(3.237.48.165) 您好!臺灣時間:2021/05/09 13:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:歐陽暉
研究生(外文):Huei Ou-Yang
論文名稱:奈米結構氧化鐵複合電極應用於高容量鋰離子電池負極材料之特性探討
論文名稱(外文):Characterization of nanostructured iron oxide composite electrode as an anode material for high-capacity Li-ion batteries
指導教授:吳茂松
指導教授(外文):Mao-Sung Wu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:133
中文關鍵詞:氧化鐵碳纖維鋰離子電池高容量負極材料複合式電極
外文關鍵詞:iron oxidecarbon fiberlithium-ion batterieshigh-capacity anode materialscomposite electrodes
相關次數:
  • 被引用被引用:1
  • 點閱點閱:246
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用電化學沈積法與化學沉澱法製備氧化鐵活性材料,並摻入高導電性碳纖維(VGCF)形成複合式電極,將其應用於高容量鋰離子電池負極材料。
第一部份是以電化學沉積法製備氧化鐵薄膜與複合式電極,並以沉積電流密度作為實驗參數,探討該參數對材料型態與電化學性能之影響。根據表面型態分析顯示,在沉積電流密度為0.025與0.125 mA cm-2的條件下,分別可得到一維奈米棒與奈米片狀結構的氧化鐵薄膜。在第一次充放電程序中,以0.025與0.125 mA cm-2電沉積之氧化鐵薄膜電極,其可逆電容量分別為1390與1275 mAh g-1;在10 C充放電速率下,可逆電容量為803與797 mAh g-1,其容量為石墨系碳材的兩倍之多。另外在摻入碳纖維之複合式電極的部分,經表面型態分析與X-ray繞射的鑑定結果顯示,碳纖維確實成功的被導入製程中。沉積電流密度為0.125 mA cm-2之複合式電極,在與未摻入碳纖維之薄膜電極相比,於第一次充放電程序中,可逆電容量可提升17.9 %;於10 C充放下,可逆電容量可提升12 %。這證明了碳纖維的導入,確實對氧化鐵電極之電化學性能有所提升。
第二部份是以化學沉澱法合成氧化鐵粉體,再經由電泳動沉積製備氧化鐵薄膜與複合式電極。在此使用兩種鐵鹽作為合成前驅物,探討不同前驅物對材料型態與電化學性能之影響。根據表面型態分析顯示,在前驅物為Fe(NH4)2(SO4)2與FeCl3的條件下,分別可獲得一維奈米棒與奈米顆粒的氧化鐵粉體。根據熱性質分析與X-ray繞射的鑑定結果顯示,材料在400℃熱處理後,FeOOH會完全轉相為α-Fe2O3。在第一次充放電程序中,以Fe(NH4)2(SO4)2與FeCl3所製備之氧化鐵薄膜電極,其可逆電容量分別為1331與977 mAh g-1;在10 C充放電速率下,可逆電容量分別為713與503 mAh g-1。另外在複合式材料的部分,前驅物為Fe(NH4)2(SO4)2之複合式電極,在與未摻入碳纖維之薄膜電極相比,於第一次充放電程序中,可逆電容量可提升16.2 %;於10 C充放下,可逆電容量可提升11.8 %。
In this study, the iron oxide (α-Fe2O3) active materials are synthesized by electrochemical deposition and chemical precipitation methods, respectively. In addition, the iron oxide was coated on the surface of carbon fiber (VGCF) to form α-Fe2O3/VGCF composite electrode as an anode material for high-capacity Li-ion batteries.
In the first part, the iron oxide film and α-Fe2O3/VGCF composite electrodes are prepared by electrochemical deposition method. The effects of different deposition current densities (0.025 and 0.125 mA cm-2) on the material characteristics and electrochemical performances of iron oxide electrode are investigated. According to the SEM analysis, the iron oxide film deposited at low-current density (0.025 mA cm-2) is rod-like morphology and that deposited at high-current density (0.125 mA cm-2) is sheet-like morphology. During the first charge-discharge process, the reversible capacity of films deposited at 0.025 and 0.125 mA cm−2 are 1390 and 1275 mAh g-1, respectively; At 10 C rate, the reversible capacity are 803 and 797 mAh g-1, respectively. The synthesized anode materials have a higher capacity than the graphite material for lithium storage. The SEM and XRD results indicate that iron oxide films are uniformly coated on the surface of carbon fiber by means of electrochemical deposition process. Compared with iron oxide electrode (deposited at 0.125 mA cm-2), the reversible capacity of α-Fe2O3/VGCF composite electrodes are increased by 17.9 % in first charge-discharge process and 12 % at 10 C rate. The results show that carbon fiber can improve the electrochemical performance of the composite electrodes effectively.
