An autocatalytic optimizing process”, Technical Report no. 91-016 Revised, Politecnico di Milano, Italy.
22.Dorigo, M., Maniezzo, V., and Colorni, A., 1996, “The ant system: Optimization by a colony of cooperating agents,” IEEE Transactions on Systems, Man, and Cybernetics - Part B, vol.26, no.1, pp.29-41.
23.Dorigo, M., and Gambardella, L. M., 1996, “Ant colony system: A cooperative learning approach to the traveling salesman problem”, IEEE Transitions on Evolutionary Computation, vol.1, no.1, pp.53-66.
24.Dorigo, M. and Stützle, T., ant colony optimization, 張軍、胡曉敏、羅旭耀譯,2007,蟻群優化,清華大學出版社,北京。
25.Dueck, G., and Scheuer, T., 1990, “Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing”, Journal of Computational Physics, vol. 90, pp.161-175.
26.Flood, M. M., 1956, “The traveling salesman problem”, Operations Research, vol. 4, pp.61-75.
27.Fu, S. G.., and Dozier, G. V., 2003, “Solving distributed constraint satisfaction problems with an ant-like society of hill-climbers”, IC-AI, pp.263-269.
28.Gambardella, L. M., and Dorigo., M., 1995, “Ant-Q: A reinforcement learningapproach to the traveling salesman problem”, In Prieditis, A., and Russell, S., editors, Proceedings of the Twelfth International Conference on Machine Learning (ML-95), Morgan Kaufmann Publishers, Palo Alto, CA, pp.252-260.
29.Gambardella, L. M., and Dorigo, M., 1996, “Solving symmetric and asymmetric TSPs by ant colonies,” Proceedings of the 1996 IEEE International Conference on Evolutionary Computation (ICEC’96), IEEE Press, Piscataway, NJ, pp.622-627.
30.Gambardella, L. M., and Dorigo, M., 1997, “HAS-SOP: An hybrid ant system for the sequential ordering problem”, Technical Report IDSIA-11-97, IDSIA, Lugano, Switzerland.
31.Gambardella, L. M., Taillard, E. D. and Dorigo, M., 1997, “ Ant colonies for the QAP”, Technical Report IDSIA-4-97, Lugano, Switzerland.
32.Gambardella, L. M., Taillard, É. D., and Dorigo, M., 1999, “Ant colonies for the quadratic assignment problem”, Journal of the Operational Research Society, vol. 50, no.2, pp.167-176.
33.Gambardella, L. M., Taillard, É. D., and Agazzi, G., 1999, “MACS-VRPTW: A multiple ant colony system for vehicle routing problems with time windows”, In Corne, D., Dorigo, M., and Glover, F., editors, New Ideas in Optimization, McGraw Hill, London, UK, pp.63-76.
34.Garey, M. R. and Johnson, D. S., 1979, Computers and intractability: A guide to the theory of NP-completeness, Freeman, San Francisco.
35.Glover, F., 1977, “Heuristic for integer programming using surrogate constraints”, Decision Science, vol. 8, pp.156-166.
36.Heusse, M., Gu´erin, S., Snyers, D., and Kuntz, P., 1998, “Adaptive agent-driven routing and load balancing in communication networks”, Technical Report RR-98001-IASC, D´epartment Intelligence Artificielle et Sciences Cognitives, ENST Bretagne.
37.Holland, J., 1975, Adaptation in natural and artificial systems, University of Michigan Press, Ann Arbor, Michigan.
38.Kaji, T., 2001, ”Approach by ant tabu agents for traveling salesman problem”, 2001 IEEE International Conference on Systems, Man, and Cybernetics, vol.5, pp.3429-3434.
39.Kirkpatrick, S. and Gelatt, C. and Vecchi, M., 1983, “Optimization by simulated annealing”, Science, vol.220, no.4598, pp.671-680.
40.Krasnogor, N., and Smith, J., 2000, “A memetic algorithm with self-adaptive local search: TSP as a case study”, Genetic and Evolutionary Computation Conference(GECCO-2000), pp. 987-994.
