(34.226.234.102) 您好!臺灣時間:2021/05/12 09:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王明詰
研究生(外文):Min-Jyle Wang
論文名稱:電化學沉積法製備多孔結構氧化鎳電極及其電化學特性研究
論文名稱(外文):Porous nickel oxide electrodes prepared by electrochemical deposition and their electrochemical behavior
指導教授:吳茂松
指導教授(外文):Mao-Sung Wu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:164
中文關鍵詞:陽極沈積法氧化鎳模板巨孔結構奈米網狀結構界面活性劑
外文關鍵詞:anodic depositionnickel oxidetemplatemacroporous structureplatelet-like shape structuresurfactant
相關次數:
  • 被引用被引用:4
  • 點閱點閱:298
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以陽極沈積法製備氧化鎳電極,藉由添加界面活性劑改變電極結構,此外利用不同定電流密度與電位及聚苯乙烯球(PS)模板沉積氧化鎳電極,探討電極結構對電極電容特性的影響。在製備PS模板部分是利用電泳動方式沉積PS(直徑約為200 nm)於鋼材上,經甲苯溶解PS使表面形成巨孔結構,探討巨孔氧化鎳電極對電化學特性的影響。
由掃描式電子顯微鏡觀察發現,以界面活劑沈積的氧化鎳電極表面結構為奈米網狀結構;以PS為模板沈積鎳氧化物電極,表面有許多巨孔結構。此外,利用小電流密度或低電位沈積時,該網狀結構孔洞形成較大;而利用大電流密度與高電位沈積時,網狀結構的孔洞小而緻密。經低銳角X光繞射圖譜得知,添加界面活性劑並不影響結晶型態的形成,其反應為氫氧化鎳經由鍛燒300 ℃脫水轉變為氧化鎳。
氧化鎳電極的電化學分析結果顯示,以添加界面活性劑1 mM CTAB沈積氧化鎳電極的可逆性最好、穩定性高及壽命長,且擁有最高比電容值1160 Fg-1,比文獻中陽極沈積法製備氧化鎳電極的最高電容值260 Fg-1提昇許多。另外,經由PS模板沈積氧化鎳電極表面形成巨孔結構,增加比表面積與反應面積使電容值提升至377 Fg-1優於文獻值許多。
In this study, nickel oxide (NiO) is deposited onto the stainless steel (SS) substrate by anodic electrodeposition with addition of surfactant. The changes in electrode morphology by adding surfactants are investigated. In addition, the influences of deposition parameters, such as current density and potential, on the specific capacitance of deposited NiO films are also studied.
In order to discuss the effects of macroporous NiO structure on the electrochemical performance of electrode, polystyrene spheres with 200 nm in diameter (PS) are deposited on SS substrate as a template by electrophoretic deposition (EPD). Nickel oxide film was deposited on the PS-coated SS substrate. After removal of PS in toluene, the surface of the electrode becomes macroporous structure.
Surface morphology of the deposited NiO electrode with addition of surfactant is platelet-like shape observed by SEM. And the morphology of the deposited NiO electrode with PS template is highly macroporous. Besides, when smaller current or potential is applied, the pores of electrodes are larger. While larger current or potential is applied, the pores of electrodes are smaller.
After GA-XRD analysis, there is no change in crystal structure by adding the surfactant during deposition. The synthesized nickel hydroxide (Ni(OH)2) is converted into cubic NiO after annealing at 300 ℃ for 1 h.
The electrochemical result shows that an optimal addition amount of 1 mM surfactant (CTAB) is obtained in terms of the electrode’s capacitive behavior. Main advantages of adding CTAB in anodic deposition include excellent reversibility, high stability, and long cycle-life. The specific capacitance of the deposited electrodes with surfactant (CTAB) is about 1160 Fg-1, which is much higher than that of deposited by anodic deposition (260Fg-1) reported in literature. Moreover, the macroporous structure of deposited NiO electrode can provide much more surface area for facilitating the electrochemical reaction. Therefore, the specific capacitance of this tailored nickel oxide electrode reaches to 377 Fg-1, which is much better than that reported in literature.
