(3.92.96.236) 您好!臺灣時間:2021/05/07 00:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許漢良
研究生(外文):Han-Liang Hsu
論文名稱:奈米碳管電極表面修飾鎳之電化學儲氫特性研究
論文名稱(外文):Carbon nanotube film electrode decorated by nickel for electrochemical hydrogen storage
指導教授:吳茂松
指導教授(外文):Mao-Sung Wu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:112
中文關鍵詞:奈米碳管鎳/奈米碳管電化學儲氫電泳沉積法
外文關鍵詞:carbon nanotubenickel/carbon nanotubeelectrochemical hydrogen storageelectrophoretic deposition
相關次數:
  • 被引用被引用:2
  • 點閱點閱:695
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以化學氧化處理來改質奈米碳管,再經由電泳沉積法將改質後之碳管製備成奈米碳管電極,探討不同酸化時間(程度)對其電化學儲氫特性的影響。另外將奈米碳管電極以含浸還原法將鎳負載於碳管上形成鎳/奈米碳管複合電極,藉由鎳的催化功能提升電極的電化學儲氫之特性。
SEM的結果顯示,經12小時酸化處理後之奈米碳管會斷裂成短管,碳管斷裂形成聚集的情形會隨著酸洗時間的增加而越顯著。經由TEM分析發現,奈米碳管捲曲糾結的情形會隨酸洗時間的增加而慢慢的減少,但過度酸洗處理會造成奈米碳管的石墨層管壁結構被破壞而有薄化的趨勢。電化學放電量結果顯示,在放電電流1000 mA g-1 下,以酸化處理5小時的碳管放電量達到47.8 mAh g-1為最佳,相較於原材提升了16.5 mAh g-1。
以含浸沉積法製備鎳/奈米碳管複合電極方面,由TEM分析可觀察到鎳負載於奈米碳管表面上,Ni負載量達45%時為最佳。由放電量的結果顯示,碳管經酸化5小時後再負載45%鎳最佳,其放電量可達128 mAh g-1,高於原材奈米碳管80.2 mAh g-1。負載鎳於奈米碳管上確實可以有效提高碳管的放電量,對奈米碳管電化學儲氫之特性有正面的效果。
In this study, carbon nanotube is treated by nitric acid, and is deposited onto the stainless steel substrate by electrophoretic deposition (EPD) forming CNT film electrode. Effects of acid-treatment time on the electrochemical hydrogen-storage of CNT film electrode are investigated. In addition, surface decoration of Ni on CNT film is carried out by impregnation method in order to enhance the electrochemical hydrogen-storage performance of CNT film.
SEM shows that carbon nanotube is broken and become shorter after acid treatment for 12 h. It can be observed that these shorter CNTs tend to aggregate together when the acid-treatment time increases. On the other hand, for a longer acid-treatment time, CNT rolling up and intertwining are decreased, but the structure of the tubes is destroyed forming flimsy tubes.
Electrochemical charge-discharge at a current density of 1000 mA g-1 shows that the discharge capacity of CNT film electrode reaches to 47.8 mAh g-1 after acid treatment for 5 h. The discharge capacity is increased by 16.5 mAh g-1 compared with that of untreated CNT film electrode. TEM results show that the Ni is deposited on the CNT for the Ni/CNT composite electrode fabricated by impregnation. An optimal Ni loading is found to be about 45 wt % in terms of Ni distribution on CNT. The discharge capacity of CNT film after acid-treatment for 5 h and 45 wt % Ni loading reaches to 128 mAh g-1, which is much higher than that of untreated CNT film electrode (a capacity increase of 80.2 mAh g-1). Results indicate that the Ni loading on CNT not only increases the capacity of discharge but also improves the electrochemical hydrogen-storage performance.
