(3.80.6.131) 您好!臺灣時間:2021/05/15 00:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林育德
研究生(外文):Yu-Te Lin
論文名稱:Synthesis and Characterization of Electrophosphorescent Polymers with Iridium Complex based on Ligands of Derivatives of 1,3,4-Oxadiazole
論文名稱(外文):Synthesis and Characterization of Electrophosphorescent Polymers with Iridium Complex based on Ligands of Derivatives of 1,3,4-Oxadiazole
指導教授:歐陽文忠歐陽文忠引用關係
指導教授(外文):W.-C. Ou-Yang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:104
外文關鍵詞:134-oxadiazoleIr complexElectrophosphorescent Polymer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:555
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究將電子傳送性材料1,3,4-oxadiazole衍生物為配位子(Ligand),與過渡金屬Iridium合成金屬錯合物Ir complex,再利用Suzuki Cross Coupling以化學鍵結的方式將Ir complex與fluorene合成Electrophosphorescent polymers,與摻合的樣品做比較。目的在於將Ir complex與電致螢光高分子鍵結在同一主鏈上,並藉由1,3,4-oxadiazole提升電子傳送性,此外,利用1,3,4-oxadiazole與flourene的鍵結,提高發光效率。  
  結果顯示,以1,3,4-oxadiazole衍生物為Ligand的新型Ir complex 成功被合成出來,而Electrophosphorescent polymers可以利用Suzuki Cross Coupling Polymerization成功將Ir complex與共軛高分子鍵結在同一主鏈上,結構為Random Copolymer。POM分析結果,Electrophosphorescent polymers的固體膜皆為無定型的均勻薄膜。由UV-Vis吸收光譜分析可得知Electrophosphorescent polymers能量由共軛高分子所吸收,最大吸收峰在370 nm左右。由發光光譜分析,Ir complex最大放射波長落在540 nm;Electrophosphorescent polymers最大放射波長落在415~440 nm,濃度在0.1 %w/v以下,隨濃度提高而紅位移,當濃度提高到1 %w/v,最大放射波長因為能量逐漸傳遞至Ir complex而有藍移的現象,同樣也隨Ir complex含量增加,藍移現象越明顯,說明溶液態中影響能量傳遞的因素是Ir complex的含量與濃度。
This research describes investigates the synthesis and photophysical characteristics of the novel Iridium complex, which are the 1,3,4-oxadiazole derivatives. The We synthesized electrophosphorescent polymers by of the conjugated polymers, polyfluorene (as host), and with the phosphorescent Ir complex (as dopant) using were synthesized by Suzuki Cross coupling reaction, this research investigates the synthesis and photophysical characteristics of the novel Iridium complex, which are the 1,3,4-oxadiazole derivatives.
The results showed that we have successfully synthesized the Iridium complex based on the ligand of 1,3,4-oxadiazole derivatives, which copolymerized with electrophosphorescent conjugated polymers based on conjugated polymer with Iridium complex, the structure of them are random copolymers. The POM results of electrophosphorescent polymers shows the Iridium complex solid film is amorphous solid film. The UV-Vis spectra of electrophosphorescent polymers have maximum absorption at 370 nm,, as in solution state, through the UV-Vis spectra it is suggested that input energy mainly is all absorbed by conjugated polymers via the solvent. The PL spectra of iriridium complex showed its the maximum emission peak at ca. 540 nm, and the emission peak of electrophosphorescent polymers located at ca. 420~440 nm. As the concentration of solution is in the ranging less than 0.1 w/v %, we found there is red shifted while the concentration is increased. As the concentration is around 1 w/v%, we found the input energy is suggested to transferred from conjugated polymer to Iridium complex. In the case, We also observed the same situation while the Iridium complex content was increased was also observed. Accordingly, the results of photophysical properties showed that energy transformation could be influenced not only by the concentration of solution but also by the amount of Iridium complex in the copolymer.
中文摘要
英文摘要
緒論
研究動機與目的
實驗內容
結果與討論
結論
1.A. Charas, N. Barbagallo, J. Morgado, L. AlcaÂcer, synth metal, 122, 23, 2001.
2.Hamada, Y.; Sano, T.; Fujita, N.; Fujita, T.; Nishio, Y.; Shibata, K. Jpn. J. Appl. Phys. 32, L514, 1993.
3.A. Bernanose, M. Comte and P. Vouaux. J. Chim. Phys., 50:65, 1953.
4.C. W. Tang and S. A. VanSlyke. Appl. Phys. Lett., 51:913–915, 1987.
5.Pope, P.; Kallmann, H. P.; Magnanie, P. J. Chem. Phys, 38, 2042, 1963.