41.Kuan, S. N., Ong, H. L., and Ng, K. M., 2006, “Solving the feeder bus network design problem by genetic algorithms and ant colony optimization”, Advances in Engineering Software, vol. 37, pp.351-359.
42.Laporte, G., 1992, ”The Traveling Salesman Problem : An overview of exact and approximate algorithms”, European Journal of Operational Research, vol.59, pp. 231-247.
43.Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., Shmoys, D. B., 1985, The Traveling Salesman Problem, John Wiley & Sons Ltd., New York.
44.Leguizamón, G., and Michalewicz, Z., 1999, “A new version of ant system for subset problems”, Proceedings of the 1999 Congress on Evolutionary Computation (CEC’99), IEEE Press, Piscataway, NJ, pp.1459-1464.
45.Liang, Y. C., and Smith, A. E., 1999, “An ant system approach to redundancy allocation”, Proceedings of the 1999 Congress on Evolutionary Computation, IEEE Press, Piscataway, NJ, pp.1478-484.
46.Liang, Y. C. and Smith, A. E., 2004, “An ant colony optimization Algorithm for the redundancy allocation problem (RAP)”, IEEE Transactions on Reliability, vol.53, no.3, pp. 417-423.
47.Maniezzo, V., 1999, “Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem,” INFORMS Journal on Computing, vol.11, no.4, pp.358-369.
48.Maniezzo, V., Colorni, A., and Dorigo, M., 1994, “The ant system applied to the quadratic assignment problem”, Technical Report IRIDIA/94-28, IRIDIA, Universit´e Libre de Bruxelles, Belgium.
49.Maniezzo, V., and Colorni, A., 1999, “The ant system applied to the quadratic assignment problem”, IEEE Transactions on Data and Knowledge Engineering, vol.11, no.5, pp.769-778.
50.Maniezzo, V., and Carbonaro, A., 2000, “An ANTS heuristic for the frequency assignment problem,” Future Generation Computer Systems, vol.16, no.8, pp.927-935.
51.Merkle, D., Middendorf, M., and Schmeck, H., 2000, “Ant colony optimization for resource-constrained project scheduling”, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000), Morgan Kaufmann Publishers, San Francisco, CA, pp.893-900.
52.Mertens, K. and Holvoet, T., 2004, “A distributed ant algorithm framework for constraint satisfaction”, Proceedings of the 17th International FLAIRS Conference, AAAI Press, pp.764-769.
53.Michel, R., and Middendorf, M., 1999, “An ACO algorithm for the shortest super-sequence problem”, In Corne, D., Dorigo, M., and Glover, F., editors, New Ideas in Optimization, McGraw Hill, London, UK, pp.51–61.
54.Navarro Varela, G., and Sinclair, M. C., 1999, “Ant colony optimisation for virtual-wavelength-path routing and wavelength allocation”, Proceedings of the 1999 Congress on Evolutionary Computation (CEC’99), IEEE Press, Piscataway, NJ, pp.1809-1816.
55.Parepinelli, R. S., Lopes, H. S., and Freitas, A. A., 2002, “Data mining with an ant colony optimization algorithm”, IEEE transactions on Evolutionary Computing, vol.6, no.4, pp.321-332.
56.Saleh, H. Z., 2002, “GPS positioning networks design: An application of the ant colony system”, Proceedings of the 2001 IEEE 3rd International Workshop on Ant Algorithms/ ANTS2002, vol.2463, pp.302-303
57.Schoonderwoerd, R., Holland, O., Bruten, J., and Rothkrantz, L., 1996, “Ant-based load balancing in telecommunications networks”, Adaptive Behavior, vol.5, no. 2, pp.169-207.
58.Socha, K., Sampels, M. and Manfrin, M., 2003, “Ant algorithms for the university course timetabling problem with regard to the state-of-the-art”, Proceedings of 3rd European Workshop on Evolutionary Computation in Combinatorial Optimization (EvoCOP’2003), Essex, UK, pp. 334–345.
