(3.235.191.87) 您好!臺灣時間:2021/05/14 21:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林坤壕
研究生(外文):Kun- Hao Lin
論文名稱:電泳動沉積氧化鎳複合電極及其電化學性質探討
論文名稱(外文):Eletrochemical behavior of nickel oxide composite electrodes prepared by electrophoretic deposition
指導教授:吳茂松
指導教授(外文):Mao-Sung Wu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:118
中文關鍵詞:活性碳氧化鎳巨孔電極電泳沉積電化學電容器
外文關鍵詞:activated carbonnickel oxidemacroporous electrodeelectrophoretic depositionelectrochemical capacitors
相關次數:
  • 被引用被引用:8
  • 點閱點閱:715
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文首先利用活性碳(BP2000)懸浮液添加不同濃度的硝酸鎳溶液進行電泳沉積,探討硝酸鎳對於電泳沈積活性碳電極的電化學特性之影響。此外,利用簡易的共沈積法配製出氫氧化鎳膠體,分別以碘、硝酸鎳和硝酸鈷作為電泳添加劑,經由電泳沈積製備氧化鎳電極。最後利用聚苯乙烯球作為模板,以硝酸鎳作為添加劑,將氫氧化鎳與聚苯乙烯進行共電泳沈積製備出孔洞結構電極材料,以提升氧化鎳電極之電容特性。
由界面電位(zeta potential)量測分析中發現活性碳懸浮液在硝酸鎳濃度為0.413 mM時帶的界面電位最大。此外,在氫氧化鎳懸浮液中,分別添加0.62 mM硝酸鎳與0.825 mM硝酸鈷時,界面電位最大。電泳後附著在活性碳表面上的鎳經鍛燒過後會在活性碳表面形成氧化鎳,這會使得活性碳表面性質轉為親水性有利於電性測試,而附著在氫氧化鎳表面上的鎳與鈷則會提高氫氧化鎳本身的導電性。
由循環伏安法(CV)所測得的電容特性結果顯示,活性碳懸浮液以添加0.413 mM硝酸鎳時,所轉變為氧化鎳型態之電容特性為最佳,在掃描速度50 mVs-1下,其測得電容量可達140 Fg-1左右,遠高於純活性碳本身的電容值24 Fg-1,提高約6倍左右。
此外,氫氧化鎳懸浮液分別以碘、硝酸鎳和硝酸鈷作為電泳添加劑,經電泳沉積之電極,所測得的電容結果顯示,添加硝酸鎳與硝酸鈷作為添加劑時,在掃描速度10 mVs-1下,其電容值分別為184 Fg-1和182 Fg-1,高於添加碘之電容值138 Fg-1,提升大約40 Fg-1的電容值,這是由於附著在氫氧化鎳上之鎳金屬與鈷金屬會提高氫氧化鎳的導電性的緣故。最後利用聚苯乙烯球作為模板,以硝酸鎳作為添加劑,將氫氧化鎳與聚苯乙烯進行共電泳沉積,製備出的巨孔洞結構電極,在掃描速度10 mVs-1下,其電容值約為310 Fg-1,比未加入聚苯乙烯為模板所製備的電極材料,明顯提升大約兩倍的電容值。
In this research, the activated electrode was fabricated by means of electrophoretic deposition (EPD) in the activated carbon (BP2000) suspension with the addition of nickel nitrate hexahydrate (Ni(NO3)26H2O) solution. The effects of Ni(NO3)26H2O solution on the electrochemical properties of carbon electrode were investigated. Besides, a simple co-precipitation method was used to synthesize the nickel hydroxide colloids. The nickel oxide electrode was prepared by the EPD process in nickel hydroxide suspension with the addition of iodine, Ni(NO3)26H2O, and cobalt nitrate hexahydrate (Co(NO3)26H2O), respectively. Finally, in order to enhance the capacitive properties of nickel oxide electrode, polystyrene (PS) spheres were used as the template in EPD to form macroporous NiO electrode.
Zeta potential measurement shows that when the addition amount of Ni(NO3)26H2O is 0.413 mM in the activated carbon suspension, a maximum zeta potential is obtained. On the other hand, when the concentrations of Ni(NO3)26H2O and Co(NO3)26H2O are 0.62 mM and 0.825 mM in the Ni(OH)2 suspensions, zeta potentials of the suspensions reach maximum values, respectively. Metallic nickel coated on the surface of activated carbon during EPD converts into NiO after calcination. The surface property of activated carbon changes into hydrophilic and the result is in favor of electrochemical performance. On the other hand, nickel and cobalt coated on the surface of Ni(OH)2 increases the conductivity.