總目錄
第一章 緒論-----------------------------------------------------------1
1-1 前言-------------------------------------------------------------1
1-2電化學原理---------------------------------------------------------4
1-2-1 電化學系統------------------------------------------------------4
1-2-2 電化學測試系統-------------------------------------------------6
1-2-3 電解液的分類----------------------------------------------------8
1-3 電容器-----------------------------------------------------------9
1-4 電容器之電極材料-------------------------------------------------11
1-5氧化鎳-----------------------------------------------------------14
1-6 模板法----------------------------------------------------------15
1-7 界面活性劑於固體表面之吸附-----------------------------------------16
1-8 界面活性劑對電極的影響--------------------------------------------18
1-9 臨界微胞濃度-----------------------------------------------------19
1-10 影響臨界微胞濃度的因素-------------------------------------------21
1-11鎳氧化物電極的製備方式--------------------------------------------24
1-11-1 熱分解法-----------------------------------------------------24
1-11-2 溶膠-擬膠法---------------------------------------------------25
1-11-2 電化學共沉積--------------------------------------------------26
1-11-3 陽極沉積-----------------------------------------------------27
1-11-4 陰極沉積-----------------------------------------------------28
1-11-5 循環伏安法----------------------------------------------------28
1-11-7 無電電鍍法----------------------------------------------------29
1-12 研究動機-------------------------------------------------------30
第二章 實驗方法與步驟-------------------------------------------------33
2-1 不銹鋼(stainless-steel)基材前處理-------------------------------33
2-2 電鍍液的配製-----------------------------------------------------33
2-3 電泳液調配-------------------------------------------------------33
2-4 PS模板製備-----------------------------------------------------34
2-5 電化學沉積鎳氧化物-----------------------------------------------36
2-5-1 定電流沉積-----------------------------------------------------36
2-5-2 定電壓沉積-----------------------------------------------------36
2-6氧化鎳電極熱處理--------------------------------------------------37
2-7氧化鎳電極基本物性分析---------------------------------------------37
2-8電化學特性分析----------------------------------------------------37
2-8-1循環伏安測試----------------------------------------------------40
2-8-2 充放電實驗-----------------------------------------------------40
2-8-3 阻抗分析------------------------------------------------------40
2-8-4 循環壽命(cycle life)------------------------------------------40
2-9 實驗藥品--------------------------------------------------------43
2-10 實驗儀器-------------------------------------------------------45