59.Solnon, C., 2002, “Ants can solve constraint satisfaction problems”, IEEE Trans. Evolutionary Computation, vol.6, no.4, pp.347-357.
60.Stützle, T., 1998, “An ant approach to the flow shop problem”, Proceedings of the 6th European Congress on Intelligent Techniques & Soft Computing (EUFIT’98), Verlag Mainz, Aachen, vol.3, pp.1560-1564.
61.Stützle, T., and Hoos, H. H., 1997, “The MAX-MIN ant system and local search for the traveling salesman problem”, Proceedings of the 1997 IEEE International Conference on Evolutionary Computation (ICEC’97), IEEE Press, Piscataway, NJ, pp.309-314.
62.Stützle, T., and Hoos, H. H., 2000, “MAX-MIN Ant system”, Future Generation Computer System, pp.889-914.
63.Subramanian, D., Druschel, P., and Chen, J., 1997, “Ants and reinforcement learning: A case study in routing in dynamic networks”, Proceedings of IJCAI-97, International Joint Conference on Artificial Intelligence, Morgan Kaufmann, pp.832-838.
64.Vander, P. R., 1998, “Routing in the faxfactory using mobile agents”, Technical Report R&D-SV-98-276, KPN Research.
65.Walshaw, C., 2002, “A multilevel approach to the traveling salesman problem”, Operations Research, vol. 50, no.5, pp. 862-877.
66.White, T., Pagurek, B., and Oppacher, F., 1998, “Connection management using adaptive mobile agents”, In Arabnia, H.R., editor, Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA’98), CSREA Press, pp.802-809.
67.Yang, Y., and Kamel, M. S., 2006, “An aggregated clustering approach using multi-ant colonies algorithms”, Pattern Recognition, vol.39, pp.1278~1289.
68.Yin, P.Y., and Wang, J.Y., 2006, “Ant colony optimization for the nonlinear resource allocation problem”, Applied Mathematics and Computation, vol.174, pp.1438-1453.
69.Zhang, T., Yu, C., Zhang, Y., and Wenxin, T., 2007, “Ant colony system based on the ASRank and MMAS for the VRPSPD”, Proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing, vol. 5, pp.3728-3731
70.毛俊彬,2005,應用蟻群最佳化演算法於含時窗限制之旅行推銷員問題,朝陽科技大學工業工程與管理研究所未出版碩士論文。
71.王木坤 ,1996,時間限制條件下配銷系統路徑與途程問題之研究,中原大學工業工程研究所未出版碩士論文。
72.王凌,2001,智能優化演算法及其應用,清華大學出版社,北京。
