(3.235.245.219) 您好!臺灣時間:2021/05/10 01:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:潘致平
研究生(外文):Zhi-Ping Pan
論文名稱:以回應曲面法進行Pseudomonas sp.生產己二烯二酸之培養基最適化
論文名稱(外文):Applying Response Surface Methodology to the Optimization of Culture Medium for Muconic Acid Production by Pseudomonas sp.
指導教授:曾清桂曾清桂引用關係
指導教授(外文):Ching-Guey Tseng
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:80
中文關鍵詞:Pseudomonas sp.己二烯二酸回應曲面法
外文關鍵詞:Pseudomonas sp.Response Surface Methodologymuconic acid
相關次數:
  • 被引用被引用:6
  • 點閱點閱:766
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:78
  • 收藏至我的研究室書目清單書目收藏:0
己二烯二酸(Muconic acid, MA) 具有非飽和二羧酸的結構,是一
非常有潛力的材料,適用於合成熱塑性樹脂及新功能樹脂等;另在
50 psi 及室溫下以鉑當觸媒,即可轉換成己二酸(adipic acid)。己二酸
為合成Nylon 6,6 的重要原料之一,其主要來源為化學合成法,但生
產過程中排放大量副產物NOx,為促成全球暖化的溫室氣體。因此,
以微生物發酵法取代化學法,將可克服以上問題。本實驗室曾由工業
廢水中分離得到的菌株 Pseudomonas sp. ,以突變策略篩選取得一己
二烯二酸高生產量之菌株,可利用苯甲酸為基質轉換成己二烯二酸。
本研究之目的以微生物醱酵法取代化學法,改善其己二烯二酸的
產率。本研究探討於液態培養Pseudomonas sp.中之培養液,包括控
制條件(初始pH、溫度)及基質(苯甲酸、琥珀酸、酵母萃取粉、葡萄
糖、鐵離子及亞鐵離子)對於己二烯二酸醱酵的影響。再利用回應曲
面法找出各組成分之最適濃度,其結果如下:苯甲酸 5.82 g/L、琥珀
酸 3.17 g/L、葡萄糖 1.51 g/L、酵母萃取粉 4.9 g/L 與硫酸亞鐵 0.26
g/L,其預測值為 0.216 g/L-hr,實際值為0.218 ± 0.006 g/L-hr,由迴
歸模式所預測值與實際值相符合,其產率為對照組的3 倍。
Muconic acid is an unsaturated dicarboxylic acid. It is suggested to
be potentially useful as a raw material for thermoplastic resin and new functional resins. It can be easily converted to adipic acid by using the catalytically 50 psi of hydrogenated process at room temperature. Adipic acid is an important compound to synthesis Nylon-6,6. However, chemical synthesis of adipic acid will induce N2O as a byproduct, which contributes global warming. Therefore, if the precursor of Nylon-6,6 is produced by a microbial fermentation, it will overcome global warming. We choose a muconic acid accumulating strain, mutant of Pseudomonas sp. as the experimental strain.
Purpose of this research is to enhance the muconic acid productivity
by using response surface methodology (RSM). Initially, we discussed
the effects of initial pH, temperature; the concentrations of benzoate, succinate, yeast extract, glucose, ferric ion and ferrous ion on muconic acid fermentation. Then, optimization of medium components was carried out using RSM. Final concentration of the optimized medium were 5.82 g/L of benzoate, 3.17 g/L of succinate, 1.51 g/L of glucose, 4.9 g/L of yeast extract and 0.26 g/L of ferrous sulfate. RSM model predicted the production of muconic acid could reach at 3.45 g/L. The validation experimental value was 0.218 ± 0.006 g/L-hr, showed that the experimental and predicted values were in good agreement. Productivity of muconic acid in the optimized experiment is 3-fold of previous one.
中文摘要 ..............I
英文摘要 ..............II
誌謝 ..............III
目錄 ..............IV
表目錄 ..............VII
圖目錄 ..............VIII
第一章 緒論 ..............1
1-1 前言 ..............1
1-2 己二烯二酸之生產 ..............2
1-3 己二酸 ..............4
1-4 苯甲酸之微生物降解反應 ..............6
1-5 回應曲面法 ..............6
1-6 研究動機及目的 ..............10
第二章 文獻回顧 ..............11
第三章 實驗材料與方法 ..............15
3-1 藥品 ..............15
3-2 儀器 ..............15
3-3 菌種來源 ..............15
3-4 菌種保存方法 ..............16
3-5 己二烯二酸分析 ..............17
3-6 菌體濃度測定 ..............18
3-7 醱酵搖瓶試驗 ..............19
3-8 反應曲面法 ..............19
第四章 結果與討論 ..............20
4-1-1 操作條件之影響,初始 pH ..............20
4-1-2 操作溫度 ..............20
4-1-3 培養基濃度之影響-苯甲酸 ..............27
4-1-4 琥珀酸 ..............30
4-1-5 酵母萃取粉 ..............33
4-1-6 葡萄糖 ..............35
4-1-7 鐵離子及亞鐵離子 ..............37
4-2 利用實驗設計法尋找己二烯二酸產率之最佳培養基條件 ..............39
4-2-1 二水準部分因子設計 ..............39
4-2-2 陡升路徑實驗 ..............41
4-2-3 中心混成設計 ..............44
4-2-4 利用最適化組成進行醱酵試驗.............. 54
第六章 結論 ..............55
第七章 未來展望 ..............56
參考文獻 ..............57
附錄一 ..............61
Ampe, F., Uribelarrea, J. L., Aragao, G. M. F., Lindley, N. D., Benzoate degradation via the ortho pathway in Alcaligenes eutrophus is perturbed by succinate. Applied and Eevironmental Microbiology, 2765–2770 (1997)