In the second part, the iron oxide powder is synthesized by chemical precipitation method and is deposited onto the stainless steel substrate by electrophoretic deposition to form iron oxide film and α-Fe2O3/VGCF composite electrodes. The effects of different precursors [Fe(NH4)2(SO4)2.6H2O and FeCl3.6H2O] on the material characteristics and electrochemical performances of the iron oxide electrode is investigated. According to the SEM analysis, when the precursors are Fe(NH4)2(SO4)2.6H2O and FeCl3.6H2O, the morphologies of resulting iron oxide powder are nanorod and nanoparticles, respectively. The TG-DTA and XRD results indicate that FeOOH is fully converted into α-Fe2O3 when the annealing temperature is elevated to 400℃. During the first charge-discharge process, the reversible capacity of films for Fe(NH4)2(SO4)2.6H2O and FeCl3.6H2O are 1390 and 1275 mAh g-1, respectively; At 10 C rate, the reversible capacity are 713 and 503 mAh g-1, respectively. Compared with iron oxide electrode [Fe(NH4)2(SO4)2.6H2O], the reversible capacity of α-Fe2O3/VGCF composite electrodes are increased by 16.2 % in first charge-discharge process and 11.8 % at 10 C rate.
總 目 錄
中文摘要 i
Abstract iii
總目錄 v
表目錄 ix
圖目錄 xi

第 一 章 諸論
1-1 前言 1
1-2 二次電池開發史 1
1-3 鋰離子電池特性與優點 3
1-4 鋰離子電池工作原理 4
1-5 鋰離子電池組成構造 6
1-5-1 正(陰)極材料 6
1-5-2 負(陽)極材料 9
1-5-3 電解液系統 12
1-5-4 隔離膜 13
1-6 高容量負極材料之鐵氧化物 14
1-6-1 鐵氧化物構造與種類 14
1-6-2 氧化鐵活性材料製備方式 15
1-7 過渡金屬氧化物之負極材料相關文獻 21
1-8 研究動機與目的 35
1-9 研究架構 36

第 二 章 實驗步驟
2-1 氧化鐵活性材料之製備 38
2-1-1 電化學法 38
2-1-2 化學法 41
2-2 碳纖維之表面改質(酸處理) 44
2-3 電泳動系統 46
2-4 電極之製備 48
2-4-1 不銹鋼基材前處理 48
2-4-2 氧化鐵薄膜電極之製備 48
2-4-3 氧化鐵/碳纖維複合式電極之製備 49
2-5 電化學特性分析 54
2-6 實驗藥品 55
2-7 實驗儀器 57
2-8 電化學特性分析儀 58
2-9 材料特性分析儀 59
第 三 章 結果與討論
Part I. 電化學法
3-1 材料特性分析 61
3-1-1 表面型態 61
3-1-2 結晶型態 72
3-2 電化學特性分析 75
3-2-1 循環伏安法 75
3-2-2 不同沉積電流密度對電化學性能之影響 78
3-2-3 氧化鐵電極之大電流充放電性能 83
3-2-4 添加高導電性碳材(VGCF)對電化學性能之影響 86

Part II. 化學法
3-3 材料特性分析 91
3-3-1 表面型態 91
3-3-2 熱性質分析 99
3-3-3 結晶型態 101
3-3-4 比表面積(BET)測定 105
3-3-5 導電度測定 106
3-4 電化學特性分析 107
3-4-1 循環伏安法 107
3-4-2 不同前驅物對電化學性能之影響 110
3-4-3 氧化鐵電極之大電流充放電性能 114
3-4-4 添加高導電性碳材(VGCF)對電化學性能之影響 117

第 四 章 結論
4-1 結論 122

參考文獻 125
參考文獻
【1】Y.P. Wu, C.R. Wan, C.Y. Jiang, S.B. Fang and Y.Y. Jiang, “Mechanism of lithium storage in low temperature carbon”, Carbon, 37, (1999) 1901.