2-11 電化學分析儀---------------------------------------------------46
2-12 其他儀器-------------------------------------------------------47
第三章 結果與討論----------------------------------------------------48
3-1 結晶型態分析-----------------------------------------------------48
3-2 氧化鎳電極表面結構分析--------------------------------------------50
3-2-1 界面活性劑濃度對表面結構之影響-----------------------------------50
3-2-2 定電流與定電位對電極表面結構之影響--------------------------------54
3-2-3 微胞對表面結構之影響--------------------------------------------61
3-3陰離子界面活性劑對氧化鎳電極之影響分析-------------------------------65
3-4 循環伏安法檢測氧化鎳電極------------------------------------------68
3-4-1 不同濃度的陰離子型界面活性劑(SDS)對氧化鎳電極之影響---------------68
3-4-2 不同電流密度沉積之氧化鎳電極對電化學特性分析-----------------------74
3-4-3 不同電位沉積之氧化鎳電極對電化學特性分析--------------------------78
3-5 陽離子界面活性劑對電極材料之影響-----------------------------------81
3-6 循環伏安法檢測氧化鎳電極------------------------------------------84
3-6-1 不同定電流沉積之氧化鎳電極---------------------------------------84
3-6-2 不同電位沉積之氧化鎳電極----------------------------------------88
3-7 計時電位檢測氧化鎳電極之電化學特性-------------- -------------------91
3-8 交流阻抗分析(AC impedance)--------------------------97
3-9 循環壽命測試(cycle life)---------------------------------102
3-10 PS模板對氧化鎳電極電化學特性之影響-------------106
3-11計時電位檢測多孔結構氧化鎳電極之比電容-------116
3-12 交流阻抗分析(AC impedance)-------------------------121
3-13 循環壽命圖(cycle life)------------------------------------124
第四章 結論---------------------------------------------------------128
參考文獻-----------------------------------------------------------131




表目錄
表1-1 不同方式製備氧化鎳電極-----------------------------------------31
表1-2其他製備方式氧化鎳電極------------------------------------------32

圖目錄
圖1-1 超級電容器、電池與電容之能量密度及功率密度比較圖。----------3
圖1-2 氧化還原程序關係圖。------------------------------------------5
圖1-3 電化學三極式電解槽示意圖。-------------------------------------7
圖1-4 部份導電高分子之化學結構圖。--------------------------------13
圖1-5 界面活性劑分子吸附於固體表面之現象。--------------------17
圖1-6 CTAB的濃度與ΔHobs之關係圖。------------------------------20
圖1-7 各種微胞形狀圖。---------------------------------------------23
圖2-1 電泳PS裝置圖。-----------------------------------------------35
圖2-2 電化學三極式電解槽。------------------------------------------39
圖2-3 基材前處理及模板製備。----------------------------------------41
圖2-4 實驗流程圖。-------------------------------------------------42
圖3-1 以0.9 V定電位沉積之氧化鎳電極XRD分析圖。(a)添
加1 mM陰離子型界面活性劑(SDS),(b)添加1 mM 陽
離子型界面活性劑(CTAB),(c)未添加界面活性劑,(d)
不銹鋼基材。-------------------------------------------------49
圖3-2 添加不同濃度界面活性劑以0.05 mA cm-2電流密度沉積
之氧化鎳電極SEM圖。添加陰離子型界面活性劑(SDS)
的濃度分別為(a)0 mM、(b)1 mM、(c)10 mM與(d)
100 mM。----------------------------------------------------52
圖3-3 添加不同界面活性劑以0.05 mA cm-2電流密度沉積之氧