Capacitor behavior measured by cyclic voltammetry (CV) indicates that when the Ni(NO3)26H2O concentration is 0.413 mM in the activated carbon suspension, specific capacitance of the prepared NiO electrode is found to be about 140 Fg-1 at a scan rate of 10 mVs-1, which is six times higher than a pure activated carbon electrode (24 Fg-1 ).
Furthermore, specific capacitances of the electrodes in a scan rate of 10 mVs-1 reach 184 Fg-1 and 182 Fg-1 when adding Ni(NO3)26H2O and Co(NO3)26H2O to the Ni(OH)2 suspensions, respectively. These capacitances are much higher than that of an iodine additive (138 Fg-1), which are increased by about 40 Fg-1. The improved capacitance can be attributed to the high conductivity of Ni(OH)2 by the deposited nickel and cobalt on the Ni(OH)2 surface. In addition, macroporous nickel oxide electrode was prepared by use of PS spheres as template during the EPD process. In this case, the Ni(OH)2 colloids and PS spheres are codeposited on the SS substrate by EPD in the addition of Ni(NO3)26H2O. Specific capacitance of macroporous nickel oxide electrode reaches to 310 Fg-1, which is twice higher than that of an electrode without PS template.
中文摘要....................................................................................... I
英文摘要....................................................................................... III
致謝.............................................................................................. V
總目錄.. ........................................................................................ VI
圖目錄........................................................................................... XI
表目錄........................................................................................... XV
第一章 緒論................................................................................. 1
1-1 電泳簡史與發展............................................................................. 1
1-2 電泳沉積之原理............................................................................. 2
1-3 影響電泳速度的因素...................................................................... 4
1-3.1 電場強度.................................................................................. 5
1-3.2 溶液pH..................................................................................... 5
1-3.3 溫度對電泳的影響.................................................................. 5
1-3.4 電滲透現象.............................................................................. 6
1-4 懸浮液種類...................................................................................... 7
1-5 電泳沉積法特性與應用.................................................................. 8
1-6 電泳動沉積過程的三種步驟.......................................................... 10
1-7 電泳動沉積的動作.......................................................................... 10
1-8 電雙層理論...................................................................................... 11
1-9 膠體粒子表面電荷來源………………………………………….. 13
1-9.1 離子化(Ionization)作用..................................................... 13
1-9.2 離子分解(Ion Dissolution)作用................................................ 13
1-9.3 離子吸附(Ion Adsorption)作用............................................... 14
1-9.4 摩擦生電(Particle Rubbing).................................................... 14
1-9.5 偶極分子之吸附(Adsorption of Dipoles)............................... 15
1-10 膠體分散機制............................................................................... 16
1-11 黏著劑的添加............................................................................... 18
1-12 電化學電容器之簡介................................................................... 19
1-13 影響電化學反應系統的因素....................................................... 20
1-14 電化學電容器的電極材料.......................................................... 21
1-14.1 碳系材料................................................................................ 21