73.田偉、張安,2008,”改進蟻群算法的無人機航路規劃”,火力與指揮控制,vol.33,no.11,pp.69-72.
74.李士勇、陳永強、李研,2004,蟻群算法及其應用,哈爾濱工業大學出版社,哈爾濱。
75.李志宇、史浩山,2008,” 基於MMAS的無線感測器網路資料融合演算法”, 計算機應用研究,vol.25,no.11,pp.3419-3420。
76.李洋、樂曉波,2007,”蟻群演算法在模糊Petri網參數優化中的應用”,計算機應用,vol.27,no.3,pp.638-641。
77.吳泰熙、張欽智,1997,”以禁忌搜尋法則求解推銷員旅行問題”,大葉學報,vol.6,no.1,pp.87-99。
78.金飛虎、洪炳溶、高慶吉,2002,”基於蟻群算法的自由飛行空間機器人路徑規劃”,機器人,vol.24,no.6,pp.526-529。
79.林鄉鎮,1998,”人工類網路神經應用於固定遊憩區旅遊路線規劃之初探”,彭專學報,vol.2,pp.99-112,台北。
80.林彥劭,2006,一個在無基礎行動網路上之網格式螞蟻路由演算法,國立交通大學資訊管理研究所未出版碩士論文。
81.林仲文,2008,應用分散搜尋法求解廣義旅行推銷員問題,暨南國際大學土木工程研究所未出版碩士論文。
82.林宗漢、喻奉天、盧宗成,2008,”應用螞蟻演算法求解卡車與拖車途程問題”,中華民國運輸學會97年年會暨學術論文國際研討會論文集,高雄。
83.段海濱,2005,蟻群算法原理及其應用,科學出版社,北京。
84.范建銘,2006,使用螞蟻聚集演算法解決無線感測網路資料結合的問題,大同大學資訊經營研究所未出版碩士論文。
85.郗建國、郝會霞,2007,” 車輛路徑問題的最大-最小蟻群演算法研究”, 山東交通學院學報,vol.15,no.2,pp. 19-22。
86.徐嘉吟、黃士滔,2008,”蟻群演算法於宅配路線最佳化之研究”,2008國際品質管理研討會論文集,QT-2,品質學會。
87.陳建緯,2001,大規模旅行推銷員問題之研究:鄰域搜尋法與巨集啟發式解法之應用,交通大學運輸工程與管理研究所未出版碩士論文。
88.陳隆熙,2001,一個解決TSP問題最佳解的穩定方法─以TA演算法為例,大葉大學工業工程研究所未出版碩士論文。
89.陳孟傑,2006,使用最大-最小螞蟻系統於高運量捷運省能之閉塞區間設計,中興大學電機工程學系研究所未出版碩士論文。
90.夏萬春,2002,禁制搜尋法於車輛排班之探討,高雄第一科技大學機械與自動化工程研究所未出版碩士論文。
91.梁錫卿,余家華、廖啓宏,2004,"應用蟻群最佳化於單機總加權延遲最小化排程問題",2004智慧型資訊系統研討會暨第一屆演化式計算應用研討會論文集,真理大學。
92.曾怜玉,2006,由較佳邊集合引導之基因區域搜尋法及其應用於解旅行推銷員問題,中興大學資訊科學研究所未出版碩士論文。
93.楊致傑,2007,高運量捷運列車行駛策略之線上最佳化,中興大學電機工程學系研究所未出版碩士論文。
94.熊鴻鈞,2003,螞蟻族群演算法於生產排程之應用,暨南國際大學資訊管理研究所未出版碩士論文。
95.劉新華、張旭堂、劉文劍,2008,”基於改進最大-最小螞蟻系統的多工藝路線決策方法”,計算機集成製造系統,vol.14,no.12,pp. 2414-2420。
96.劉宜婷、丁慶榮,2008,"以蟻群最佳化演算法求解團隊越野競賽問題",中國工業工程學會九十七年度年會暨學術研討會論文集,中原大學。
97.蔣慧如、黃昱嘉、潘呈迪、張淳智、顏憶茹,2005,“螞蟻演算法結合模糊多目標規劃應用於排課與跑教室問題以國立台中技術學院為例”, 第三屆流通與全球運籌論文研討會論文集,C13710。
98.鄭佳珮,2007,螞蟻演算法求解公路汽車客運業車輛人員排班問題,中華大學運輸科技與物流管理研究所未出版碩士論文。
99.鄭逸亮,2007,以最大-最小螞蟻系統解決多模式有限資源專案排程問題之研究,國立高雄第一科技大學電腦與通訊工程研究所未出版碩士論文。
100.蔡正發、李文專、杜詩怡、洪振瑋、劉佳宗,2004,”規劃系統設計與實作-以電子商務物流運輸為例”,2004 全國電信研討會論文集,國立台灣海洋大學。
101.韓復華、楊智凱、卓裕仁,1997,“應用門檻接受法求解車輛路線問題之研究” ,運輸計劃季刊,vol.26,no. 2,pp.253-280。
102.韓宇德,2007,貪婪演算法結合區域搜尋演算法求解TSP組合最佳化問題,立德管理學院應用資訊研究所未出版碩士論文。
103.謝浩明、劉金維,2000,”時間相依暨服務時窗限制下旅行推銷員問題研究”,運輸學刊,vol.12,no.1,pp.51-64,台北。
104.羅中育, 2001,田口品質工程應用於模擬退火法參數組合-以旅行推銷員問題為例,國立雲林科技大學工業工程與管理研究所未出版碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top