化鎳電極SEM圖。(a)添加1 mM陰離子型界面活性劑
(SDS),(b)添加1 mM 陽離子型界面活性劑(CTAB)。-------------53
圖3-4 添加1 mM陰離子型界面活性劑(SDS)以不同電流密
度沉積氧化鎳電極之SEM圖。沉積電流分別為(a)0.05
mA cm-2、(b)0.25 mA cm-2與(c)0.5 mA cm-2。------------------55
圖3-5 添加1 mM 陽離子型界面活性劑CATB以不同電流密度
沉積氧化鎳電極SEM圖。沉積電流分別為(a)0.05 mA
cm-2、(b)0.25 mA cm-2與(c)0.5 mA cm-2。---------------------56

圖3-6 添加1 mM 陽離子型界面活性劑(CATB)以不同定電位
沉積氧化鎳電極SEM圖。沉積電位為(a)0.9 V與 (b)1.1
V。---------------------------------------------------------57
圖3-7 添加1 mM 陰離子型界面活性劑SDS以不同定電位沉積
氧化鎳電極SEM圖。沉積電位為(a)0.9 V與 (b)1.1 V。---------------58
圖3-8 未使用界面活性劑定電位沉積氧化鎳電極SEM圖。沉積
電位為(a)0.9 V與 (b)1.1 V。----------------------------------59
圖3-9 未使用界面活性劑沉積之氧化鎳電極SEM橫截面圖。沉
積電位為(a)0.9 V與 (b)1.1 V。--------------------------------60
圖3-10 添加1 mM陽離子型界面活性劑(CTAB)以0.9 V定電
位沉積之氧化鎳電極於不同放大倍率之TEM影像。(b)
為(a)放大倍率圖。--------------------------------------------62
圖3-11 添加1 mM 陰離子型界面活性劑(SDS)以0.9 V定電位
沉積之氧化鎳電極於不同放大倍率之TEM影像。(a)為(b)
放大倍率圖。-------------------------------------------------63
圖3-12 未使用界面活性劑以0.9 V定電位沉積之氧化鎳電極於
不同放大倍率之TEM影像。(b)為(a)放大倍率圖。-----------64
圖3-13 鎳離子與界面活性劑SDS(十二烷基硫酸鈉)沉積過程示
意圖。------------------------------------------------------66
圖3-14 以0.9 V定電位沉積之氧化鎳電極接觸角圖。(a)使用1
mM 界面活性劑(SDS)與(b)未使用界面活性劑。---------67
圖3-15 添加不同濃度SDS以0.05 mA cm-2定電流密度沉積氧化
鎳電極之循環伏安曲線圖。-------------------------------------70
圖3-16 添加不同濃度SDS經定電流密度沉積之氧化鎳電極,以
不同scan rate進行循環伏安測試之比電容值變化情形。--------------71
圖3-17 (a)與(b) 鎳氧化物電極表面為大孔洞之快/慢掃描反
應範圍示意圖(反應區為黑點描繪處)。-----------------------72
圖3-18 (a) 與(b)鎳氧化物電極表面為小孔洞之快/慢掃描反
應範圍示意圖(反應區為黑點描繪處)。------------------------ 73
圖3-19 以不同電流密度沉積氧化鎳電極之循環伏安曲線圖。(a)
添加1 mM SDS與(b)未添加界面活性劑添加。-------------76
圖3-20 添加1 mM SDS經不同電流密度沉積之氧化鎳電極,以
不同scan rate進行循環伏安測試之比電容值變化情形。
(a)添加1 mM SDS與(b)未添加界面活性劑。-------------77
圖3-21 添加1 mM SDS經不同電位沉積氧化鎳電極之循環伏安
曲線圖。(a)添加1 mM SDS與(b)未添加界面活性劑。----------79
圖 3-22 添加1 mM SDS經不同電位沉積氧化鎳電極,以不同scan
rate進行循環伏安測試之比電容值變化情形。(a)添加1
mM SDS與(b)未添加界面活性劑。--------------------------80
圖3-23 鎳離子與CTAB (十六烷基三甲基溴化銨)沉積過程示意
圖。--------------------------------------------------------82
圖3-24 以0.9 V電位沉積氧化鎳電極之接觸角圖。(a)使用1 mM
界面活性劑(CTAB)與(b)未使用界面活性劑。--------------83
圖3-25 添加1 mM CTAB經不同電流密度沉積氧化鎳電極之循
環伏安曲線圖。(a)添加1 mM CTAB與(b)未添加界
面活性劑。---------------------------------------------------86
圖3-26 添加1 mM CTAB經不同電流密度沉積氧化鎳電極於不
同scan rate下進行循環伏安測試之比電容值變化情形。
(a)添加1 mM CTAB與(b)未添加界面活性劑。-----------87
圖3-27 添加1 mM CTAB經不同電位沉積鎳氧化物電極之循環
伏安曲線圖。(a)添加1 mM CTAB與(b)未添加界面
活性劑。----------------------------------------------------89
圖3-28 添加1 mM CTAB經不同電位沉積氧化鎳電極,以不同
scan rate進行循環伏安測試之比電容值變化情形。(a)添
加1 mM CTAB與(b)未添加界面活性劑。--------------------90
圖3-29 利用1 mM SDS經0.9 V定電位沉積之氧化鎳電極恆電流
充/放電曲線圖。充/放電電流為(a)5 Ag-1、(b)10 Ag-1、(c)20