1-14.2 金屬氧化物............................................................................ 21
1-14.3 導電高分子材料.................................................................... 23
1-15 電容器碳極的應用....................................................................... 24
1-16 多孔性碳材料............................................................................... 25
1-17 電化學電容器電解液的種類及影響........................................... 26
1-18 氧化鎳之製備及應用................................................................... 28
1-19 研究動機與目的........................................................................... 37
第二章 實驗方法與步驟..................................................................... 38
2-1 不銹鋼基材前處理......................................................................... 38
2-2 氫氧化鎳之製備............................................................................. 40
2-3 硝酸鎳之稀釋……………………………………………………. 42
2-4 硝酸鈷之稀釋................................................................................. 42
2-5 PTFE之稀釋………………………………………………………. 42
2-6 活性碳(BP2000)電泳懸浮液之配製…………………….……… 43
2-6.1 硝酸鎳系統………………………………………………….. 43
2-6.2 PTFE系統…………………………………………………….. 43
2-7 氫氧化鎳電泳懸浮液之配製……………………………………. 46
2-7.1 碘系統……………………………………………………..… 46
2-7.2 硝酸鎳系統………………………………………………….. 46
2-7.3 硝酸鈷系統………………………………………………….. 47
2-8 氫氧化鎳/聚苯乙烯電泳懸浮液之配製………………………… 49
2-9 電泳沉積製程……………………………….…………………… 51
2-10 電極片之製備…………………………….…………………….. 53
2-10.1 活性碳(BP2000)電極片之製備……………….……………... 53
2-10.1.1 硝酸鎳系統…………………………………………….… 53
2-10.1.2 PTFE系統……………….………………………………… 53
2-10.2 氫氧化鎳電極片之製備……………………………………… 55
2-10.2.1 碘系統……………………………………………………. 55
2-10.2.2 硝酸鎳系統……………………….……………………… 55
2-10.2.3 硝酸鈷系統………………………………………………. 56
2-10.3 氫氧化鎳/聚苯乙烯電極片之製備…………………………... 58
2-11 物理特性分析…………………………………………………... 60
2-11.1 界面電位量測分析(Zeta Potential)………………….…. 60
2-12 電化學特性分析………………………………………………... 60
2-13 實驗藥品與儀器………………………………………………... 63
2-13.1 實驗藥品…………………………………………………… 63
2-13.2 實驗儀器…………………………………………………… 65
第三章 結果與討論…………….…………………………………… 67
3-1 物理特性分析與探討……………………………………………. 68
3-1.1 SEM之表面型態分析………………………………………... 68
3-1.2 元素分析…………………………………………………….. 69
3-1.3 接觸量測(Contact angle)…………………………………..... 71
3-1.4 界面電位量測分析(Zeta Potential)………………….……. 79
3-2 電泳沉積活性碳電極之電化學特性研究……………………..... 83
3-3 電泳沉積活性碳電極在不同電壓範圍之效應…………………. 87
3-4 添加劑對於電泳沉積氫氧化鎳電極之電化學特性研究………. 94
3-5 氫氧化鎳/聚苯乙烯所製備的電極之電化學特性研究………… 101
3-6 充放電測試………………………………………………………. 106
第四章 結論………………………...………………………………… 109
參考文獻………………………………………………………………. 111
【1】李建武等合編, ”藝軒圖書出版社:生物化學實驗原理和方法”, P114~146, 1999.
【2】黃士瑋, ”使用電泳沉積研磨加工改善放電微孔精度之研究”, 中央大學機械工程研究所碩士論文, 2003.
【3】張樹政, ”中國大百科全書:化學-電泳”, 中國大百科全書出版社, 1987年12月.
【4】劉佳玫, “奈米二氧化鈦電泳沉積及其性質”, 國立成功大學材料科學及工程學系碩士論文, 2003.
【5】A. T. Kuhn (ed.), Industrial Electrochemical Processes,p.128.Elsevier, Amster dam, The Netherlands, 1971.
【6】P. Sarkar, P.S. Nicholson, “Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics”, Journal of the American Ceramic Society , 79, pp.1987-2002, 1996.
【7】I. Corni, M.P. Ryan, A.R. Boccaccini, “Electrophoretic deposition: from traditional ceramics to nanotechnology”, Journal of the European Ceramic Society, 28, pp.1353-1367, 2008.
【8】L. Besra, M. Liu, “A review on fundamentals and applications of electrophoretic deposition (EPD)”, Progress in Materials Science, 52, pp.1-61, 2007.
【9】I. Zhitomirsky, “Cathodic electrodeposition of Ceramic and organoceramic materials. fundamental aspects”, Advances in Colloid and Interface Science, 97, pp.279-317, 2002.


【10】 A.R. Boccaccini, J.A. Roether, B.J.C. Thomas, M.S.P. Shaffer, E. Chavez, E. Stoll, E.J. Minay, “The electrophoretic deposition of inorganic nanoscaled materials –a review-”, Journal of the Ceramic Society of Japan, 141, pp.1-14, 2006.
【11】 K. Yang, J. Shen, K. Yang, I. Hung, K. Fang, M. Wang, “Formation of La2Zr2O7 or SrZrO3 on cathode-supported solid oxide fuel cells”, Journal of Power Sources, 159, pp.63-67, 2006.
【12】 B. Frrari, R. Moreno, “The conductivity of Al2O3 slips for electrophoretic deposition”, Materials Letters, 28, pp.353-355, 1996.