中文摘要 Ⅰ
英文摘要 Ⅲ
總目錄 IV
表目錄 VII
圖目錄 VII
第一章 緒論 1
1-1電泳沉積之簡介 1
1-1-1 電泳簡史與發展 1
1-1-2 電泳沉積原理 2
1-1-3 電泳沉積的方式 2
1-1-4 電泳動沉積的動作 3
1-1-5 影響電泳速度的因素 5
1-1-6 電泳沉積電解液種類 6
1-1-7 電泳沉積添加物種類 7
1-1-8 奈米碳管電泳沉積之應 14
1-2奈米碳管簡介 16
1-2-1 奈米碳管的基本特性 16
1-2-2 奈米碳管結構 22
1-2-3 奈米碳管性質 24
1-2-4 奈米碳管之應用 26
1-2-5 奈米碳管的後處理 29
1-3奈米碳管儲氫特性 33
1-3-1常見的量測方法 33
1-3-2奈米碳管電化學儲氫 35
1-4常用的金屬沈積法 39
1-4-1 含浸還原法 41
1-5 研究動機及目的 43
第二章 實驗方法與步驟 44
2-1 電極基材前處 44
2-2 奈米碳管表面改質之製備 46
2-3 電泳沉積製備奈米碳管電極 48
2-4 鎳/奈米碳管電極之製備 50
2-5 電化學特性分析 52
2-6 實驗藥品 54
2-7 實驗儀器 55
2-8 電化學分析儀 57
2-9 其他儀器 58
第三章 結果與討論 59
3-1 物理特性分析與探討 59
3-1-1酸化對奈米碳管之影響 59
3-1-2含浸-化學還原法對Ni負載在奈米碳管的影響 73
3-2 電化學儲氫特性分析與探討 80
3-2-1 電泳沉積對奈米碳管之影響 80
3-2-2 奈米碳管電極電化學儲氫的研究 84
3-2-3 鎳/奈米碳管電極之電化學儲氫的研究 89
第四章 結論 105
參考文獻 107
[1]張樹政, ”中國大百科全書:化學-電泳”, 中國大百科全書出版社, 1987年12月.
[2]李建武等合編, ”藝軒圖書出版社:生物化學實驗原理和方法”, P114~146, 1999.
[3]粘正勳、邱聞鋒,“介電泳動─承先啟後的奈米操縱術”,物理雙月刊 26 (3),p. 491, 2004.
[4]劉佳玫, “奈米二氧化鈦電泳沉積及其性質”, 國立成功大學材料科學及工程學系碩士論文,2003.
[5]P. Sarkar, P.S. Nicholson, “Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics”, Journal of the American Ceramic Society, Vol.79, p.1987-2002, 1996.
[6]張有義、郭蘭生譯,”膠體及界面化學入門”,高立圖書有限公司。
[7]A. Formeto, L. Montanaro, M.V. Swain, “Micromechanical characterization of electrophoretic-deposited green films”, Journal of the American Ceramic Society, Vol.82, p.3251-3528, 1999.
[8]F. Chen, M. Liu, ”Preparation of yttria-stabilized zirconia (YSZ) films on La0.85Sr0.15MnO3 (LSM) and LSM-YSZ substrates using an electrophoretic deposition (EPD) process”, Journal of the European Ceramic Society, Vol.21, p. 127-134, 2001.
[9]N. Koura, T. Tuskamoto, H. Shoji, T. Hotta, “Preparation of various oxide films by an electrophoretic deposition method : a study of the mechanism”, Journal of Applied Physics, Vol.34, p.1643-1647, 1995.
[10]黃陳裕, “電泳動沉積法製備氧化鎳電極及其電化學電容器特性探討”, 國立高雄應用科技大學化學工程與材料工程系碩士論文,2008.
[11]S. Novak, K. Mejak, G. Drazic, “The preparation of LPS SiC-fibre-reinforced SiC ceramics using electrophoretic deposition”, Journal of Materials Science, Vol.41, p.8093-8100, 2006.
[12]K. Yamamoto , S. Akita and Y. Nakayama, “Orientation and purification of carbon nanotubes using ac electrophoresis”, Journal of Applied Physics, Vol.31, p.34-36, 1998.
[13]M.S. Kumar, S.H. Lee, T.Y. Kim, T.H. Kim, S.M. Song, J.W. Yang, K.S. Nahm, E.K. Suh,” DC electric field assisted alignment of carbon nanotubes on metal electrodes”, Solid-State Electronics, Vol.47, p.2075-2080, 2003.
[14]J. Sun, L. Gao, “Development of a dispersion process for carbon nanotubes in ceramic matrix by heterocoagulation”, Carbon, Vol.41, p.1063-1068, 2003.
[15]A.R. Boccaccini, J. Cho, “Electrophoretic deposition of carbon nanotubes”, Carbon, Vol.44, p. 3149-3160, 2006.
[16]H.W. Kroto, J.R. Heath, S. C.O’Brien, R.F. Curl, R.E. Smalley, “C60: buckminsterfullerene”, Nature, Vol.318, p.162, 1985.