Ag-1與(d)40 Ag-1。------------------------------------------93
圖3-30 為利用1 mM SDS經0.9 V定電位沉積之氧化鎳電極電容
值與充/放電電流密度比較圖。-------------------------------94
圖3-31 利用1 mM CTAB經0.9 V定電位沉積之氧化鎳電極恆電
流充/放電曲線圖。充/放電電流為(a)5 Ag-1、(b)10 Ag-1、
(c)20 Ag-1與(d)40 Ag-1。------------------------------------95
圖3-32 為利用1 mM CTAB經0.9 V定電位沉積之氧化鎳電極之
比電容值與充/放電電流密度之比較圖。----------------------96
圖3-33 添加1 mM界面活性劑(SDS)經0.9 V與1.1 V電位沉
積之氧化鎳電極Nyquist圖。------------------------------------99
圖3-34 添加1 mM界面活性劑(CTAB)經0.9 V與1.1 V電位
沉積之氧化鎳電極Nyquist圖。---------------------------------100
圖3-35 未添加界面活性劑經0.9 V與1.1 V電位沉積之氧化鎳電
極Nyquist圖。----------------------------------------------101
圖3-36 添加1 mM SDS經0.9 V電位沉積之氧化鎳電極以電流密
度20 Ag-1作循環壽命圖。-------------------------------------104
圖3-37 添加1 mM CTAB經0.9 V電位沉積之氧化鎳電極以電流
密度20 Ag-1作循環壽命圖。-----------------------------------105
圖3-38 以PS當模板經0.9 V定電位沉積之氧化鎳電極SEM圖,
(a)x50,000,(b)x10,000。-----------------------------------108
圖3-39 以PS當模板經0.9 V定電位沉積之氧化鎳物電極循環伏
安曲線圖。--------------------------------------------------109
圖3-40 利用PS當模板經0.9 V定電位沉積之氧化鎳電極,以不
同scan rate進行循環伏安測試之比電容值變化情形。----------------100
圖3-41 以PS當模板經1.1 V定電位沉積之氧化鎳電極SEM圖,
(a)x50,000,(b)x10,000。-----------------------------------111
圖3-42 以PS當模板經1.1 V定電位沉積之氧化鎳電極循環伏安
曲線圖。---------------------------------------------------112
圖3-43 利用PS當模板經1.1 V定電位沉積之氧化鎳電極,以不
同scan rate進行循環伏安測試之比電容值變化情形。----------------113
圖3-44 以PS當模板經不同定電位沉積之氧化鎳電極循環伏安
曲線圖。---------------------------------------------------114
圖3-45 利用PS當模板經不同定電位沉積之氧化鎳電極,以不同
scan rate進行循環伏安測試之比電容值變化情形。---------115
圖3-46 以PS當模板經0.9 V定電位沉積之氧化鎳電極恆電流充
/放電曲線圖。充/放電電流為(a)5 Ag-1、(b)10 Ag-1與(c)20
Ag-1。----------------------------------------------------117
圖3-47 以PS當模板經0.9 V定電位沉積之氧化鎳電極電容值與
充/放電電流之比較圖。----------------------------------------118
圖3-48 以PS當模板經1.1 V定電位沉積之氧化鎳電極恆電流充
/放電曲線圖。充/放電流為(a)5 Ag-1、(b)10 Ag-1與(c)20
Ag-1。----------------------------------------------------119
圖3-49 以PS當模板經1.1 V定電位沉積之氧化鎳電極電容值與
充/放電電流之比較圖。---------------------------------------120
圖3-50 (1) 使用PS模板製備之巨孔結構氧化鎳電極於電化學
測試下電解液進出方式。(2)未使用PS模板製備之網狀
結構氧化鎳電極於電化學測試下電解液進出方式。--------122
圖3-51 以PS當模板經0.9 V與1.1 V電位沉積之氧化鎳電極
Nyquist 圖。(a)使用PS模板與(b)未使用PS模板。-------123
圖3-52 利用PS當模板經0.9 V電位沉積之氧化鎳電極循環壽命
圖(充放電電流:20 Ag-1)。----------------------------------125
圖3-53 利用PS當模板經1.1 V電位沉積之氧化鎳電極循環壽命
圖(充放電電流:20 Ag-1)。--------------------------------- 126
圖3-54 (a)與(b)以PS模板經0.9 V電位沉積之氧化鎳電極SEM
圖。(c)與(d)使用PS模板經0.9 V電位沉積之氧化鎳電極
經20 Ag-1循環壽命之SEM圖。(a)與(c)x50,000,(b)與
(d)x10,000。-----------------------------------------------127
[1]M. Carlen and R. Kotz, “Principles and applications of electrochemical capacitors”, Electrochimica Acta, 45, 2483, (2000).