Bang, S. G., and Choi, C. Y., DO-stat fed-batch production of cis,cis-muconic acid from benzoic acid by Pseudomonas putida BM014. Journal of Fermentation and Bioengineering, 79:381-383 (1995)

Box, G. E. P., Wilson, K.B., On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society Series B, 13:1-45 (1951)

Chen, K. C., Lee, T. C., Houng, J. Y., Search method for the optimal medium for the production of lactase by Kluyveromyces fragilis. Enzyme and Microbial Technology, 14:659-64 (1992)

Choi, W. J., Lee, E. Y., Cho, M. H., Choi, C. Y., Enhanced production of cis,cis-muconate in a cell-recyle bioreactor. Journal of Fermentation and Bioengineering, 84:70-76 (1997)

Dagley, S., The Bacteria. Academic Press , New York, 6:305 (1978)

Daugherty, D. D., S. F. Karel., Degradation of 2,4-dichlorophenoxyacetic acid by Pseudomonas cepacia DBO1(pRO101) in a dual-substrate chemostat, Applied and Environmental Microbiology. 60:3261–3267 (1994)

Duetz, W. A., Marques, S., Jong, C. D., Ramos, J. L., Andel., J. G. V. Inducibility of the TOL catabolic pathways in Pseudomonas putida(pWW0) growing on succinate in continuous culture: evidence of carbon catabolite repression control. Journal of Bacteriology. 176:2354–2361 (1994)

Elvidge, J. A., Unsaturated lactones and related substances. Part IV Lactonic products derived from muconic acid. Journal of Chemical Society, 2228–2235 (1950)

Hsieh, J. H., Barer, S. J., Maxwell, P. C., Muconic acid productivity by a stabilized mutant microorganism population. United States
Patent 4535059 (1985)

Hsieh, J. H., Semi-continuous fermentation process for aromatic hydrocarbon bioconversion. United States Patent 4833078 (1989)

Imada, Y., Yoshikawa, N., Mizuno, S., Mikawa, T., Process for perparing muconic acid. United States Patent 4871667 (1989)

Lee, C. S., Houng, J. Y., Hsiung, K. P., Medium optimization for the production of tyrosine decarboxylase by Streptococcus faecalis with response surface methodology. Journal of Chinese Agricultural Chemical Society, 30:264-72 (1992)