[17]R.E. Smalley, T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, “Functionalized nanotube material for supercapacitor electrodes”, Chemical Physics Letters, Vol.243, p.49-54, 1995.
[18]洪昭南、徐逸明、王宏達 ,「奈米碳管結構及特性簡介」,化工,第49卷第1期,第23-30頁,2002。
[19]S. Iijima, “Helical microtubules of graphitic carbon”, Nature, Vol.354, p.56-58, 1991.
[20]S. Iijima, T. Ichihashi, Y. Ando, “Pentagons, heptagons and negative curvative in graphite microtubule growth”, Nature, Vol.356, p.776-778, 1992.
[21]T. Ichihashi, S. Iijima, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, Vol. 363, p.603-605, 1993.
[22]D.S. Bethune, C.H. Kiang, M.S. Vries, G. Gorman, R. Savoy, J. Vasquez, R Beyers, “Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls”, Nature, Vol.363, p.605-607, 1993.
[23]李元堯,「21世紀的尖端材料-奈米碳管」,化工技術,第11卷第2期,第140-159頁,2003。
[24]P. J. F. Harris, “Carbon nanotubes and related structure“, Cambridge University Press, New York, 1999.
[25]黃建良、黃淑娟,「奈米碳纖與奈米碳管合成技術簡介」,化工,第50卷第2期,第18至25頁,2003。
[26]奈米科學網: http://nano.nchc.org.tw/
[27]張勁燕,成會明,奈米碳管,五南書局,2006
[28]K.B. Shelimov, R.O. Esenaliev, A.G. Rinzler, C.B. Huffman, R.E. Smalley, “Purification of single-wall carbon nanotubes by ultrasonically assisted filtration”, Chemical Physics Letters, Vol.282, p.429-434, 1998.
[29]S. Bandow, A.M. Rao, K.A. Williams, A. Thess, R.E. Smalley, P.C. Eklund, “Purification of single-wall carbon nanotubes by microfiltration”, Journal of Physical Chemistry. B, Vol.101, p.8839-8842, 1997.
[30]E. Farkas, M.E. Anderson, Z. Chen, A.G. Rinzler, “Length sorting cut single wall carbon nanotubes by high performance liquid chromatography”, Chemical Physics Letters, Vol.363, p.111-116, 2002.
[31]G.S. Duesberg, W. Blau, H.J. Byrne, J. Muster, M. Burghard, S. Roth, “Chromatography of carbon nanotubes”, Synthetic Metals, Vol.103, p.2484-2485, 1999.
[32]P. X. Hou, S. Bai, Q.H. Yang, C. Liu, H.M. Cheng, “Multi-step purification of carbon nanotubes”, Carbon, Vol.40, p.81-85, 2002.
[33]H.J. Huang, H. Kajiura, A. Yamada, M. Ata, “Purification and alignment of arc-synthesis single-walled carbon nanotube bundles”, Chemical Physics Letters, Vol.356, p.567-572, 2002.
[34]I.W. Chiang, B.E. Brinson, A.Y. Huang, P.A.Willis, M.J. Bronikowski, J.L. Margrave, R.E. Smalley, R.H. Hauge, “Nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPCO) process”, Journal of Physical Chemistry B, Vol.105, p.8297-8301, 2001.
[35]H. Hu, B. Zhao, M.E. Itkis, R.C. Haddon, “Nitric acid purification of single-walled carbon nanotubes,” Journal of Physical Chemistry B, Vol.107, p. 13838-13842, 2003.
[36]H.W. Zhu, A. Chen, Z.Q. Mao, C.L. Xu, X. Xiao, B.Q. Wei, J. Liang, D.H. Wu, “The effect of surface treatments on hydrogen storage of carbon nanotubes”, Journal of Materials Science Letters, Vol.19, p.1237-1239, 2000
[37]A. Zuttel, P. Sudan, P. Mauron, P. Wenger, “Model for the hydrogen adsorption on carbon nanostructures”, Applied Physics A, Vol. 78, p.941-946, 2004.
[38]A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.M. Kiang, D.S. Bethune, M.J. Heben, “Storage of hydrogen in single-walled carbon nanotubes”, Nature, Vol. 386, p.377-379, 1997.