[2]B. Pillay and J. Newman, “The influence of side reactions on the performance of electrochemical double-layer capacitors”, Journal of the Electrochemical Society, 143, 1806, (1996).
[3]R. R. Daniels and G. Margaritiondo, “Electronic states of rutile dioxides”, Physical Review B, Condensed Matter, 29, 1813, (1984).
[4]田福助, “電化學理論與應用”, 高立出版社, (1997).
[5]C. C. Yang, “Synthesis and characterization of active materials of Ni(OH)2 powders”, International Journal of Hydrogen Energy, 27, 1071, (2002).
[6]P. S. Patil and L. D. Kadam, “Preparation and characterization of spray pyrolyzed nickel oxide (NiO) thin films”, Applied Surface Science, 199, 211, (2002).
[7]胡啟章, “電化學原理與方法”, 五南圖書出版社, (2002).
[8]黃進益, ”電化學原理與應用”, 高立圖書有限公司, (1998).
[9]D. Galizzoli, F. Tantardini, and S. Trasatti, “Ruthenium dioxide: A new electrode material. II. Non-stoichiometry and engergtics off elecyrode reactions in acid solutions”, Journal of Applied Electrochemistry, 5, 203, (1975).
[10]M. Carlen and R. Kotz, “Principles and applications of electrochemical capacitor”, Electrochimica Acta, 45, 2483, (2000).
[11]M. Ue, K. Ida, and S. Mori, “Electrochemical properties of organic liquid electrolytes based on quaternary onium salts for electroical double-layer capacitors”, Journal of the Electrochemical Society , 141, 2989, (1994).
[12]H. D. Young, “Addison-wesley publishing Co”, Physics, New York, (1992).
[13]R. Kotz and M. Carlen, “Principles and applications of electrochemical capacitors”, Electrochimica Acta, 45, 2483, (2000).
[14]A. M. Couper, D. Pletcher, and F. C. Walsh, “Electrode materials for electrosynthesis”, Chemical Reviews, 90, 837, (1990).
[15]H. Wendt, “Electrocatalysis in organic electrochemistry”, Electrochimica Acta, 29, 151, (1991).
[16]曾文男, 蔡麗端, ”導電高分子於高儲能電容器上之應用”, 工業材料, 176, 145, (2001).
[17]B. Dong, B. L. He, C. L. Xu, and H. L. Li, “Preparation and electrochemical characterization of polyaniline/multi-walled carbon nanotubes composites for supercapacitor”, Materials Science and Engineering B , 143, 7, (2007).
[18]Y. Sun, J. Pan , P. Wan, and X. Liu, “The proton exchange chemistry of layered Ni(OH)2 for two types of high-capacity cathode materials in rechargeable batteries.” Materials Research Bulletin, 44, 227, (2009).
[19]C. Natarajan, S. Ohkubo, and G. Nagami, “Influence of film processing temperature on the electrochromic properties of electrodeposited nickel hydroxide”, Solid State Ionics, 86, 949, (1996).
[20]G. J.C. Carpenter and Z. S. Wronski, “Nanocrystalline NiO and NiO-Ni(OH)2 composite powders prepared by thermal and mechanical dehydroxylation of nickel hydroxide”, Nanostructured Materials, 11, 67, (1999).
[21]K. C. Liu and M. A. Anderson, “Porous nickel oxide/nickel films for electrochemical capacitors”, Journal of the Electrochemical Society, 143, 124, (1996).
[22]K. K. Purushothaman and G. Muralidharan, “The effect of annealing temperature on the electrochromic properties of nanostructured NiO films”, Solar Energy Materials & Solar Cells, 93, 1195, (2009).
[23]G. E. Possin, “A method for forming very small diameter wires”, The Review of Scientific Instruments, 41, 772, (1970).