【2】林振華, 林振富, “充電式鋰離子電池材料與應用”, 全華科技圖書股份有限公司, (2001).
【3】B. Kang and G. Ceder, “Battery materials for ultrafast charging and discharging”, Nature, 458, (2009) 190.
【4】洪為民, “鋰離子二次電池原理、特性與應用”, 工業材料, 7, (1996) 58.
【5】M. Winter, J.O. Besenhard, M.E. Spahr and P. Novak, “Insertion electrode materials for rechargeable lithium batteries”, Advanced Materials, 10, 10, (1998) 725.
【6】C. Jiang, E. Hosono and H. Zhou, “Nanomaterials for lithium-ion batteries”, Nanotoday, 1, 4, (2006) 28.
【7】G.X. Wang, S. Zhong, D.H. bradhurst, S.X. Dou and H.K. Liu, “Synthesis and characterization of LiNiO2 compounds as cathodes for rechargeable lithium batteries”, Journal of Power Sources, 76, (1998) 141.
【8】P. Arora and R.E. White, “Capacity fade mechanisms and side reactions in lithium-ion batteries”, Journal of Electrochemical Society, 145, (1998) 3647.
【9】張仲逸, “嵌入式鋰電池正極材料介紹”, 化工技術, 180, (2001) 110.
【10】陳俊魁, “以溶膠凝膠法合成磷酸鋰鐵LiFePO4二次鋰離子電池用於正極材料”, 雲林科技大學化學工程研究所碩士論文, (2006).
【11】王憲程, 呂宗昕, “奈米科技與鋰離子二次電池電極材料”, 台大工程學刊, 84, (2006) 129.
【12】A.N. Dey, “Electrochemical alloying of lithium in organic electrolytes”, Journal of Electrochemical Society, 118, (1971) 1547.
【13】H. Azuma, H. Imoto, S. Yamada and K. Sekai, “Advanced carbon anode materials for lithium-ion cells”, Journal of Power Sources, 81-82, (1999) 1.
【14】A. Yu and R. Frech, “Mesoporous tin oxides as lithium intercalation anode materials”, Journal of Power Sources, 104, 1, (2001) 97.
【15】N. Du, H. Zhang, B. Chen, X. Ma, X. Huang, J. Tu and D. Yang, “Synthesis of polycrystalline SnO2 nanotubes on carbon nanotube template for anode material of lithium-ion battery”, Materials Research Bulletin, 44, (2009) 211.
【16】P. Billik and M. Caplovicova, “Synthesis of nanocrystalline SnO2 powder from SnCl4 by mechanochemical processing”, Powder Technology, 191, (2009) 235.
【17】P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J.M. Tarascon, “Nano-sized transition-metal oxides as negative -electrode materials for lithium-ion batteries”, Nature, 407, (2000) 496.
【18】許雪萍, 陳金銘, 施得旭, 林月微, 姚慶意, “鋰離子電池材料技術”, 工業材料, 126, (1997) 104.
【19】趙榮麒, “以碳化與石墨化煤焦系中間相瀝青製備鋰二次電池碳電極之研究”, 逢甲大學材料科學與工程研究所碩士論文, (2003).
【20】陳威倩, “以γ → α-Fe2O3相變機制製作alpha-Fe2O3微粒”, 成功大學資源工程研究所碩士論文, (2001).
【21】D. Carlier, C. Terrier, C. Arm, and J.-Ph. Ansermet, “Preparation and magnetic properties of Fe3O4 nanostructures grown by electrodeposition”, Electrochemical and Solid-State Letters, 8, 3, (2005) C43.
【22】L. Martine, D. Leinen, F. Martín, M. Gabas, J.R. Ramos -Barrado, E. Quagliat and E.A. Dalchieleb, “Electrochemical growth of diverse iron oxide (Fe3O4, γ-FeOOH, and α-FeOOH) thin films by electrodeposition potential tuning”, Journal of The Electrochemical Society, 154, 3, (2007) D126.
【23】H. Park, P. Ayala, M.A. Deshusses, A. Mulchandani, H. Choi and N.V. Myung, “Electrodeposition of maghemite (γ-Fe2O3) nanoparticles”, Chemical Engineering Journal, 139, (2008) 208.
【24】J. Chen, L. Xu, W. Li and X. Gou, “α-Fe2O3 Nanotubes in gas sensor and lithium-ion battery applications”, Advanced Materials, 17, 5, (2005) 582.