6.Burroughes, J. H.; Brown,A. R.; Marks, R. N.; Mackay, K. D.; Friend, R. H. Nature, 347, 539, 1990
7.Tang, C. W.; VanSlyke, S. A. Appl.Phys.Lett.,51,913, 1987
8.Tang, C. W.; VanSlyke, S. A. J. Appl. Phys. Lett. 65, 3610, 1989.
9.Tang, C. W.; SID Int. Symp., Digest of Technical Papers; SID, San Diego; p181, 1996.
10.Burrows P. E.; Shen, Z; Bulovic, V.; McCarty, D. M.;Forrest, S.R.; Cronin,J.; Thompson, M. E. J. Appl. Phys. x, 79, 7991, 1996.
11.Burn, P. L.; Holmes, A. B.; Kraft, A.; Bradley, D. D. C.; Brown, A. R.; Friend, R. H.; Gymer, R. W. Nature,356, 47-9, 1992.
12.Braun, D.; Heeger, A. J. Appl. Phys. Lett., 58, 1982-4, 1991.
13.Braun, D.; Staring, E. G. J.; Demandt, R. C. J. E.; Rikken, G. L. J.; Kessener, Y. A. R. R.; Venhuizen, A. H. J.Synthetic Metals. 66, 75-9, 1994.
14.M. A. Baldo, D. F. O’Brian, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest. Nature, 395:151–154, 1998.
15.Emil Jansson, Electronic characterization of molecules with applicationto organic light emitting diodes, 2007.
16.Vestweber, H.; Greiner, A.; Lemmer, U.; Mahrt, R. F.; Richert, R.; Heitz, W.; Bassler, H. Advanced Materials. 4, 661-2, 1992.
17.M. Funahashi, and J.I. Hanna, Appl. Phys.Lett.71, 602, 1997.
18.Broms, P.; Fahlman, M.; Xing, K. Z.; Salaneck, W. R.; Dannetun, P.; Cornil, J.; Sntos, D. A. dos; Bredas, J. L.;Moratti, S. C.; Holmes, A. B.; Friend, R. H. Synthetic Metals, 67, 93-6, 1994.
19.Hamada, Y.; Sano, T.; Fujita, N.; Fujita, T.; Nishio, Y.; Shibata, K. Jpn. J. Appl. Phys. 32, L514, 1993.
20.C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys., 65, 3610, 1989.
21.C. H. Chen, C. W. Tang, J. Shi, K. P. Klubek, Thin Solids Films, 363, 327, 2000.
22.T. H. Liu, C. Y. Iou, and C. H. Chen, Appl. Phys. Lett., 83, 5241, 2003.
23.H. C. Yeh, S. J. Yeh, and C. T. Chen, Chem. Commun., 2632, 2003.
24.K. R. J. Thomas, J. T. Lin, M. Velusamy, Y. T. Tao, and C. H. Chuen, Adv.Funct. Mater., 14, 83, 2004.
25.J. L. Fox, and C. H. Chen, US Patent No. 4736032, 1988.
26.C. H. Chen, and C. W. Tang, Appl. Phys. Lett., 79, 3711, 2001.
27.Sirringhaus, H.; Wilson, R. J.; Friend, R. H.; Inbasekaran, M.; Wu, W.; Woo, E. P.; Grell, M.; Bradley, D. D. C. Appl. Phys. Lett. 77, 406, 2000.
28.Surin, M.; Hennebicq, E.; Ego, C.; Marsitzky, D.; Grimsdale, A. C.; Mu¨ llen, K.; Bre´das, J.-L.; Lazzaroni, R.; Lecle`re, P. Chem. Mater. 16, 994, 2004.
29.Wai-Yeung Wong, Li Liu, Dongmui Cui, Louis M. Leung, Chin-Fai Kwong, Tik-Ho Lee, and Ho-Fung Ng, Macromolecules, 38, 4970, 2005.
30.Laurent Boiteau, Marc Moroni, Alain Hilberer, Michel Werts, Bert de Boer, and Georges Hadziioannou, Macromolecules, 35, 1543-1548, 2002.
31.Fangzhong Shen, Hong Xia, Chengbo Zhang, Dong Lin, Lin He, and Yuguang Ma, J. Phys. Chem. B, 108, 1014-1019, 2004.
32.Tae-Hyuk Kwon, Hyo Soon Cho, Myoung Ki Kim, Ji-Whan Kim, Jang-Joo Kim, Kwan Hee Lee, Su Jin Park, Ik-Soo Shin,† Hasuck Kim, Dong Mok Shin, Young Keun Chung, and Jong-In Hong, Organometallics, 24, 1578-1585, 2005.