[24]T. H. Brian, F. B. Christopher, and S. Andreas, “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids”, Science, 281, 538, (1998).
[25]R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec, “Ordered mesoporous carbons”, Advanced Materials, 13, 677, (2001).
[26]Y. G. Wang and Y. Y. Xia, “Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15”, Electrochimica Acta, 51, 3223, (2006).
[27]M. J. Rosen, “Surfactants and interfacial phenomena”, Second Edition, 39, (1989).
[28]J. Wang, B.Z. Zeng, C. Fang, and X.Y. Zhou, “The influence of surfactants on the electron-transfer reaction at self-assembled thiol monolayers modifying a gold electrode”, Journal of Electroanalytical Chemistry, 484, 88, (2000).
[29]S. S. Hu, K. B. Wu, H. C. Yi, and D. F. Cui, “Voltammetric behavior and determination of estrogens at nafion-modified glassy carbon electrode in the presence of cetyltrimethylammonium bromide”, Analytica Chimica Acta, 464, 209, (2002).
[30]C. Guo, Y. Zuo, X. Zhao, J. Zhao, and J. Xiong “Effects of surfactants on electrodeposition of nickel-carbon nanotubes composite coatings”, Surface & Coatings Technology, 202, 3385, (2008).
[31]張有義, 郭蘭生, ”膠體及界面化學入門”, 高立圖書有限公司, (2004).
[32]H. Lundqvist, A. C. Eliasson, and G. Olofsson, “Binding of hexadecyltrimethylammoniun bromide to starch polysaccharides. Part II. Calorimetric study”, Carbohydrate Polymers 49, 109, (2002).
[33]M. Ghaedi, H. Tavallali, A. Shokrollahi, M. Zahedi, M. Montazerozohori, and M. Soylak, “Flame atomic absorption spectrometric determination of zinc, nickel, iron and lead in different matrixes after solid phase extraction on sodium dodecyl sulfate (SDS)-coated alumina as their bis (2-hydroxyacetophenone)-1,3-propanediimine chelates”, Journal of Hazardous Materials, 166, 1441, (2009).
[34]R. J. Hunter, “Foundations of colloid science”, Oxford University Press, 1, 5, (1986).
[35]M. J. Schick, “Effect of electrolyte and urea on micelle formation”, The Journal of Physical Chemistry, 68, 3585, (1964).
[36]S. Mitra and S. R. Dungan, “Micellar properties of quillaja saponin. 1. Effects of temperature, salt, and pH on solution properties”, Journal of Agricultural and Food Chemistry, 45, 1587, (1997).
[37]D. N. Srivastava, V. G. Pol, O. Palchik, L. Zhang, J. C. Yu, and A. Gedanken, “Preparation of stable porous nickel and cobalt oxides using simple inorganic precursor, instead of alkoxides,by a sonochemical technique”, Ultrasonic Sonochemistry, 12, 205, (2005).
[38]W. Zhang, X. Qiao, and J. Chen, “Synthesis of silver nanoparticles—Effects of concerned parameters in water/oil microemulsion”, Materials Science and Engineering B, 142, 1, (2007).
[39]G. Lodi, E. Sivieri, A. DeBattisti, and S. Trasatti, “Ruthenium dioxide-based film electrodes. Effect of chemical composition and surface morphology on oxygen evolution in acid solution,” Journal of the Electrochemical Society, 8, 135, (1978).
[40]X. M. Liu, Y. H. Zhang, X. G. Zhang, and S. Y. Fu, ”The supercapacitive properties of Ni-Ru oxide composites”, Acta Physico - Chimica Sinica, 20, 417, (2004).
[41]L. Nammi, S. Polizzi, A. Benedetti, and A. D Battisti, “Morphology, microstructure, and electrocatalytic properties of RuO2-SnO2 thin films”, Journal of the Electrochemical Society, 146, 220, (1999).