Liu, W. H., Li, R. M., Cheng, T. L., Tang, T. Y., Microbial transformation of benzoic acid to cis,cis-muconic acid. Food Science and Agricultural Chemistry, 1:16-21 (1999)

Loh, K. C., Chua, S. S., Ortho pathway of benzoate degradation in Pseudomonas Putida: induction of meta pathway at high substrate concentrations. Enzyme and Microbial Technology, 30:620-626 (2002)

Karlsson, A., Beharry, Z. M., Eby, D. M., Coulter, E. D., Neidle, E. L., Jr, D. M. Eklund, K. H. and Ramaswamy, S., X-ray crystal structure of benzoate 1,2-dioxygenase reductase from Acinetobacter sp. strain ADP1. Journal of Molecular Biology, 318: 261–272 (2002)

Kojima, Y., Fujisawa, H., Nakazawa, A., Nakazawa, T., Kanetsuna, F. , Taniuchi, H., Nozaki, M. and Hayaishi, O., Studies on pyrocatechase. I. Purification and spectral properties. Journal of Biological Chemistry, 242: 3270-3278 (1967)

Maxwell, P. C., Production of muconic acid. United States Patent 4355107 (1982)

Maxwell, P. C., Hsieh, J. H., Fieschko, J. C., Stabilization of a mutant microorganism population. United States Patent 4657863 (1987)

Maxwell, P. C., Process for the production of muconic acid. United States Patent 4731328 (1988)

Mizuno, S., Yoshikawa, N., Seki, M., Mikawa, T., Imada, Y., Microbial production of cis,cis-muconic acid from benzoic acid. Applied and Microbiology Biotechnology, 28:20-25 (1988)

Montgomery, D.C., Design and analysis of experiments. (2001)

Murakami, S., Takemoto, J., Takenaka, S., Shinke, R., Aoki, K., Purification and characterization of muconate cycloisomerase from aniline-assimilating Rhodococcus erythropolis AN-13. Journal of fermentation and bioengineering, 85:521-524 (1998)

Schmidt, E., Knackmuss, H. J., Production of cis,cis-muconate from benzoate and 2-floro-cis,cis-muconate from 3-fluorobenzoate by 3-chlorobenzoate degrading bacteria. Applied and Microbiology Biotechnology, 20:351-355 (1984)

Wu, C. M., Wu, C. C. , Su, C. C., Lee, S. N., Lee, Y.A., Wu, J.Y. , Microbial synthesis of cis,cis-muconic acid from benzoate by Sphingobacterium sp. mutants. Biochemical Engineering Journal, 29: 35–40 (2006)

Yeom, S. H., Yoo, Y. J., Overcoming the inhibition effects of metal ions the degradation of benzene and toluene by Alcaligenes xylosoxidans y234. The Korean Journal of Chemical Engineering, 14: 204-208 (1997)

Yoshikawa, N., Mizuno, S., Ohta, K., Suzuki, M., Microbial production of cis,cis-muconic acid. Journal of Biotechnology, 14:203-210 (1990)

吳浚銘,己二烯二酸生化合成與偶氮染料降解之研究-Sphingobacterium sp.與其變異株之利用,輔仁大學化學系博士論文,2005。
林冠宏,利用菌種突變技術生產己二烯二酸之探討,國立高雄應用科
技大學化學工程系碩士班碩士論文,2006。
洪哲穎、陳國城,回應曲面實驗設計法在微生物酵素生產上之應用。化工,第39卷,1992, 第3-18頁。
姚品全,己二酸製程之回顧與展望,觸媒與製程,第7 卷,第3 期,1999,第46-53頁。
葉怡成,實驗計劃法-製程與產品最佳化,五南出版社,2005
鄭作林,由苯甲酸醱酵生產順,順-己二烯二酸之研究,台灣大學農業
化學研究所碩士論文,1989。
鄭作林,芳香族化合物分解性微生物之分離及其應用研究,台灣大學
農業化學研究所博士論文,1994。
黎正中,實驗設計與分析,高立出版社,2003。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