【13】 F. Tang, T. Uchikoshi, Y. Sakka, “Electrophoretic deposition behavior of aqueous nanosized zinc oxide suspensions”, Journal of the American Ceramic Society, 85, pp.2161 – 2165, 2002.
【14】 R. Fischer, E. Fischer, G.D. Portu, E. Roncari, “Preparation of ceramic micro-laminate by electrophoresis in aqueous system”, Journal of Materials Science Letters, 14, pp.25-27, 1995.
【15】 Y.H. Chen, T. Li, F.Y.C. Boey, J. Ma, “Electrophoretic deposition and characterization of helical piezoelectric actuator”, Ceramics International, 34, pp.1-6, 2008.
【16】 P.S. Nicholson, P. Sarkar, X. Haung, “Electrophoretic deposition and its use synthesize ZrO2/Al2O3 micro-laminate ceramic/ceramic composites”, Journal of Materials Science, 28, pp.6274-6278, 1993.
【17】 Z. Xu, G. Rajaram, J. Sankar, D. Pai, “Electrophoretic deposition of YSZ electrolyte coatings for solid oxide fuel cells”, Surface and Coatings Technology, 201, pp.4484-4488, 2006.


【18】 T. Ishihara, K. Sato, Y. Takita, “Electrophoretic deposition of Y2O3- stabilize
d ZrO2 electrolyte films in solid oxide fuel cells”, Journal of the American Ceramic Society, 79, pp.913-919, 1996.
【19】 F. Hosseinbabaei, B. Raissidehkordi, “Electrophoretic deposition of MgO thick films from an acetone suspension”, Journal of the European Ceramic Society, 20, pp.2165-2168, 2000.
【20】 Y. Lee, C. Kuo, C. Shih, I. Hung, K. Fang, S. Wen, M. Wang, “Characteriza tion on the electrophoretic deposition of the 8 mol% yttria-stabilized zirconia nanocrystallites prepared by a sol-gel process”, Materials Science and Engineering A, 445-446, pp.347-354, 2007.
【21】 L. Jia, Z. Lü, X. Huang, Z. Liu, K. Chen, X. Sha, G. Li, W. Su, “Preparation of YSZ film by EPD and its application in SOFCs”, Journal of Alloys and Compounds, 424, pp.299-303, 2006.
【22】 Y. Wang. I. Leu, M. Hon, “Kinetics of electrophoretic deposition for nanocrystalline zinc oxide coatings”, Journal of the American Ceramic Society, 87, pp.84-88, 2004.
【23】 H. Hadraba, K. Maca, J. Cihlar, “Electrophoretic deposition of alumina and zirconia Ⅱ. two-component systems”, Ceramics International, 30, pp.853-863, 2004.
【24】 L. Besra, S. Zha, M. Liu, “Preparation of NiO-YSZ/YSZ bi-layers for solid oxide fuel cells by electrophoretic deposition”, Journal of Power Sources, 160, pp.207-214, 2006.
【25】 K. Yang, J. Shen, K. Yang, I. Hung, K. Fang, M. Wang, “Characterization of the yttria-stabilized zirconia thin film electrophoretic deposited on La0.8Sr0.2MnO3 substrate”, Journal of Alloys and Compounds, 436, pp.351-357, 2007.
【26】 F. Chen, M. Liu, “Preparation of yttria-stabilized zirconia (YSZ) films on La0.85Sr0.15MnO3 (LSM) and LSM-YSZ substrates using an electrophoretic deposition (EPD) process”, Journal of the European Ceramic Society, 21, pp.127-134, 2001.
【27】 G. Anné, K. Vanmeensel, B. Neirinck, O.V.D. Biest, J. Vleugels, “Ketone- amine based suspensions for electrophoretic deposition of Al2O3 and ZrO2”, Journal of the European Ceramic Society, 26, pp.3531-3537, 2006.
【28】 張有義, 郭蘭生譯, “膠體及界面化學入門”, 高立圖書有限公司.
【29】 L. Besra, M. Liu, “A review on fundamentals and applications of electropho retic deposition (EPD)”, Progress in Materials Science, 52, pp.1-61, 2007.
【30】 吳冊喆,“陶瓷懸浮液之水系電泳沉積行為研究”, 國立東華大學材料科學與工程研究所碩士論文,2006.