【25】L.Y. Zhang, J. Feng and D.S. Xue, “An investigation of thermal decomposition of β-FeOOH nanowire arrays assembled in AAO templates”, Materials Letters, 61, (2007) 1363.
【26】C. Wu, P. Yin, X. Zhu, C. OuYang and Y. Xie, “Synthesis of hematite (α-Fe2O3) nanorods:diameter-size and shape effects on their applications in magnetism, lithium-ion battery, and gas sensors”, Journal of Physical Chemistry B, 110, (2006) 17806.
【27】S. Mandal and A.H. Muller, “Facile route to the synthesis of porous α-Fe2O3 nanorods”, Materials Chemistry and Physics, 111, (2008) 438.
【28】X.L. Wu, Y.G. Guo, L.J. Wan and C.W. Hu, “α-Fe2O3 Nanostructures:inorganic salt-controlled synthesis and their electrochemical performance toward lithium storage”, Journal of Physical Chemistry B, 112, (2008) 16824.
【29】I. Uzunov, S. Uzunova, D. Kovacheva, S. Vasilev and B. Puresheva, “Iron-based composite oxides as alternative negative electrodes for lithium-ion batteries”, Journal of Materials Science, 42, (2007) 3353.
【30】H.G. Cha, C.W. Kim, Y. H. Kim, M.H. Jung, E.S. Ji, B.K. Das, J.C. Kim and Y.S. Kang, “Preparation and characterization of α-Fe2O3 nanorod-thin film by metal-organic chemical vapor deposition”, Thin Solid Films, 517, (2009) 1853.
【31】 Y. Makimura, A. Rougier and J.M. Tarascon, “Pulsed laser deposited iron fluoride thin films for lithium-ion batteries”, Applied Surface Science, 252, (2006) 4587.
【32】H. Duana, J. Gnanaraj, X. Chena, B. Li and J. Lianga, “Fabrication and characterization of Fe3O4-based Cu nanostructured electrode for Li-ion battery”, Journal of Power Sources, 185, (2008) 512.
【33】E. Hosono, S. Fujihara, I. Honma, M. Ichihara and H. Zhoua, “Fabrication of nano/micro hierarchical Fe2O3/Ni micrometer -wire structure and characteristics for high rate Li rechargeable battery”, Journal of The Electrochemical Society, 153, 7, (2006) A1273.
【34】B.T. Hanga, T. Doi, S. Okadab and J.I. Yamaki, “Effect of carbonaceous materials on electrochemical properties of nano -sized Fe2O3-loaded carbon as a lithium battery negative electrode”, Journal of Power Sources, 174, (2007) 493.
【35】L. Wang, Y. Yu, P.C. Chen, D.W. Zhang and C.H. Chen, “Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries”, Journal of Power Sources, 183, (2008) 717.
【36】Y. NuLi, P. Zhang, Z. Guoa, P. Munroec and H. Liu, “Preparation of α-Fe2O3 submicro-flowers by a hydrothermal approach and their electrochemical performance in lithium-ion batteries”, Electrochimica Acta, 53, (2008) 4213.
【37】H. Liu, G. Wang, J. Wang and D. Wexler, “Magnetite/carbon core-shell nanorods as anode materials for lithium-ion batteries”, Electrochemistry Communications, 10, (2008) 1879.
【38】H. Liu, G. Wang, J. Park, J. Wang, H. Liu and C. Zhang, “Electrochemical performance of α-Fe2O3 nanorods as anode material for lithium-ion cells”, Electrochimica Acta, 54, (2009) 1733.
【39】H.J. Liu, S.H. Bo, W.J. Cui, F. Li, C.X. Wang and Y.Y. Xia, “Nano sized cobalt oxide/mesoporous carbon sphere composites as negative electrode material for lithium-ion batteries”, Electrochimica Acta, 53, (2008) 6497.
【40】J.S. Do and C.H. Weng, “Preparation and characterization of CoO used as anodic material of lithium battery”, Journal of Power Sources, 146, (2005) 482.
【41】W.L. Yao, J.L. Wang, J. Yang and G.D. Du, “Novel carbon nanofiber-cobalt oxide composites for lithium storage with large capacity and high reversibility”, Journal of Power Sources, 176, (2008) 369.