33.Baldo, M. A.; O’Brien, D. F.; Thompson, M. E.; Forrest, S. R. Phys. ReV. B, 60, 14422, 1999.
34.Baldo, M. A.; O’Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature, 395, 151-154, 1998.
35.Baldo, M A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 75, 4-6, 1999.
36.Thompson, M. E.; Burrows, P. E.; Forrest, S. R. Curr. Opin. Solid State Mater. Sci. 4, 369, 1999.
37.Adachi, C.; Baldo, M. A.; Forrest, S. R.; Thompson, M. E. Appl. Phys. Lett. 78, 1704, 2000.
38.Gross, M.; Nuller, D. C.; Nothofer, H.-G.; Scherf, U.; Neher, D.; Brauchle, C.; Meerholz, K. Nature, 405, 661-665, 2000.
39.(b) Chen, X.; Liao, J.-L.; Liang, Y.; Ahmed, M. O.; Tseng, H.-E.; Chen, S.-C. J. Am. Chem. Soc. 125, 636-637, 2003.
40.(c) Higgins, R. W. T.; Monkman, A. P.; Nothofer, H.-G.; Scherf, U. J. Appl. Phys. 91, 99-105, 2002.
41.(d) Zhu, W.; Liu, C.; Su, L.; Yang, W.; Yuan, M.; Cao, Y. J. Mater. Chem. 13, 50-55, 2003.
42.(e) Chen, F.-C.; Yang, Y.; Thompson, M. E.; Kido, J. Appl. Phys. Lett. 80, 2308-2310, 2002.
43.Vaeth, K. M.; Tang, C. W. J. Appl. Phys. 92, 3447-3453, 2002.
44.Madhusoodhanan Sudhakar, Peter I. Djurovich, Thieo E. Hogen-Esch, and Mark E. Thompson, J. AM. CHEM. SOC. 125, 7796-7797, 2003.
45.M. Hack, M. H. Lu, R. Kwong, M. S. Weaver, Y. J. Tung, A. Chwang, and J. J.Brown, 2003 IDMC.
46.Zhonghua Peng, Zhenan Bao, and Mary E. Galvin, Adv. Mater. 10, No. 9, 1998.
47.Wei Huang, Wang-Lin Yu, Hong Meng, Jian Pei, and Sam Fong Yau Li, Chem. Mater. 10, 3340-3345, 1998.
48.Zhong Lian WU, Mei Xiang ZHU, Yu LIU, Jian LIU, Jian Ren LI, Yu Ping YANG, Quan GAN, Wei Guo ZHU, Chinese Chemical Letters, Vol. 16, No.2, p241-244, 2005.
49.Lianqing Chen, Chuluo Yang, Jingui Qin, Jia Gao, Han You, Dongge Ma, Journal of Organometallic Chemistry, 691, 3519–3530. 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. HighEfficiencyWhiteOrganicLight-EmittingDiodesUsingaNovelIridium(III)(dibenzo[f,h]quinoline)2(pentane-2,4-dionate)
2. 電致磷光材料之合成及物性探討
3. 利用碘化銅催化碳-氧鍵耦合反應於樹枝狀氮-苯基咔唑衍生物之合成、性質探討及其在電致磷光發光二極體上的應用
4. 高效率含碳烯配位基之藍、綠、紅色銥金屬磷光材料及其在有機電激發光元件的應用
5. 以Benzohydrize與1,3,4-Oxadiazole為中心架構之無機液晶材料
6. Poly(9-hexylcarbazole),Poly(9,9-dioctylfluorene)和Poly(9,9-dioctylfluorene-9-hexylcarbazole)光物理性質之研究
7. Synthesis and Characterization of Electrophosphorescent Polymers based on tetraphenylsilane and 9,9-dioctylfluorene with Iridium Complexes
8. 深藍磷光銥(III)金屬錯合物之合成、光物理性質與OLED元件的應用
9. 主鏈含螢光高分子與磷光銥金屬錯合物材料合成及物理性質研究
10. 高效率銥金屬磷光錯合物的合成、光物理性質與應用在OLED元件的製備
11. 銥金屬錯合物與9-hexylcarbazole和9,9-dioctylfluorene為主體之電致磷光材料合成及物性探討
12. SynthesisandcharacterizationofelectrophosphorescentpolymersbasedonPoly(9,9-dioctylfluorene)withiridiumcomplexes
13. 含噁二唑發光基團之藍光高分子合成及其電激發光特性探討
14. 電致發光半導體高分子之分子鏈構形與超分子結構之研究
15. Sultine系列分子螢光生命期之測定與有機發光銥錯合物飛秒瞬態吸收研究