【31】 謝杰廷, “電泳沉積法製備精密鑄造面層陶殼模”, 國立高雄應用科技大學模具工程系碩士班碩士論文, 2008.
【32】 I. Zhitomirsky, “Cathodic electrodeposition of ceramic and organoceramic materials. fundamental aspects”, Advances in Colloid and Interface Science, 97, pp.279-317, 2002.
【33】 J.A. Siracuse, J.B. Talbot, E. Sluzky, and K.R. Hesse, “The adhesive agent in cataphoretically coated phosphor screens”, Journal of The Electrochemical Society, 137, pp.346-348, 1990.
【34】 B.E. Russ, and J.B. Talbot, “An analysis of the binder formation in electrop horetic deposition”, Journal of The Electrochemical Society, 145, pp.1253-1256, 1998.



【35】 J.P. Zheng, T.R. Jow, “High energy and high power density electrochemical capacitors”, Journal of Power Sources, 62, pp.155-159, 1996.
【36】 B. E. Conway, “Transition from supercapacitor to battery behavior in electro chemical energy storage”, Journal of The Electrochemical Society, 138, pp.1539-1548, 1991.
【37】 D. Pletcher and F. C. Walsh, “Industrial electrochemistry”, Chapman and Hall
Ltd. N. Y. 1990.
【38】 林巡, ”添加奈米碳材釕钽氧化物作為超高電容器複合電極之研究”, 國立高雄應用科技大學化學工程與材料工程系碩士班碩士論文, 2008.
【39】 粘駿楠, ”碳電極之氧官能基對電化學電容之影響”, 國立成功大學化學工程學系碩士論文, 2002.
【40】 王凱平, ”奈米孔洞碳電極之孔洞結構與電化學電容之相關性研究”, 國立成功大學化學工程學系碩士論文, 2005.
【41】 J.P. Zheng, P.J. Cygan, T.R. Jow, “Hydrous ruthenium oxide as an electrode material for electrochemical capacitors”, Journal of The Electrochemical Society, 142, pp.2699-2703, 1995.
【42】 M. Carlen, R. Kotz, “Principles and applications of electrochemical capacitor s”, Electrochimica Acta, 45, pp.2483-2498, 2000.
【43】 J.P. Zheng, T.R. Jow, “Effect of salt concentration in electrolytes on the maximum energy storage for double layer capacitors”, Journal of The Electrochemical Society, 144, pp.2417-2420, 1997.
【44】 A.J. bard, L.R. Faulkner, Electrochemical methods, fundamentals and applicat ions , second edition, John Wiley & Sons, Inc 1998.



【45】 M. Ue, K. Ida, S. Mori, “Electrochemical properties of organic liquid ele ctrolytes based on quaternary onium salts for electrical double-layer capacitors”, Journal of The Electrochemical Society, 141, pp.2989-2996, 1994.
【46】 邱政雄, ”球磨製程對奈米結構氫氧化鎳電性質的影響”, 國立台灣大學材料科學與工程學研究所碩士論文, 2003.
【47】 C.C. Yang, “Synthesis and characterization of active materials of Ni(OH)2 powders”, International Journal of Hydrogen Energy, 27, pp.1071-1081, 2002.
【48】 J. Zhang, L. Gao, “Synthesis and characterization of nanocrystalline tin oxide by sol-gel method”, Journal of Solid State Chemistry, 177, pp.1425-1430, 2004.
【49】 P.S. Patil, L.D. Kadam, “Preparation and characterization of spray pyrolyzed nickel oxide (NiO) thin films”, Applied Surface Science, 199, pp.211-221, 2002.
【50】 W. Xing, F. Li, Z.F. Yan, G.Q. Lu, “Synthesis and electrochemical properties of mesoporous nickel oxide”, Journal of Power Sources, 134, pp.324-330, 2004.
【51】 W. Xing, F. Li, Z.F. Yan, H.M. Cheng, G.Q. Lu, “Synyhesis of wormlike nanoporous nickel oxide with nanocrystalline framework for electrochemical energy storage”, International Journal of Nanoscience Vol. 3, No. 3, pp.321-329, 2004.
【52】 X.M. Liu, X.G. Zhang, “NiO-based composite electrode with RuO2 for electrochemical capacitors”, Electrochimica Acta, 49, pp.229-232, 2004.