【42】S.L. Chou, J.Z. Wang, H.K. Liu and S.X. Doua, “Electrochemical deposition of porous Co3O4 nanostructured thin film for lithium-ion battery”, Journal of Power Sources, 182, (2008) 182.
【43】R. Yang, Z. Wang, J. Liu and L. Chen, “Nano Co3O4 particles embedded in porous hard carbon spherules as anode material for Li-ion batteries”, Electrochemical and Solid-State Letters, 7, 12, (2004) A496.
【44】Y. Wang and Q.Z. Qin, “A nanocrystalline NiO thin-film electrode prepared by pulsed laser ablation for Li-ion batteries”, Journal of The Electrochemical Society, 149, 7, (2002) A873.
【45】L. Yuan, Z.P. Guo, K. Konstantinov, P. Munroe and H.K. Liu, “Spherical clusters of NiO nanoshafts for lithium-ion battery anodes”, Electrochemical and Solid-State Letters, 9, 11, (2006) A524.
【46】X.H. Huang, J.P. Tu, B. Zhang, C.Q. Zhang, Y. Li, Y.F. Yuan and H.M. Wu, “Electrochemical properties of NiO-Ni nanocomposite as anode material for lithium-ion batteries”, Journal of Power Sources, 161, (2006) 541.
【47】X.H. Huang, J.P. Tu, C.Q. Zhang and J.Y. Xiang, “Net-structured NiO-C nanocomposite as Li-intercalation electrode material”, Electrochemistry Communications, 9, (2007) 1180.
【48】M.S. Wu and P.C. Julia Chiang, “Electrochemically deposited nanowires of manganese oxide as an anode material for lithium-ion batteries”, Electrochemistry Communications, 8, (2006) 383.
【49】J. Zhao, Z. Tao, J. Liang and J. Chen, “Facile synthesis of nanoporous γ-MnO2 structures and their application in rechargeable Li-ion batteries”, Crystal Growth & Design, 8, (2008) 82799.
【50】Q. Fan and M.S. Whittingham, “Electrospun manganese oxide nanofibers as anodes for lithium-ion batteries”, Electrochemical and Solid-State Letters, 10, 3, (2007) A48.
【51】L. Duclaux, E. Frackowiak and F. Beguin, “Novel carbons from nanocomposites for high lithium storage”, Journal of Power Sources, 81-82, (1999) 323.
【52】S. Hossain, Y.K. Kim, Y. Saleh and R. Loutfy, “Comparative studies of MCMB and C-C composite as anodes for lithium-ion battery systems”, Journal of Power Sources, 114, 2, (2003) 264.
【53】R.A. Huggins, “Lithium alloy negative electrode”, Journal of Power Sources, 81-82, (1999) 13.
【54】M. Winter and J.O. Besenhard, “Electrochemical lithiation of tin and tin-based intermetallics and composites”, Electrochimica Acta, 45, 1-2, (1999) 31.
【55】D. Tench and L.F. Warren, “Electrodeposition of conducting transition metal oxide/hydroxide films from aqueous solution”, Journal of The Electrochemical Society, 130, (1983) 869.
【56】D. Larcher, C. Masquelier, D. Bonnin, Y. Chabre, V. Masson, J.-B. Leriche and J.-M. Tarascona, “Effect of particle size on lithium intercalation into α-Fe2O3”, Journal of The Electrochemical Society, 150, 1, (2003) A133.
【57】D. Larcher, D. Bonnin, R. Cortes, I. Rivals, L. Personnaz and J.M. Tarascona, “Combined XRD, EXAFS, and Mossbauer studies of the reduction by lithium of α-Fe2O3 with various particle sizes”, Journal of The Electrochemical Society, 150, 12, (2003) A1643.
【58】Y. NuLi, P. Zhang, Z. Guo and H. Liua, “Shape evolution of α-Fe2O3 and its size-dependent electrochemical properties for lithium-ion batteries”, Journal of The Electrochemical Society, 155, 3, (2008) A196.
【59】Y. NuLi, R. Zeng, P. Zhang, Z. Guo and H. Liua, “Controlled synthesis of α-Fe2O3 nanostructures and their size-dependent electrochemical properties for lithium-ion batteries”, Journal of Power Sources, 184, (2008) 456.
【60】W. Yao, J. Yang, J. Wang and L. Tao, “Synthesis and electrochemical performance of carbon nanofiber-cobalt oxide composites”, Electrochimica Acta, 53, (2008) 7326.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