[39]H. Takagi, H. Hatori , Y. Soneda , N. Yoshizawa , Y. Yamada, “Adsorptive hydrogen storage in carbon and porous materials”, Materials Science and Engineering B, Vol.108, p.143-147, 2004.
[40]B.K. Gupta, R.S. Tiwari, O.N. Srivastava, “Studies on synthesis and hydrogenation behaviour of graphitic nanofibres prepared through palladium catalyst assisted thermal cracking of acetylene”, Journal of Alloys and Compounds, Vol.381, p.301-308, 2004
[41]R. Checchetto, G. Trettel, A. Miotello, “Sievert-type apparatus for the study of hydrogen storage in solids”, Measurement Science and Technology, Vol.15, p. 127-130, 2004.
[42]P. Chen, X. Wu, J. Lin, K.L. Tan, “High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures”, Science, Vol. 285, No.5424, p.91-93, 1999.
[43]Y. Chen, D.T. Shaw, C. Lund, W.M. Lu, D.D.L. Chung, “Hydrogen storage in aligned carbon nanotubes”, Applied Physics Letters, Vol.78, p.2128-2130, 2001.
[44]S.M. Lee, K.S. Park, Y.C. Choi, “Hydrogen adsorption and storage in carbon nanotubes”, Journal of the American Chemical Society, Vol.113, p.209-216, 2000.
[45]C. Nützenadel, A. Züttel, D. Chartouni,L.Schlapbach,
“Electrochemical storage of hydrogen in nanotube materials”, Electrochemical and Solid-State Letters, Vol. 2, No.1, p.30-32, 1999.
[46]X. Qin, X.P. Gao, H. Liu, H.T. Yuan, D.Y. Yan, W.L. Gong, D.Y. Song, “Electrochemical hydrogen storage of multiwalled carbon nanotubes”, Electrochemical and Solid-State Letters, Vol.3, No.12, p.532-535, 2000.
[47]N. Rajalakshmi, K.S. Dhathathreyan, A. Govindaraj, B.C. Satishkumar, “Electrochemical investigation of single-walled carbon nanotubes for hydrogen storage”, Electrochimica Acta, Vol.45, p.4511-4515, 2000.
[48]G.P. Dai, M. Liu, D.M. Chen, P.X. Hou, Y. Tong, H.M. Cheng, “Electrochemical charge-discharge capacity of purified single-walled carbon nanotubes”, Electrochemical and Solid-State Letters, Vol.5, p.13-15, 2002.
[49]G.P. Dai, C. Liu, M. Liu, M.Z. Wang, H.M. Cheng, “Electrochemical hydrogen storage behavior of ropes of aligned single-walled carbon nanotubes”, Nano Letters, Vol.2, No.5, p.503-506, 2002.
[50]S. Yi, H. Zhang, L. Pei, S. Hu, L. Hu,, “The study of the electrochemical properties of CNTs–LaNi5 electrodes”, Materials Science and Engineering B, Vol.128, p.125-129, 2006.
[51]I. Lombardi, M. Bestetti, C. Mazzocchia, P.L. Cavallotti, U. Ducati“Electrochemical characterization of carbon nanotubes for hydrogen storage”, Electrochemical and Solid-State Letters, Vol.7, No.5, p.115-118, 2004
[52]陳孟震, “以含浸還原法製備PEMFC膜電極組與電池之研究”, 國立成功大學化學工程學系碩士論文, 2000.
[53]Y.J. Huang, J.A. Schwarz,“The effect of catalyst preparation on catalytic activity:II.the design of Ni/Al2O3 catalysts prepared by wet impregnation”, Applied Catalysis A: General, Vol.30, p.255-263, 1987.
[54]陳懿, 范以寧, 沈儉一, 胡徵,“非晶態合金超細微粒催化劑製備﹑表徵和催化作用的研究”, 超細微粒材料與觸媒研討會論文集, 1996.
[55]J.K. Chang, H.Y. Tsai, W.T. Tsai,“A metal dusting process for preparing nano-sized carbon materials and the effects of acid post-treatment on their hydrogen storage performance”, International Journal of Hydrogen Energy, Vol.33, p. 6734–6742, 2008.
[56]L.M. Ang , T.S.A. Hor ,“Decoration of activated carbon nanotubes with copper and nickel”, Carbon, Vol.38, p.363-372, 2000
[57]溫哲毅, “氣相沉積奈米碳管與成長催化劑之晶向關係”, 國立中山大學材料科學研究所碩士論文, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