【53】 C.C. Hu, C.Y. Cheng, “Ideally pseudocapacitive behavior of amorphous hydrous cobalt-nickel oxide prepared by anodic deposition”, Electrochemical and Solid-State Letters, 5(3), pp.A43-A46, 2002.
【54】 F. Pico, J. Ibanez, T.A. Centeno, C. Pecharroman, R.M. Rojas, J.M. Amarilla, J.M. Rojo, “RuO2•xH2O/NiO composites as electrodes for electrochemical capacitors Effect of the RuO2 content and the thermal treatment on the specific capacitance”, Electrochimica Acta, 51, pp.4693-4700, 2006.
【55】 G.T. Zhou, Q.Z. Yao, X. Wang, J.C. Yu, “Preparation and characterization of nanoplatelets of nickel hydroxide and nickel oxide”, Materials Chemistry and Physics, 98, pp.267-272, 2006.
【56】 S.A. Mahmoud, S.A. Aly, M.A. Rahman, K.A. Hady, “Electrochromic chara cterisation of electrochemically deposited nickel oxide films”, Physica B, 293, pp.125-131, 2000.
【57】 X.Y. Song, Y.X. He, C.M. Lampert, X.F. Hu, X.F. Chen, “Cross-sectional high-resolution transmission electron microscopy of the microstructure of electrochromic nickel oxide”, Solar Energy Materials & Solar Cells, 63, pp.227-235, 2000.
【58】 I. Porqueras, E. Bertran1, “Electrochromic behaviour of nickel oxide thin films deposited by thermal evaporation”, Thin Solid Films, 398-399, pp.41-44, 2001.
【59】 J.Y. Lee, K. Liang, K.H. Ana, Y.H. Lee, “Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance”, Synthetic Metals, 150, pp.153-157, 2005.
【60】 X.M. Liu, Y.H. Zhang, X.G. Zhang, S.Y. Fu, “Studies on Me/Al-layered double hydroxides (Me=Ni and Co) as electrode materials for electrochemical capacitors”, Electrochimica Acta, 49, pp.3137-3141, 2004.
【61】 陳壽安, “導電高分子:新世代光電材料”, 物理雙月刊, 23卷, 2期, 4月, 2001.
【62】 C. Natarajan, S. Ohkubo, G. Nagami, ”Influence of film processing temperatu re on the electrochromic properties of electrodeposited nickel hydroxide”, Solid State Ionics, 80, pp.949-953, 1996.
【63】 M.W. Mehren, R. Oesten, P. Wilde, R.A. Huggins, ”The mechanism of electrodeposition and operation of Ni(OH)2 layers”, Solid State Ionics, 86-88, pp.841-847, 1996.
【64】 Y. G. Wang, Y. Y. Xia, “Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15”, Electrochimica Acta, 51, pp.3223-3227, 2006.
【65】 H. Kamal, E. K. Elmaghraby, S.A. Alic, K.A. Hady, ”Characterization of nickel oxide films deposited at different substrate temperatures using spray pyrolysis”, Journal of Crystal Growth, 262, pp.424-434, 2004.
【66】 S. M. Lipka, “Electrochemical capacitors utilizing low surface area carbon fiber”, Institute of Electrical and Electronics Engineers, pp.245-248, 1997.
【67】 G.H. Yuan, Z.H. Jiang, A. Aramata, Y.Z. Gao, “Electrochemical behavior of activated-carbon capacitor material loaded with nickel oxide”, Carbon, 43, pp.2913-2917, 2005.
【68】 C.R. Magana, D.R. Acosta, A.I. Martinze, J.M. Ortega, “Electrochemically induced electrochromic properties in nickel thin films deposited by DC magnetron sputtering”, Solar Energy, 80, pp.161-169, 2006.
【69】 V. Srinivasan, J.W. Weidner, “An electrochemical route for making porous nickel oxide electrochemical capacitors”, Journal of The Electrochemical Society, Vol. 144, No. 8, August 1997.
【70】 M.S. Wu, H.H. Hsieh, “Nickel oxide/hydroxide nanoplatelets synthesized by chemical precipitation for electrochemical capacitors”, Electrochimica Acta, 53, pp.3427-3435, 2008.
【71】 M.S. Wu, C.Y. Huang, K.H. Lin, “Electrophoretic deposition of nickel oxide electrode for high-rate electrochemical capacitors”, Journal of Power Sources, 186, pp.557-564, 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top