[42]C. C. Hu, K. H. Chang, and T. Y. Hsu, ”The Synergistic Influences of OH- concentration and electrolyte conductivity on the redox behavior of Ni(OH)2/NiOOH”, Journal of the Electrochemical Society, 155, 196, (2008).
[43]V. Srinivasan and J. W. Weidner, “An electrochemical route for making porous nickel oxide electrochemical capacitors”, Journal of the Electrochemical Society, 144, 210, (1996).
[44]G. H. Yuan, Z. H. Jiang, and A. Aramata, Y. Z. Gao, “Electrochemicalbehavior of activated-carbon capacitor material loaded with nickeloxide”, Carbon, 43, 2913, (2005).
[45]C. Natarajan, S. Ohkubo, and G. Nagami, “Influence of film processing temperature on the electrochromic properties of electrodeposited nickel hydroxide”, Solid State Ionics, 86, 949, (1996).
[46]M. S. Wu, Y. A. Huang, and C. H. Yang, “Capacitive behavior of porous nickel oxide/hydroxide electrodes with interconnected nanoflakes synthesized by anodic electrodeposition”, Journal of the Electrochemical Society, 155, 11, 798, (2008).
[47]E. E. Kalua, T. T. Nwogaa, and V. Srinivasanb, J. W. Weidnerb, “Cyclic voltammetric studies of the effects of time and temperature on the capacitance of electrochemically deposited nickel hydroxide”, Journal of Power Sources, 92, 163, (2001).
[48]D. D. Zhao, S. J. Bao, W. J. Zhou, and H. L. Li, “Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor”, Electrochemistry Communications, 9, 869, (2007).
[49]K. R. Prasada and N. Miurab, “Electrochemically deposited nanowhiskers of nickel oxide as a high-power pseudocapacitive electrode”, Applied Physics Letters, 85, 18, (2004).
[50]U.M. Patil, R.R. Salunkhe, K.V. Gurav, and C.D. Lokhande, “Chemically deposited nanocrystalline NiO thin films for supercapacitor application”, Applied Surface Science, 255, 2603, (2008).
[51]C. C. Hu and C. Y. Cheng, “Ideally pseudocapacitive behavior of amorphous hydrous cobalt-nickel oxide prepared by anodic deposition”, Electrochemical and Solid-State Letters, 5, 43, (2002).
[52]K. W. Nam, W. S. Yoon, and K. B. Kim, “X-ray absorption spectroscopy studies of nickel oxide thin film electrodes for supercapacitors”, Electrochimica Acta, 47, 3201, (2002).
[53]D. D. Zhao, M. W. Xu, W. J. Zhou, J. Zhang, and H. L. Li, “Preparation of ordered mesoporous nickel oxide film electrodes via lyotropic liquid crystal templated electrodeposition route”, Electrochimica Acta, 53, 2699, (2008).
[54]K. W. Nam and K. B. Kim, “A study of the preparation of NiOx electrode via electrochemical route for supercapacitor applications and their charge storage mechanism”, Journal of The Electrochemical Society, 149, 346, (2002).
[55]W. Xing, F. Liz, Z. F. Yan, H. M. Cheng, and G. Q. Lu, ” Synthesis of wormlike nanoporous nickel oxide with nanocrystalline framework for electrochemical energy storage”, International Journal of Nanoscience, 3, 321, (2004).
[56]X. M. Liu and X. G. Zhang, “NiO-based composite electrode with RuO2 for electrochemical capacitors”, Electrochimica Acta, 49, 229, (2004).
[57]X. M. Liu, X. G. Zhang, and S. Y. Fu, “Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors”, Materials Research Bulletin, 41, 620, (2006).
[58]Y. Zheng, M. Zhang, and P. Gao, “Preparation and electrochemical properties of multiwalled carbon nanotubes–nickel oxide porous composite for supercapacitors”, Materials Research Bulletin, 42, 1740, (2007).
[59]R. Vittal, H. Gomathi, and G. P. Rao, “Influence of a cationic surfactant on the modification of electrodes with nickel hexacyanoferrate surface films”, Electrochimica Acta, 45, 2083, (2000).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